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[1] In this paper, the robust counterpart (RC) approach (Ben-Tal et al., 2009) is applied to
optimize management of a water supply system (WSS) fed from aquifers and desalination
plants. The water is conveyed through a network to meet desired consumptions, where the
aquifers recharges are uncertain. The objective is to minimize the net present value cost of
multiyear operation, satisfying operational and physical constraints. The RC is a min-max
guided approach, which converts the original problem into a deterministic equivalent
problem, requiring only that the uncertain parameters resides within a user-defined
uncertainty set. The robust policy obtained by the RC approach is compared with polices
obtained by other decision-making approaches including stochastic approaches.
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1. Introduction
[2] Optimal planning and management of water supply

systems (WSS) has been studied extensively and resulted
in many optimization models and techniques. The parame-
ters of early models were usually assumed perfectly known,
leading to deterministic models. The results obtained by
such models may perform poorly when implemented in the
real world, when the problem parameters are revealed and
differ from those assumed in the deterministic model.

[3] There are approaches that handle uncertainty in the
problem parameters, notably stochastic programming. A
variety of stochastic methods have been applied to WSS
management, including stochastic dynamic programming
[Yeh, 1985; Faber and Stedinger, 2001], implicit stochastic
optimization [Lund and Ferreira, 1996; Labadie, 2004],
scenarios-based optimization [Pallottino et al., 2005;
Kracman et al., 2006], and chance constraint methods
[Lansey et al., 1989; Sankarasubramanian et al., 2009]. In
these stochastic programming methods the uncertain data
are assumed to have a known probability density function
(PDF). A drawback is that the PDF itself must be recog-
nized as being uncertain.

[4] In classical stochastic programming the models are
designed to minimize the expected value of a cost function
or maximize a net benefit function, and do not facilitate
evaluation of the trade-offs between the risks of infeasibil-
ity and the losses in optimality.

[5] Robust optimization (RO) is a framework for incor-
porating risk aversion into optimization models and finding
robust solutions. One can distinguish between probabilistic
and nonprobabilistic RO methods. Modern RO deals pri-
marily with nonprobabilistic models of robustness. The
term ‘‘robust optimization’’ is used quite frequently in the

literature, while researchers often do not distinguish
between probabilistic and nonprobabilistic RO when they
use the descriptor ‘‘robust’’ in their papers’ titles, even if in
the paper body it can be discerned which version they use.
Therefore, the specific meaning and implications of RO
have become somewhat elusive.

[6] The probabilistic RO is attributed to Mulvey et al.
[1995], which is also known as scenario-based RO. Mulvey
et al. [1995] used the slack variables of soft constraints to
penalize the objective function when soft constraints are
violated. Higher moments (e.g., variance) were then intro-
duced into the objective function as a measure of risk. For
instance, if the variance is used (as in the case of the origi-
nal Mulvey et al.’s [1995] paper), the scenario-based RO
allows the evaluation of trade-offs between the expected
value of the objective function, the variability in the value
of the objective function, and the risk of violating soft
constraints.

[7] Various applications of this scenario-based RO were
reported in the past decade [Watkins and McKinney, 1997;
Escudero, 2000; Jia and Culver, 2006]. In Watkins and
McKinney [1997] the new RO (at that time) methodology
proposed by Mulvey et al. [1995] was applied to an urban
water management problem, where they seek solutions that
hedge against inherent parameter uncertainty by using the
scenario-based RO.

[8] It is instructive to note that the scenario-based RO
shares a number of disadvantages with stochastic program-
ming: (a) data: uncertain data are assumed to have a
known PDF, which in reality is itself uncertain; (b) struc-
ture: how to build a ‘‘representative’’ sample of scenarios,
using the PDFs?; (c) tractability : to represent the PDF sup-
port, a large sample of scenarios is usually needed, which
can be very difficult to process computationally. Watkins
and McKinney [1997] state ‘‘One disadvantage of RO is the
potential size and complexity of the resulting model. As a
result, special solution algorithms may be required.’’

[9] Beyond the disadvantages of the scenario-based RO
raised above, some researchers demonstrate conceptual
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concerns regarding Mulvey et al.’s [1995] approach. Sen
and Higle [1999] state ‘‘the RO model paints a misleading
picture of the variance of the second-stage objective’’ and
fortify their claim by a numerical example.

[10] More than a decade ago, a new nonprobabilistic RO
method, the robust counterpart (RC) approach, was pro-
posed [Ben-Tal and Nemirovski, 1999; Bertsimas and
Sim, 2004] and used in a number of applications which
includes portfolio models [Ben-Tal et al., 2000b; Lobo and
Boyd, 2000], inventory theory [Bertsimas and Thiele,
2006; Bienstock and Ozbay, 2008], process scheduling [Li
and Ierapetritou, 2008], and network models [Mudchana-
tongsuk et al., 2005].

[11] The RC approach is a novel method for optimization
under uncertainty, in which the uncertainty is not described
by a PDF or scenarios, but is rather ‘‘deterministic’’ [Ben-Tal
and Nemirovski, 1999] which is known to reside within a
user-defined uncertainty set. Hence, instead of immunizing
the solution in a probabilistic sense, the decision-maker
searches for a solution that is optimal for all possible realiza-
tions of the uncertainty set.

[12] The RC approach developed by Ben-Tal and Nemir-
ovski [1999] considers ellipsoidal uncertainty sets while the
RC approach suggested by Bertsimas and Sim [2004] con-
siders polyhedral uncertainty sets. Both approaches have
advantages and disadvantages. In the RC [Ben-Tal and
Nemirovski, 1999] the use of the ellipsoidal uncertainty set
can be probabilistically justified (section 2.2 below) and
the resulting RC has the same size as the original model,
while the size of the polyhedral RC [Bertsimas and Sim,
2004] increases. On the other hand, the polyhedral RC is
linear like the original problem, while the ellipsoidal RC
results in second-order nonlinear cone programming.

[13] For the WSS problem we use the ellipsoidal RC as
we prove (section 4.2) that the RC obtained is linear pro-
grammed (LP) with the same size as the original problem
and therefore has clear preference. For numerical compari-
son between the two approaches the reader is referred to Li
and Ierapetritou [2008, p. 4153]. For an application of the
polyhedral RC [Bertsimas and Sim, 2004] the reader is
referred to Chung et al. [2009] for an application to WSS
design under demand uncertainty.

[14] Section 2 presents the basics of the RC method. Sec-
tion 3 presents formulation of the WSS model, its objective
function and constraints. Section 4 describes the applica-
tion of the RC to the WSS model, namely structuring the
model for the optimization solver. Section 5 presents appli-
cations of the RC to two WSS models.

2. Robust Counterpart (RC) Approach
[15] The RC approach is a min-max-oriented method

[Ben-Tal and Nemirovski, 1998, 2000a] that seeks robust
feasible/optimal ‘‘here and now’’ decisions which are deter-
mined at the beginning of the time horizon, before the
uncertain data are revealed. This version of the RC approach
is termed the ‘‘static problem.’’

[16] Robust feasible decisions treat the uncertain con-
straints as hard constraints, i.e., constraints which have to
be satisfied for all realizations within the given uncertainty
set, while robust optimal means optimizing the guaranteed
value (for a minimization problem it is the largest value) of
the objective function over the uncertainty set.

[17] The RC approach is flexible enough to allow treating
soft constraints in which feasibility is not essential, such as
demand constraints, when water users can accept minor
water shortages with an associated cost (penalty). Mulvey
et al. [1995] used the slack variables of soft constraints to
penalize the objective function when soft constraints are
violated. Introducing slack variables in soft constraints con-
verts them to hard constraints which must remain feasible
for all realizations of the uncertainty set.

[18] The RC can also allow different ways to handle
the objective function; for example, one can use the nom-
inal values of the uncertain data in the objective while the
constraints have to satisfy all the realization in the uncer-
tainty set.

[19] The RC solves a static problem in which the deci-
sions for all future stages are determined ‘‘here and now.’’
As a consequence, decisions for the first stage, which are to
be implemented immediately, are influenced by future in-
formation as known or forecasted at present, including:
planned or already committed modifications of the supply
system, future cost figures, forecasted demands, and hydro-
logical forecasts. In practice, the model will be run again at
the end of the first stage with whatever information has
been added or updated and starting with the actual state of
the supply system at that time. This process is captured by
the ‘‘folding RC’’ approach (FRC) [Ben-Tal et al., 2000b]
addressed in section 5.3.

2.1. Robust Counterpart of an Uncertain Linear
Program

[20] Consider the following problem subject to data
uncertainty:

min
y

c0
T y : A0y � b0

� �
: ð1Þ

[21] We assume without any loss of generality that the
data uncertainty only affects the elements in the coefficient
matrix. If there is uncertainty in the objective or in the
right-hand side (RHS), we can rewrite the linear program-
ming (LP) problem as

min
x

cT x : Ax � 0
� �

; ð2Þ

where x ¼ [z, y, 1]T (the last element is 1 to represent the

RHS); A ¼ �1 cT
0 0

0 A0 �b0

� �
and c ¼ [1, 0, . . . , 0]T.

[22] The RC of problem (2) is

min
x

cT x : Ax � 0; 8A 2 U
� �

; ð3Þ

where U is a user-defined uncertainty set. According to
Ben-Tal et al. [2009, p. 11], an LP with a certain objective
is a constraintwise problem, i.e., the RC solution does not
change if the uncertainty set is extended to the product of
its projections on the subspaces of the constraints, i.e.,
instead of solving (3) one can solve:

min
x

cT x : aT
i x � 0; 8i; 8ai 2 Ui

� �
; ð4Þ

where aT
i is row i in matrix A and Ui is the projection of U

on the space of the data of ai.
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[23] Worst case-oriented methods often lead to overly
conservative solutions such as Soyster’s [1973] which con-
siders interval and columnwise uncertainties in LP, where
every uncertain parameter takes its worst-case value in the
uncertainty set. To address over-conservativeness, the RO
method introduces ellipsoidal uncertainty sets to reflect the
fact that the coefficients of the constraints are not expected
to be simultaneously at their worst values.

[24] The ellipsoidal uncertainty set is defined as affine
mapping of a ball of radius � :

Ui ¼ ai : âi þ�&; &k k � �f g ; ð5Þ

where âi is the nominal value, � is the mapping matrix,
and the parameter � is a subjective value chosen by the
decision-maker to reflect his attitude toward risk. Ben-Tal
et al. [1999] show that the RC of the LP constraints is

aT
i x � 0 8ai 2 âi þ�&; &k k � �f g
,

max
&k k��

âT
i xþ �&ð ÞT x

h i
� 0

,

âT
i xþ � xT �

�� �� � 0;

ð6Þ

which is a convex tractable optimization problem that can
be solved by polynomial time interior point algorithms.
When only some of the parameters are uncertain, e.g., ai1 is
a vector of certain parameters and ai2 a vector of uncertain
parameters in row i of the matrix A, the RC is

aT
i1x1 þ aT

i2x2 � 0 8ai2 2 âi2 þ�2&2; &2k k � �f g
,

aT
i1x1 þ âT

i2x2 þ � xT
2 �2

�� �� � 0;

ð7Þ

where x1, x2 are the elements of x corresponding to ai1, ai2,
respectively. A special case is when the only uncertainty is
on the right-hand side, in vector b0. In this case x ¼ [z, y, 1]T

from (2) is separated into x1 ¼ [z, y]T and x2 ¼ 1; hence, we
obtain a linear RC of the form

aT
i1x1 þ âT

i2 þ � �2k k � 0: ð8Þ

2.2. Why Ellipsoidal Uncertainty?
[25] Several considerations lead to the selection of an el-

lipsoidal uncertainty set : (1) it leads to an explicit convex
tractable RC which can be solved by polynomial time
methods such as interior-point. (2) ellipsoidal uncertainty is
defined by the subjective safety parameter �, which allows
the decision-maker to solve the robust counterparts of the
problem for different values of �, and thereby obtain the
tradeoff between robustness and performance. (3) Using an
ellipsoidal uncertainty set can be stochastically justified,
even though no underlying PDF is assumed to be known
for the uncertain parameters.

[26] Partial information on the uncertain data is often
available and can be used in defining the ellipsoid. Simple
probabilistic arguments such as first and second moments

of the stochastic parameters (expectation and variance) can
be used to replace stochastic uncertainty by an ellipsoidal
deterministic uncertainty. To demonstrate this let us con-
sider the linear constraint :

aT
1 x1 þ aT

2 x2 � 0 ; ð9Þ

where a2 is random vector with expectation vector �a2 and
covariance matrix �a2 . Thus, the left-hand side of the con-
straint is a stochastic random variable with expectation �l,
and variance �l defined as

�l ¼ E aT
1 x1 þ aT

2 x2
� �

¼ aT
1 x1 þ �T

a2
x2; ð10Þ

�l ¼ Var aT
1 x1 þ aT

2 x2
� �

¼ xT
2 �a2 x2 ¼ xT

2 ��T x2 ¼ xT
2 �

�� ��2
;

ð11Þ

where �a2 ¼ ��T . The matrix � can be obtained by the
Cholesky decomposition. If we define the ‘‘safe’’ version of
the constraint as the realization of the stochastic left side
when deviated by � standard deviations, we obtain:

�l þ � xT
2 �

�� �� � 0

aT
1 x1 þ �T

a2
x2 þ � xT

2 �
�� �� � 0;

ð12Þ

which is the same as the robust counterpart with ellipsoidal
uncertainty set :

Ua2 ¼ a2 ¼ �a2 þ�&; &k k � �f g: ð13Þ

[27] Hence, if we solve the linear robust counterpart in
which the coefficients belong to the ellipsoidal uncertainty
set defined above, it is the same as saying that we are
immunized against � standard deviations of the constraint.

[28] Note that the stochastic vector a2, with expectation
�a2 and covariance matrix �a2 , can be described as an
affine transformation of the random vector � with expecta-
tion �� ¼ 0 and covariance matrix �� ¼ I :

a2 ¼ �a2 þ��; ð14Þ

since �a2 ¼ �a2 þ��� ¼ �a2 and �a2 ¼ ����
T ¼ ��T :

[29] Thus, the construction of the ellipsoidal uncertainty
set replaces the stochastic variables � by the perturbation
vector & varying in the perturbation set Ball� ¼ &k k � �f g:

3. Management Model of a Water Supply
System (WSS)

[30] We consider management of a WSS where water is
taken from sources, conveyed through a conveyance, and
distribution network to consumers. Mathematical optimiza-
tion models have proven their usefulness in dealing with
such problems [Loucks et al., 1981]. Various types of mod-
els can be applied to WSS, depending on the time horizon
and time steps, ranging from long-term development of
large systems, to detailed operation of smaller parts. Thus,
models range from highly aggregate versions of an entire
water system to much more detailed models in space and
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time [Shamir, 1971]. The short-term (weekly to annual) or
long-term (years, decades) operation of a large-scale water
supply system can be captured in a model of medium
aggregation that is used to simultaneously manage water
sources, water demands, and the network [Fisher et al.,
2002; Draper et al., 2003, 2004; Jenkins et al., 2004;
Watkins et al., 2004; Zaide, 2006].

[31] Here we consider an optimization model with a me-
dium aggregation level : water is taken from sources, which
include aquifers, reservoirs, and desalination plants, con-
veyed through a distribution system to consumers who
require certain quantities of water, see Figure 1 (small sys-
tem, for which we provide detailed analysis) and Figure 7
(large system, only major results). The time horizon covers
several years, with an annual time step. The operation is
subject to constraints such as water levels in the aquifers,
capacities of the pumping stations, carrying capacities of
the distribution system, and production capacity of the
desalination plants. The objective is to operate the system
with a minimum total cost of desalination and pumping,
plus a depletion penalty for ending below a prescribed final
level in the aquifers, which becomes a reward if the final
state is higher than this level.

[32] The network representation in the model can be
classified according to the physical laws that are considered
explicitly in the model constraints [Ostfeld and Shamir,
1993; Cohen et al., 2000]. According to this classification,
the proposed model is a flow model, which only considers
the balance of flows without explicit inclusion of the
hydraulics. The inherent assumption of this flow model is
that the detailed hydraulic operation of the system to
deliver the quantities prescribed by the model is feasible. A
further consideration included in the proposed model is sus-
tainability of the management plan. This implies meeting
the needs of the present without reducing the ability of the
next generation to meet its needs [Loucks, 2000]. This is
represented by a relatively long time-horizon with specified
state conditions at its end. An allied aspect of multiyear
WSS management relates to hydrological uncertainty
[Ajami et al., 2008], climate change [Brekke et al., 2009;
Yates et al., 2005], population growth [Kasprzyk et al.,
2009], and the decline of water quality in the sources.

However, in the current paper only the replenishment into
the natural resources is taken as uncertain.

3.1. Mathematical Model
3.1.1. Objective Function

[33] The objective is to operate the system with mini-
mum total cost composed of desalination and conveyance
costs over the operation horizon Tf years, and a penalty/
reward related to the final state of the aquifers at the end of
the planning horizon. This term depends on the deviation
of the final water level from a prescribed value: being
below it incurs a penalty while being above it results in a
reward. Henceforth, all values are in million cubic meters
per year (MCM/yr) and the costs are in ($/MCM), where
a, d, l, z, and t denote aquifer, desalination, link, demand
zone, and year, respectively. The objective is

XTf

t¼1

X
d

desd;tQd;tþ
X

l

Cl;tQl;t

" #

þ
X

a

ðĥa � ha;Tf ÞEa

h i
! min;

ð15Þ

where desd,t is the cost of desalinated water per MCM
($/MCM); Qd,t is the desalinated water amount (MCM/yr) ;
Cl,t is the cost of transportation perMCM ($/MCM); Ql,t is
the flow in the link (MCM/yr); ha,t is the water level (m) in
the aquifer at the end of year t ; ĥa is the prescribed final
water level (m) ; and Ea is penalty per unit deviation ($/m).
3.1.2. Constraints
3.1.2.1. Water Conservation Law

[34] The distribution system is represented as a directed
graph consisting of N nodes connected by M edges. The
nodes can be grouped into two subgroups: N1 are source
nodes, desalination plant, and aquifers, with one outgoing
link from each source node; and N2 intermediate and demand
nodes, where two or more edges meet. The M edges repre-
sent the links between two nodes; links in which the direc-
tion of flow is not fixed are represented by two edges, one in
each direction. The topology of the network is represented by
the junction node connectivity matrix G, where G 2 RN2�M

has a row for each node and a column for each edge. The

Figure 1. Network layout.
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nonzero elements in each row are þ1 and �1 for incoming
and outgoing edges, respectively. The first columns in G cor-
respond to the links, which leave source nodes (aquifers and
desalination plants), while the last rows correspond to the
demand nodes. For each year t, the following linear equation
system insures water conservation at the network nodes:

GQt ¼ St; ð16Þ

where Qt ¼ [Qnatural,t, Qdesalination,t, Qlinks,t]
T ; St ¼ [0, Qde-

mand,t]
T ; Qnatural,t is the vector of elements Qa;t 8a ; Qdesalina-

tion,t is the vector of elements Qd;t 8d ; Qlinks,t is the vector
of elements Ql;t 8l ; Qdemand,t is the vector of elements
Qz;t 8z where Qz,t denotes demand at year t in demand zone z.
The water supply network shown in Figure 1 has three source
nodes, four intermediate nodes, and two demand nodes. The
junction node connectivity matrix G 2 R6�11 is given in
Table 1. The vectors Qt, St are: Qt ¼ [Qa,t, Qd,t, Ql,t, . . . ,
Q8,t]

T and St ¼ [0, . . . , 0, Qz¼1,t, Qz¼2,t]
T.

3.1.2.2. Hydrological Balance for Aquifers
[35] The hydrological water balance insures that the

change in aquifer storage equals the difference between the
recharge and withdrawal during the year:

ha;t ¼ ha;0 þ
1

SAa

Xt

i¼1

Ra;i �
Xt

i¼1

Qa;i

 !
; ð17Þ

where Qa,t is the extraction amount (MCM/yr); Ra,t is
recharge (MCM/yr); SAa is the storativity multiplied by
area (MCM/m) ; ha,t is the water level in the aquifer at the
end of year t (m) ; and ha,0 is the initial water level (m).
3.1.2.3. Limits on Water Levels in the Sources

[36] Constraints on water levels in the natural resources
reflect both policy and physical/operational limits :

hmin
a;t � ha;t � hmax

a;t ; ð18Þ

where hmin
a;t is the minimum allowed water level (m) ; hmax

a;t
is the maximum allowed water level (m).
3.1.2.4. Conveyance Capacity Constraints

[37] The model deals with water balance and does not ex-
plicitly include the hydraulic energy equations. Still, to main-
tain feasibility of hydraulic conditions the discharges in the
links are limited by capacity constraints, which are calculated
from the hydraulic data of the pipes/links. The lower bound
is set to zero since the flow direction in the links is fixed:

0 � Ql;t � Qmax
l;t ; ð19Þ

where Qmax
l;t is the maximum discharge allowed (MCM/yr).

3.1.2.5. Capacities of Natural Sources
[38] The extracted amount from each natural resource

may be restricted by an upper bound, reflecting various
hydrological and hydraulic considerations. The lower bound
is set to zero as the flow from the source is one-directional:

0 � Qa;t � Qmax
a;t ; ð20Þ

where Qmax
a;t is the maximum admissible/feasible with-

drawal (MCM/yr).
3.1.2.6. Desalination Capacity

[39] The amount of desalinated water from each plant is
limited by an upper bound which represents plant capacity
and by a lower bound that represents a condition usually set
in the contract with the plant owners (which may be zero):

Qmin
d;t � Qd;t � Qmax

d;t ; ð21Þ

where Qmax
d;t is maximum supply (MCM/yr); and Qmin

d;t is
minimum supply (MCM/yr).

[40] The resulting mathematical model is an uncertain
LP where the uncertainty is in the recharge parameters
Ra;t 8a8t. Hence, we can define the uncertain column vector
R ¼ [Ra¼1..af,t¼1, . . . , Ra¼1..af,t¼Tf

]T, where af is the number
of natural resources.

4. Applying the RC Approach
4.1. Constructing the Uncertainty Set

[41] Recharge into natural resources is usually given as a
historical time series, frequently of limited duration, and
sometimes not rich enough to adequately describe the sto-
chastic process. To construct an ellipsoidal uncertainty set
for the natural resources recharge, we assume that the an-
nual recharge values are independent random variables,
where the recharge vector of the aquifers R0 ¼ Ra¼1..af,t

0 in
each year t0 is correlated with covariance matrix �R0 and
expectation vector �R0 , indicating positive correlation
between the recharge of different aquifers (e.g., a wet year
is wet all over). Each row in �R0 and �R0 corresponds to an
aquifer a ¼ 1..af. The annual recharges are assumed inde-
pendent over time so the recharge data is repeated for the
entire horizon. Hence, the expectation vector of the overall
recharge is �R ¼ ½�R0 ; . . . ; �R0 �

T and covariance matrix �R
is a diagonal block matrix:

�R ¼
�R0 0 0

0 . .
.

0

0 0 �R0

0
BB@

1
CCA: ð22Þ

[42] Consider the linear transformation of the stochastic
vector R :

R ¼ �R þ��;

�R ¼ �R þ���;

�R ¼ ����
T :

ð23Þ

[43] If we set �� ¼ 0 and �� ¼ I and we wish to main-
tain the covariance of R, then �R ¼ ��T . By replacing
the stochastic vector � with the perturbation vector & that

Table 1. The Junction Node Connectivity Matrix for the Network
in Figure 1

Node

Source Links

a1 a2 d 1 2 3 4 5 6 7 8

1 1 1 0 �1 �1 0 0 0 0 0 0
2 0 0 1 0 0 �1 �1 0 0 0 0
3 0 0 0 1 0 1 0 �1 0 �1 0
4 0 0 0 0 1 0 1 0 �1 0 �1
5 0 0 0 0 0 0 0 1 1 0 0
6 0 0 0 0 0 0 0 0 0 1 1
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varies in the perturbation set Ball� ¼ &k k � �f g, we
obtain the ellipsoidal uncertainty set U of the uncertain
vector R :

U ¼ R : �R þ�& ; &k k � �f g: ð24Þ

[44] The parameter � determines the range of values of
the uncertain R against which the optimal policy is immu-
nized, i.e., remains feasible. A large value means immuni-
zation against more extreme values of R. � ¼ 0 implies
that only the expected value of R is taken into considera-
tion, and any deviation of its actual value from this expec-
tation could lead to constraint violation.

[45] The matrix � ¼ �0:5
R can be obtained by the Cho-

lesky decomposition. Each row in � corresponds to year t
and aquifer a and implies �a ¼ �t;a

�� ��, where �a is the
standard deviation of recharge in aquifer a which remains
constant over the years.

4.2. Formulation of the RC
[46] Formulation of a RC for the WSS model developed

in section 3 requires extracting the state variable ha,t from
the uncertain equation (17). The resulting model, after sub-
stituting ha,t and converting it to the form of the LP in (2) is

K ! min

Subject to

ðIÞ
XTf

t¼1

X
a

EaQa;t

SAa
�
XTf

t¼1

X
a

EaRa;t

SAa
þ
XTf

t¼1

X
d

desd;tQd;t

þ
XTf

t¼1

X
l

Cl;tQl;t þ P0 � K � 0 ;

ðIIÞ

ha;0 þ
1

SAa

Xt

i¼1

Ra;i �
Xt

i¼1

Qa;i

 !
� hmax

a;t � 0 8a8t

�ha;0 �
1

SAa

Xt

i¼1

Ra;i �
Xt

i¼1

Qa;i

 !
þ hmin

a;t � 0 8a8t

8>>>>><
>>>>>:

;

ðIIIÞ

GQt ¼ St 8t
Qmin

d;t � Qd;t � Qmax
d;t 8d8t

0 � Qa;t � Qmax
a;t 8a8t

0 � Ql;t � Qmax
l;t 8l8t

8>>>>><
>>>>>:

;

ð25Þ

where P0 ¼
P

a
ðĥa � ha;0ÞEa is a certain constant.

[47] Consider the vectorized version of the uncertain
constraints (I) and (II) :

XTf

t¼1

X
a

EaQa;t

SAa
� RT D�1

SA vþ
XTf

t¼1

X
d

desd;tQd;t

þ
XTf

t¼1

X
l

Cl;tQl;t þ P0 � K � 0

ha;0 þ RT D�1
SA �a;t � 1

SAa

Pt

i¼1
Qa;i � hmax

a;t � 0 8a8t

�ha;0 � RT D�1
SA �a;t þ 1

SAa

Pt

i¼1
Qa;i þ hmin

a;t � 0 8a8t;

ð26Þ

where R ¼ [Ra¼1..af,t¼1, . . . , Ra¼1..af,t¼Tf
]T ; v ¼ [Ea¼1.af

, . . . ,
Ea¼1.af

]T ; �a;t 2 Rðaf�Tf�1Þ has 0 and 1 values according to
a, t, in order to extract the elements corresponding to the
constraint from the elements of R ; DSA is a diagonal matrix
with main diagonal vector ½SAa¼1::af ; � � � ; SAa¼1::af �

T 2
Rðaf�Tf�1Þ. For example, when there are two aquifers,
�a¼1;t¼2 ¼ ½1; 0; 1; 0; 0; � � � ; 0�T .

[48] The robust version of the uncertain constraint is (see
section 2.1)

XTf

t¼1

X
a

EaQa;t

SAa
� �T

RD�1
SA vþ � vT D�1

SA �
�� ��

þ
XTf

t¼1

X
d

desd;tQd;t þ
XTf

t¼1

X
l

Cl;tQl;t þ P0 � K � 0

ha;0 þ �T
RD�1

SA �a;t þ � �T
a;tD

�1
SA �

��� ���� 1
SAa

Xt

i¼1

Qa;i

� hmax
a;t � 0 8a8t

� ha;0 � �T
RD�1

SA �a;t þ � �T
a;tD

�1
SA �

��� ���þ 1
SAa

Xt

i¼1

Qa;i

þ hmin
a;t � 0 8a8t:

ð27Þ

[49] The resulting RC is LP, since no decision variables
appear in the norms and the uncertainty appears only on the
RHS. Recalling that the data in �R and � are repeated each

year and that �a ¼ �t;a

�� ��, we obtain �T
RD�1

SA �a;t ¼
t�R0a

SAa
,

�T
a;tD

�1
SA �

��� ��� ¼ ffiffi
t
p
�a

SAa
; hence, the RC of the WSS model is

K ! min

Subject to

XTf

t¼1

X
a

EaQa;t

SAa
� �T

RD�1
SA vþ � vT D�1

SA �
�� ��

þ
XTf

t¼1

X
d

desd;tQd;t þ
XTf

t¼1

X
l

Cl;tQl;t þ P0 � K � 0

ha;0 þ
t�R0a

SAa
þ �

ffiffi
t
p
�a

SAa
� 1

SAa

Xt

i¼1

Qa;i � hmax
a;t � 0 8a8t

�ha;0 �
t�R0a

SAa
þ �

ffiffi
t
p
�a

SAa
þ 1

SAa

Xt

i¼1

Qa;i þ hmin
a;t � 0 8a8t

GQt ¼ St 8t
Qmin

d;t � Qd;t � Qmax
d;t 8d8t

0 � Qa;t � Qmax
a;t 8a8t

0 � Ql;t � Qmax
l;t 8a8t:

ð28Þ

5. Examples
5.1. Problem Data

[50] A small hypothetical water supply system (Figure 1)
is used for detailed demonstration. Summary results are
later shown for a larger system (Figure 7) that is a central
part of the Israeli National Water System. The system in
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Figure 1 is fed from two aquifers and a desalination plant
to supply two customers over a 10-yr horizon, for which a
minimum total operation cost is sought. The annual costs
of transportation in the links are f0.1, 0.05g (M$/MCM)
for odd and even links, respectively, and the desalination
cost is 1 (M$/MCM). The same costs hold for later years t
¼ 2..Tf and are capitalized to the present (decision time)
with a 5% discount rate. The penalty at the final stage is 0.3
(M$/m) for being below the prescribed value; it becomes
positive for levels above the prescribed value. Both aquifers
have identical physical properties: SA ¼ 0.8 (MCM/m),
h0 ¼ 75 (m), ĥ ¼ 30 (m), hmin ¼ 0 (m), and hmax ¼ 500 (m)
(an arbitrary high value, to insure no spill and thus simplify
the demonstration). All discharges have the same bounds:
0–100 (MCM). The annual recharges are independent and
identically distributed (i.i.d.) with a joint uniform discrete
distribution f30, 40, 50g for aquifer 1 and f35, 50, 60g for
aquifer 2, respectively, and remains the same for all 10
years. This distribution implies mean recharges of f40,
48.33g (MCM) in aquifers 1 and 2, respectively, and a co-
variance matrix:

VR0 ¼
66:67 83:33

83:33 105:56

� �
: ð29Þ

[51] The resulting uncertainty set of the annual recharge is

U ¼ R0 :
40

48:33

� �
þ 8:17 0

10:21 1:18

� �
&1

&2

� �
; &k k��


 �
: ð30Þ

[52] The demand in the first year is 80 (MCM) in each
demand zone, and it increases by 5% in each subsequent year.

5.2. RC Solution and Simulation Results
[53] We compare five management policies: three robust

policies (RP1, RP2, and RP3) obtained from the RC solution
with different values of � ¼ f1; 2; 3g, a nominal policy
(NP) which is obtained from a deterministic solution with
the average recharge, and a conservative policy (CP) which
is obtained from the worst case realization, namely minimum
recharge in all years. Each of these policies determines ‘‘here
and now’’ decisions which are implemented at the beginning
of the planning horizon before the uncertainty is revealed.

[54] Figure 2 compares the annual amount of desalinated
water in each of these policies. The CP results in constant
desalination of 120 (MCM/yr), which is the full capacity of
the desalination plant. The NP takes as much as possible
from the aquifers in the first stages while recognizing that
demand is increasing beyond the desalination capacity
which leads to storing aquifer water to close the gap
between the demand and the supply capacity at later stages.
The conservativeness of the CP over other policies is appa-
rent. The robust policies RP1, RP2, and RP3 require less
desalinated water than the CP, indicating that the robust
policies are not myopic; in other words, they take advant-
age of the variability of recharge over time. Compared to
the NP, a robust policy takes more desalinated water in the
first stages, resulting in higher water level in the aquifers,
which insures maneuverability within the operational limits
of the aquifers in later years. The degree of conservative-
ness of the robust policies is noticeable; an RP with smaller
� results in less desalination but lower reliability/immuni-
zation and higher penalties, as will be shown below, where
RP with � ¼ 0 (which is the NP) is a lower bound.

[55] The performance of each policy is examined by sim-
ulation, which shows the tradeoff between the amount of

Figure 2. Desalination amount over years for each static policy.
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desalination prescribed and the unreliability: lower desali-
nation results in lower reliability. Each optimal policy is
examined by simulation with 1000 random samples, each
with afTf ¼ 20 random recharge values drawn from the
defined uniform discrete distribution of the recharge. The
results for NP and RP3 are shown in Figures 3 and 4,
respectively: the final water levels in the two aquifers, the
total cost, and the penalized cost. The feasibility of policies
RP1, RP2, RP3, and NP is obviously not guaranteed for all
possible realizations of the recharge, as seen by some
excursions of the level to negative values. However, as
seen in Figure 4 for RP3 these are very few; they are fewer
as � increases. In CP, obviously there are no infeasibilities,
as it considers only the lowest value of the recharge.

[56] Since some generated samples can result in the res-
ervoirs/aquifers becoming empty in some years, it is neces-
sary to take this into consideration in two respects: (1)
continuing the path of the reservoir/aquifer beyond this
point, and (2) penalizing the policy (in this particular simu-
lation run) for failing to meet the specified operational lim-
its. The two aspects are handled as follows: (1) When the
reservoir goes dry and ‘‘wants’’ to go below the minimum
level, it is set back to empty as the initial state for the next
year, and (2) a penalty term is added to this simulation. The
penalty is

maxðhmin
a;t � ha;t; 0ÞDCt 8a8t ð31Þ

and the water balance is

ha;tþ1 ¼ maxðhmin
a;t ; ha;tÞ þ

Ra;tþ1

SAa
� Qa;tþ1

SAa
8a8t; ð32Þ

where DCt ¼ 3 (M$/m) is the deficit cost. Note that this is
used only in evaluating the optimal solution by simulation
and is not involved in the optimization models. We define the
total cost after applying (31) and (32) as the ‘‘penalized cost.’’

[57] To see the mean shortage in (MCM) units and not
via penalty, the cost increment in Table 2 should be divided
by the deficit cost. For example, the mean shortage associ-
ated with the NP is (1074.89 – 984.54)/3 ¼ 30.11 (m) i.e.,
30.11 � 0.8 ¼ 24 (MCM).

[58] Figures 3 and 4 demonstrate the simulation results
for NP and RP3: Where subfigures show the results for
each sample: (1) the final water level in aquifer 1, (2) the
final water level in aquifer 2, (3) the total operation cost,
and (4) the penalized cost.

[59] The NP results in �50% of the samples deviating
from the operation limits at the final stage in both aquifers,
while in RP3 there are only four deviations over all simula-
tions. Figures 3d and 4d show that �10% of the samples in
the NP exceed the worst cost of RP3. Moreover, a very
large difference in the cost variability is exposed.

[60] Table 2 reports the empirical maximum, minimum,
average, and standard deviation of the total and penalized cost
for each policy, along with the empirical reliability defined as
the fraction of the total simulations which maintain feasibility
in both aquifers in all years. The constant value of the cost
standard deviation in Table 2 indicates that all policies run on
the same sample of the recharge; this indicates that the results
are obtained from a fair simulation experiment.

[61] The results show that the cost of the NP range
between 916–1061 M$ while the cost of the RP3 range
between 1021–1166 M$. The NP yields infeasible situations
in 51.4% of the samples while the unreliability of RP3 is
only 0.3%. The low cost of NP does not mean there is an

Figure 3. Simulation results of the NP.
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advantage over RP3, since there is a very large difference in
the reliabilities and it is a matter of multiobjective decision-
making. Accounting for the constraints violation in the cost
(Figures 3d and 4d) shows clear preference for RP3 over
NP. RP3 immunizes the NP from a reliability of 48.6% to
99.7% with only a 10.6% increase in the mean cost. RP3
immunizes the NP with the price of robustness (mean cost
increment) of 2.05 M$ for each 1% reliability, while the CP
immunizes it with price of robustness of 3.6 M$ for each
1% reliability. Comparing CP with RP3 shows a clear pref-
erence of RP3; since the CP immunizes RP3 by getting rid
of the last remaining 0.3% of unreliability with an associ-
ated cost of 80.5 M$, or 268 M$ for each 1% reliability.

[62] Figure 5 shows the tradeoff between reliability and
mean cost for all policies. The tradeoff is characterized by
a mild slope of the last segment connecting RP3 with CP,
which indicates that a large increment in the mean cost is
needed to obtain a small increment in reliability. The ques-
tion to be asked is whether it is justified to add this large
cost to immunize against rare events of the recharge. In our
case the answer is given by the penalized cost which quan-
tifies the unreliability by a penalty. The CP does not violate
any constraint over all realizations of the recharge; hence,

the cost and penalized cost are identical. In Table 2 the
mean penalized cost of RP3 is 80.34 M$ less than the mean
cost of CP, in contrast the CP maximum cost is 43.22 M$
less than the maximum penalized cost of RP3. However,
further analysis of the cost distribution shows that only one
sample in RP3 would exceed the worst cost of the CP
(1246 M$) while 695 samples in RP3 are below the best
cost of the CP (1101.6 M$).

[63] This results shows that implementation of the CP
would increase the mean cost by 80.34 M$ while the only
gain is reduction of 43.22 M$ in the cost’s upper bound,
which is rarely realized.

[64] Policies RP2 and RP3 are indeed robust, the corre-
sponding standard deviations of the penalized cost are by a
factor of 4.2–6.4 less than the NP standard deviation, indi-
cating that these robust policies lead to stable policies with-
out large variability in the associated costs, which can be
accounted for as a preference over other alternatives.

5.3. Folding Robust Counterpart (FRC)
[65] The RC approach solves a static problem in which

the decisions are ‘‘here and now’’ for all years, as if all
future decisions are fixed in advance. This may seem like a

Figure 4. Simulation results of the RP3 policy.

Table 2. Simulation Results for the Static Policiesa

Policy

Cost (M$) Penalized cost (M$)

Reliability (%)Min Max Mean SD Min Max Mean SD

NP 916.60 1060.98 984.54 21.27 916.60 1778.32 1074.89 143.71 48.6
RP1 948.43 1092.81 1016.38 21.27 948.43 1613.35 1035.52 74.01 81.4
RP2 983.28 1127.66 1051.22 21.27 983.28 1451.40 1053.66 34.07 97.7
RP3 1021.09 1165.46 1089.03 21.27 1021.09 1289.22 1089.22 22.29 99.7
CP 1101.62 1246.00 1169.56 21.27 1101.62 1246.00 1169.56 21.27 100

aNP, Nominal Policy; RP1, Robust Policy � ¼ 1; RP2, Robust Policy � ¼ 2; RP3, Robust Policy � ¼ 3; CP, Conservative Policy; M$, Million $; SD,
Standard Deviation.
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myopic approach, but in fact only the decision for the first
year should be implemented and the analysis is then
repeated toward the end of this year, with new information
(if any) about the recharge, demands, costs, and initial sys-
tem state (aquifer water levels). This is captured in the fold-
ing robust counterpart (FRC) model.

[66] At time ‘‘now,’’ the RC solution for all years is com-
puted, and the first stage decision is implemented. At the
beginning of the next year, we solve a new problem with a
new state (obtained from the first year decision and realiza-
tion) and reduced time horizon. This is repeated over all of
the stages (years).

[67] We next demonstrate and compare the folding robust
policy (FRP) with the folding multistage stochastic pro-
gramming policy (FMSPP). The comparison is carried out
for the small system in Figure 1 with the data listed earlier,
where the aquifers recharge at each year is i.i.d. given by
multivariate normal distribution with an expectation
� ¼ ½40; 48:33� and the covariance matrix V defined in (29).
5.3.1. Multistage Stochastic Programming (MSP)

[68] A well-studied method for solving multistage sto-
chastic decision models is multistage stochastic program-
ming [Shapiro et al., 2009]. In the MSP we capture the
uncertainty as a stochastic process with a known probabil-
ity distribution. One variant of the MSP is scenarios-based,
which assumes that the distribution of the stochastic pro-
cess is given by a finite number of scenarios, each with its
corresponding probability ps. Following this approach, the
stochastic recharge of the example in section 5.1 is modeled
by a 10-stage scenario tree having three branches at each
stage with identical probabilities. This scenario tree has 310

different scenarios, which at each stage t are bundled into 3t

nodes while all scenarios which share the same node at
stage t have the same recharge up to this stage.

[69] At any node in the multistage scenario tree, the deci-
sion-maker knows the exact history leading to that node, and
decides how to proceed, knowing only that the future
recharge is presented by each of the scenarios that emerge
from the node into the future. The MSP solves for all stages
simultaneously to obtain the optimal decisions (corresponding
to each node) which results in a minimum expectation cost
over all scenarios. The MSP model for the WSS model is

XScenarios

s¼1

psKs ! min

Subject to

XTf

t¼1

X
a

EaQs
a;t

SAa
�
XTf

t¼1

X
a

EaRs
a;t

SAa
þ
XTf

t¼1

X
d

desd;tQ
s
d;t

þ
XTf

t¼1

X
l

Cl;tQ
s
l;t þ P0 � Ks � 0 8s

ha;0 þ 1
SAa

Pt

i¼1
Rs

a;i �
Pt

i¼1
Qs

a;i

� �
� hmax

a;t � 0 8a8t8s

�ha;0 � 1
SAa

Pt

i¼1
Rs

a;i �
Pt

i¼1
Qs

a;i

� �
þ hmin

a;t � 0 8a8t8s

GQs
t ¼ St 8t8s

Qmin
d;t � Qs

d;t � Qmax
d;t 8d8t8s

0 � Qs
a;t � Qmax

a;t 8a8t8s
0 � Qs

l;t � Qmax
l;t 8a8t8s

Qs
t 2 N 8t8s;

ð33Þ

where s denotes scenario; ps is the probability associated
with each scenario; N is the set of nonanticipativity

Figure 5. Reliability versus cost.
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constraints, which are the set of constraints such that
Qs1

t ¼ Qs2
t for all scenarios s1 and s2 that are indistinguish-

able (share the same history) up to stage t [Shapiro et al.,
2009, p. 71].

[70] In the general case of continuous distributed random
data, the MSP is computationally intractable ; however, we
can apply the MSP by approximating the continuous distri-
butions of the data by discrete ones. In our case the multi-
variate normal distribution is discretized. The size of the
deterministic equivalent of the stochastic program depends
on the number of elements considered in the discrete distri-
bution. We chose a five-element discrete distribution
f�; � 6 �; � 6 2�g given in Table 3 to represent the con-
tinuous normal distribution.

[71] With regard to the computational difficulty of solv-
ing the deterministic equivalent of the stochastic program,
the nonanticipativity constraints can be eliminated by a
substitution for the variables; this reduces the total number
of constraints and variables in the problem. Still, the real
computational difficulty arises due to the number of scenar-
ios considered in the problem since the size of the deter-
ministic program increases rapidly with the number of
scenarios. For the example considered in section 5.1 with a
5-value distribution of the recharge as given in Table 3, the
10-stage problem would result in 36,621,091 variables and
141,601,544 inequality constraints even after elimination
of the nonanticipativity constraints, while the RC of the
10-stage example has only 111 variables and 381 con-
straints. To reduce the computational burden for this pre-
sentation (since it is not the main purpose in this paper) we
compare the performance of the three dynamic methods:
FRP and FMSPP on a five-stage example in which the
MSP results in 11,716 variables and 45,299 constraints
while the RC results in 56 variables and 191 constraints.
5.3.2. Folding Horizon Simulation

[72] To evaluate these policies for the example outlined
in section 5 with five-stages, we simulate their optimal sol-
utions with 1000 random samples of afTf ¼ 10 random
members each, drawn from the multivariate normal distri-
bution of the recharge.

[73] The MSP is a sequential decision making approach;
hence, it provides the optimal decision at each stage accord-
ing to the history up to that stage. However, the MSP only

considered the discrete approximation of the continuous
distribution. Hence, the MSP is also applied in the folding
mode, since the realization of the recharge could be differ-
ent from the values in the discrete approximation.

[74] To apply the folding horizon, for each sample we
start by solving a five-stage problem. From the five-stage
solutions we only adopt the first stage optimal solution
according to each policy, i.e., RP and MSPP. Then we use
the first member of the sample as if it is the actual realiza-
tion of the recharge at the first stage. The new state of the
system at the end of the first stage is calculated, given the
decisions and the realization of the first stage.

[75] After this stage is fully covered, a four-stage prob-
lem is solved with the initial state corresponding to each of
the states obtained at the end of the first stage. We continue
with this procedure until we solve the problem of the fifth
stage for all its possible initial states. At the end of the hori-
zon we can calculate the total cost of each policy corre-
sponding to the sample. Applying this procedure for each
of the 1000 samples we obtain the simulation results for
comparing the methods.
5.3.3. Simulation Results

[76] Table 4 reports the simulation results for the three
dynamic decision-making policies: the static policy RP
with � ¼ 3, the FRP with � ¼ 3, and FMSPP.

[77] Table 4 contains the maximum, minimum, average,
and standard deviation of the total and the penalized cost
for each policy, along with the empirical reliability defined
as the fraction of the total simulations, which maintain fea-
sibility in all aquifers and at all stages.

[78] The advantage of the adjustable dynamic RP over
the static one is apparent. Both policies have a high reliabil-
ity of 99.9%, but the dynamic policy results in a narrower
and lower range of 301–569 M$ instead of 393–604 M$ and
a lower mean cost of 418 M$ compared to 451 M$. The
lower standard deviation of the static RP, is the result of
the nonadjustability of the decision, namely in the folding
mode the decisions depend on the realization and hence the
standard deviation can be expected to increase.

[79] The FRP produces a more reliable solution than the
FMSPP. The FRP immunizes the FMSPP with a price of
robustness (mean cost increment) of 2.47 M$ for each 1%
reliability. Comparing the penalized cost, which quantifies
the unreliability by the penalty, shows that the mean penal-
ized cost of the FMSPP is 7.9 M$ (1.9%) less than that
obtained in the FRP; however, the worst and best cost of
the FRP are less than in the FMSPP by 10.3% and 4.7%,
respectively, and the standard deviation of the cost is
smaller. Thus, in addition to better reliability, the FRP has
greater flexibility to take advantage of opportunities (lower
best cost) and to optimize in severe cases (lower worst cost).

Table 3. Discrete Approximation of the Multivariate Normal
Distributiona

Ra1, Ra2 23.67, 27.79 31.84, 38.06 40, 48.33 48.17, 58.61 56.33, 68.88

Prob. 0.06 0.22 0.44 0.22 0.06

aRa1, Recharge in Aquifer 1; Ra2, Recharge in Aquifer 2; Prob.,
Probability.

Table 4. Simulation Results for the Dynamic Policiesa

Policy

Cost (M$) Penalized Cost (M$)

Reliability (%)Min Max Mean SD Min Max Mean SD

RP3 393.45 508.65 451.24 15.03 393.45 603.80 451.34 15.68 99.9
FRP3 301.17 568.42 418.67 31.21 301.17 568.42 418.69 31.24 99.9
FMSPP 316.25 575.14 409.78 34.41 316.25 633.79 410.79 36.73 96.3

aRP3, Robust Policy � ¼ 3; FRP3, Folding RP3; FMSPP, Folding Multistage Stochastic Programming Policy; SD, Standard Deviation; M$, Million $.
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[80] The FRP solution could be a legitimate choice based
on these results, but it is recommended that further statisti-
cal analysis of the penalized cost over longer periods and
more simulations be required to determine preference. Still,
the large size of the MSP model compared to the RP could
tip the scales toward using the RP.

[81] The decisions in the folding mode are realization de-
pendent, and hence each of decision variables starting from
the second stage could take on as many values as the num-
ber of states obtained at the end of the previous stage.

[82] Figure 6 shows the maximum and mean desalination
amount in each year according to each folding policy along
with the desalination amount of the static policy (which is
not realization dependent). The mean desalinated amount
of the FRP is less than in the other policies, starting from
the second year. The FMSPP starts with low desalination,
but soon after reaching the second stage fixes the desalina-
tion amount by a steep change to exceed the maximum
desalination obtained from the FRP. However, both folding
methods use the full capacity of the desalination plant start-
ing from the third year.

5.4. Large System
[83] A water system shown in Figure 7 has nine demand

zones, three aquifers, five desalination plants, and 49 pipes,
and approximates the central part of the Israeli National
Water System. The data for the model, including the
recharge series, are presented as supplementary material.1

The full recharge record of the three aquifers has 78 annual
values (1932–2009, Israeli Hydrological Service). We dem-
onstrate the RC approach based on part of this historical

record (1932–2004) and then simulate the RC approach in
folding mode to imitate the adoption of a folding robust
policy (FRP) in 2005. The results are also compared to the
folding nominal policy (FNP).

[84] The ellipsoidal uncertainty set for the RC model is
based on the computed means and covariance matrix of the
recharge into the three aquifers :

�R0 ¼
210

100

81

0
@

1
A; VR0 ¼

3702 1585 4576

1585 1255 3428

4576 3428 9813

0
@

1
A: ð34Þ

[85] According to section 4.1, the uncertainty set of the
annual recharge is

U ¼ R0 :
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[86] Figure 8 shows the water level of the three aquifers
according to each of the two policies. In aquifer 1 the FRP
raises the water level by an almost constant increment each
year. In aquifer 3 the gap between the water level obtained
by the FRP and the one from FNP increases over time to
such an extent that the water level of the FNP is below the
minimum water level allowed.

[87] In aquifer 2, both policies result in the same water
level over years; this is because of the limitation of the net-
work topology associated with this aquifer, as can be seen
in Figure 7 where aquifer 2 can supply only to demand
zone 2.

Figure 6. Desalination amount over years for each dynamic policy.

1Auxiliary materials are available at ftp://ftp.agu.org/apend/journal/
2011WR010596.
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6. Conclusions
[88] The underlying concepts of the RC method show

considerable promise, regarding the tractability of the mod-
els and the results obtained. The results demonstrate the
advantage of being able to replace the stochastic behavior
of the uncertainty by specifying a user-defined set within
which the resulting policies are immunized (remain feasi-
ble), as well as being able to show the trade-off between
reliability and cost.

[89] The method and its dynamic variant folding RC
were applied to a small WSS as a test bed, and to a central
part of the Israeli National Water System. The results are
very competitive with those obtained by stochastic and
deterministic methods.While the advantage of the RP over
the NP and CP is apparent as demonstrated in section 5.2.,
the advantage over the multistage stochastic programming
is not.On the one hand, the FRP obtains better reliability
and has greater flexibility to take advantage of opportuni-
ties (lower best cost) and to optimize severe cases (lower
worst cost). On the other hand, the stochastic programming
solution has a lower mean cost.

[90] The small size of the RP model compared to the
MSP is a remarkable advantage of the robust optimization
method.The RC approach presented in this paper is inher-
ently static by design; to capture the dynamic nature of the
problem we applied the RC in a folding mode. We continue

to develop and test a variety of robust optimization based
methods [Ben-Tal et al., 2009], including the adjustable ro-
bust counterpart (ARC) and the affine adjustable robust
counterpart (AARC) which are inherently dynamic by
design.

[91] A drawback of the presented model is the absence
of nonlinear processes, such as those that appear when
water salinity is considered. We propose some research
directions for the incorporation of nonlinearity with the RO
methodology: (1) Nonlinear convex functions could be
approximated by a convex piecewise linear functions.
Thus, for cost minimization the model can be reformulated
as a linear program. (2) Incorporating salinity in the model
introduces bi-linear relations, which can be handled in two
inter-related iterative steps: (1) fixing the salinity variables
makes the problem linear with respect to the flows, and (2)
fixing the flows makes the problem linear with respect to
the salinities. This decomposition facilitates the application
of the RC: the flow variables and the salinity variables are
solved separately and coordinated iteratively. (3) The
nonlinear RC model can be solved by a sequential linear
programming (SLP) algorithm. The SLP consists of linea-
rizing the objective and constraints in a region around a
nominal operating point by a Taylor series expansion. The
resulting linear programming problem is then solved by the
RC approach.

Figure 7. Network layout of the large system.
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