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a b s t r a c t

Decision-making processes often involve uncertainty. A common approach for modeling uncertain
scenario-based decision-making progressions is through multi-stage stochastic programming. The size of
optimization problems derived from multi-stage stochastic programs is frequently too large to be
addressed by a direct solution technique. This is due to the size of the optimization problems, which
grows exponentially as the number of scenarios and stages increases. To cope up with this computational
difficulty, solution schemes turn to decomposition methods for defining smaller and easier to solve
equivalent sub-problems, or through using scenario-reduction techniques. In our study a new meth-
odology is proposed, titled Limited Multi-stage Stochastic Programming (LMSP), in which the number of
decision variables at each stage remains constant and thus the total number of decision variables
increases only linearly as the number of scenarios and stages grows. The LMSP employs a decision-
clustering framework, which utilizes the optimal decisions obtained by solving a set of deterministic
optimization problems to identify decision nodes, which have similar decisions. These nodes are clus-
tered into a preselected number of clusters, where decisions are made for each cluster instead of for each
individual decision node. The methodology is demonstrated on a multi-stage water supply system
operation problem, which is optimized for flow and salinity decisions. LMSP performance is compared to
that of classical multi-stage stochastic programming (MSP) method.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Decisions for water resources systems planning and manage-
ment must often be taken in the face of the unknown, such as
precipitation variability and water demands. Consequently, to
address the uncertain parameters many stochastic programming
(SP) methodologies (Birge and Louveaux, 1997) were applied to
water resources systems models, including (a) Stochastic Dynamic
Programming (SDP) for reservoirs management (Yeh, 1985; Faber
and Stedinger, 2001) (b) implicit stochastic programming (ISP) for
optimal management of multi-reservoir system with uncertain
inflows (Hiew et al., 1989; Crawley and Dandy, 1993; Cai et al.,
2001) (c) chance constrained programming (CCP) for water
supply systems design under demand uncertainly (Lansey et al.,
1989; Xu and Goulter, 1998; Babayan et al., 2005; Kapelan et al.,
2005), for ground water remediation under uncertainty of aquifer
þ972 4 8228898.
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parameters (Morgan et al., 1993; Wagner, 1999), and for water
allocation under inflow uncertainty (Sankarasubramanian et al.,
2009) (d) multi-stage stochastic programming (MSP) and its
variant- the two-stage stochastic programming (TSP) for a linear
model of multi-reservoir system with uncertain inflows (Pereira
and Pinto, 1985, 1991; Dupa�cová et al., 1991; Jacobs et al., 1995;
Watkins et al., 2000 ; Seifi and Hipel, 2001; Kracman et al., 2006),
and for water resources management (Li et al., 2009a,b; Guo et al.,
2010)

In stochastic programming uncertain parameters are treated as
random variables with a known probability density function
(PDF). Hence, the consequences of the decisions taken at present
are not known until the unknown data is realized. Still, the MSP
can take into account some corrective decisions, which can be
taken in the future when more data is revealed. To capture these
corrective decisions, the MSP formulation permits recourse deci-
sions in each time step based on realized data as further described
in Section 2.

In most cases the MSP formulation results in large-scale opti-
mization models, so that including many variables and constraints
constitutes the key challenge for solving these models. This is
particularly true if the mathematical model is nonlinear. Previous
applications of TSP and MSP, as mentioned above (point-d), are of
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linear reservoir operation models. Because stochastic models result
in large-scale optimization problems, most reservoir models were
formulated as linear programs to ease for solving the optimization
problem. But even with linear programs decomposition methods
had to be applied to reduce the computational burden. Applications
for stochastic nonlinear optimization models are rare, again due to
the computational burden (Labadie, 2004).

Our study presents a methodology entitled Limited Multi-stage
Stochastic Programming (LMSP), in which a smaller optimization
problem approximates the MSP formulation. The LMSP solves a set
of deterministic optimization problems to identify decision nodes,
which have similar decisions. Once this classification is done, nodes
with similar optimal decisions are assigned to a common cluster.
The decision is thenmade for each cluster (group of decision nodes)
rather than for each individual decision node, resulting in a smaller
optimization problem which approximates the MSP formulation.

It is important to distinguish the approach of clustering on the
basis of decisions (LMSP) from the reduction techniques (Dupa�cová
et al., 2003) in which the stochastic process itself is clustered/
aggregated to produce a smaller optimization model. These
reduction techniques are applied before the model is introduced,
independent of the optimization model that will be used. On the
contrary, the LMSP uses a set of deterministic optimization prob-
lems to perform the decision clustering; moreover, the stochastic
process is kept intact and only the decision is clustered. Details on
the LMSP procedure and the distinctions between the two
approaches are given in Section 3.

The rest of this paper is organized as follows. In the next Section,
the traditional MSP approach is presented, to form a basis for the
remainder of the paper. Section 3 then details the LMSP approach,
and Section 4 presents the formulation for a water supply system
(WSS) management model, its objective function and constraints.
In Section 5, the MSP and LMSP are applied to the stochastic version
of the WSS management model of Section 4.
2. Multi-stage stochastic programming (MSP)

A key aspect in formulating a stochastic optimization model is
the sequence in which decisions alternate with the realization of
uncertain data. Consider the general (nonlinear) optimization
problem:

min Fðx;uÞ
s:t: :
giðx;uÞ � 0ci ¼ 1.m

(1)

where x is the vector of decision variables and u is a stochastic
process (sequence of randomvariables representing a random time
series). When we need to consider not just one decision and one
observation but interactions between decisions and observations in
a sequence of stages, then multi-stage stochastic programming
(MSP) should be used (Dupa�cová, 1995). In the MSP over a time
horizon t¼ 1.Tf the stochastic process u ¼ ðu1.uTf Þ and decision
process x ¼ ðx1.xTf Þ, are interlinked into a sequence of alternating
decisions and observations: x1;u1.xTf�1;uTf�1; xTf ;uTf .

The MSP distinguishes between decisions that have to be made
here-and-now, before future realizations of the random process are
revealed, and the decisions that will be made at later stages, after
some part of the information becomes known. The decisions at
each stage are made while taking into account that will be oppor-
tunities for modification and corrections at later stages (recourse
decisions). The decision process is nonanticipative or implementable,
i.e. the decision vector xt at time t depends only on previous
information ut�1 ¼ (u1.ut�1). The mathematical formulation of
the MSP is:
min E
h
F
�
x1; x2ðu1Þ; x3ðu1;u2Þ;.; xTf

�
uTf�1�;u�i
s:t: :
gi
�
x1; x2ðu1Þ; x3ðu1;u2Þ;.; xTf

�
uTf�1�;u� � 0 ci ¼ 1.m

(2)

where for example x3(u1,u2) indicates that a decision at stage three
depends on the information revealed up to this stage. Recourse
decisions can be based on past realizations, but they cannot be
based on knowledge of the future before it happens. In the MSP
terminology this means that the decision space X consists of all the
functions xt($) which are nonanticipative (Flam, 1985) i.e., do not
anticipate the future. The MSP solves for an optimal policy which
contains the first-stage decisions (values) and the recourse deci-
sions (functions of revealed information). Finding the functions
xt($) which lead to optimal solution of the MSP is an intractable
mathematical problem, since the possible futures constitute an
infinite set, hence the need to discretize this set.
2.1. Scenario-based MSP

A common tool to present the stochastic process is to introduce
scenarios (Dupa�cová et al., 2000), which are particular possibilities
of how the process might be realized in the future. The stochastic
process u is discretized into a finite set of scenarios us ˛ U

cs ¼ 1.Sf with probability ps where
PSf

s¼1 p
s ¼ 1, each scenario,

us, is defined as a possible realization of the stochastic process over
the entire time horizon.

When the process is given by scenarios, the function xt($)is
replaced by a corresponding finite number of vectors, equal to the
different possibilities taken by the function xt($)as its input. For
example, the function x2(u1) is replaced by Sf vectors
x2ðus

1Þ; s ¼ 1.Sf . Hence, the scenario-based formulation of (2)
is:

min E
h
F
�
x1; xs2;.; xsTf ;u

�i
s:t: :
gi
�
x1; xs2;.; xsTf ;u

�
� 0 ci ¼ 1.m cs ¼ 1.Sf

(3)

where xs2 ¼ x2ðus
1Þ;.; xsTf ¼ xTf ðusÞ is the nonanticipativity

requirement. In the scenario-based formulation the non-
anticipativity requirement means that every pair of scenarios s, s0

which are indistinguishable up to stage t (share the same history)
must fulfill ðxs2;.; xstÞ ¼ ðxs’2 ;.; xs’t Þ.

Optimization problem (3) is an equivalent deterministic
program of the uncertain optimization problem (1), in which the
stochastic process is represented by the finite number of scenarios.
The equivalent deterministic optimization problem is solved by
a suitable optimization solver (based on the nature of the optimi-
zation problem i.e. linear, nonlinear, etc.)

A stochastic process u which is represented by a finite number
of scenarios us ˛Ucs, can be represented by a scenario tree (Fig. 1).
A scenario tree consists of nodes and arcs; each node represents
a possible realization of the stochastic process, where the root node
represents the present time, and each node has a unique ancestor
(origin node). The arcs represent the links between the nodes, and
are associated with a conditional probability. Along the tree the
uncertainty unfolds with the stages, where each path from the root
to a leaf (end of the path) represents a scenario.

The general structure of the scenario tree can be captured as
follows: (a) at each stage t ¼ 2.Tf þ 1 there are Kt � Kt�1 nodes
which are denoted by kt ¼ Kt�1 þ1.Kt where the root of the tree is
indexed by 1, i.e. K1 ¼1, (b) each specific value of ut�1 ¼ (u1.ut�1)
corresponds to one particular node at stage t ¼ 2.Tf þ 1, where ut
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is the uncertain data at stage t, and ut is a vector of uncertain data
up to year t.

The introduction of the scenario tree allows us to formulate the
equivalent deterministic problem (3), where the nonanticipativity
constraints are inherent explicitly in the shape of the scenario tree.

Another approach can be used to enforce the nonanticipativity
without writing its constraints explicitly. In the implicit approach
the nonanticipativity constraints are fulfilled automatically by
introducing unique decision variables for each node of the tree. The
implicit formulation is computationally cheaper than the explicit
approach since it does not assign decision variables for each
scenario at each stage.

When the objective and the constraints are separable functions,
as in our case (Section 4), the equivalent deterministic problem
with the implicit nonanticipativity approach leads to:
min

2
66664
PK2

k2 ¼2
pk2 f1

�
x1;u

k2
1

�
þ PK3

k3 ¼K2þ1
pk3 f2

0
BBBB@ x1; x

k3
2|fflfflffl{zfflfflffl}

xk3

;uk3
1 ;uk3

2|fflfflfflfflffl{zfflfflfflfflffl}
uk3

1
CCCCAþ/þ PKTfþ1

kTf þ1 ¼KTf
þ1

pkT fTf
�
xkTf þ1 ;u

kTf þ1
�
3
77775

s:t: :

gj;t�1

�
xkt ;ukt

�
� 0 cj ¼ 1.n; ckt ¼ Kt�1 þ 1.Kt ; ct ¼ 2.Tf þ 1 (4)
where ut
k is the data path up to node kt at stage t; xtk is a decision

path leading to node kt at stage t; pkt is the data path probability up
to node kt at stage t and it is obtained by multiplication of the arcs’
probabilities of the path.

An illustration of a scenario trees is given in Fig. 1. It shows
a balanced scenario treewith three stages and two branches at each
node; accordingly we have eight scenarios at the end of the three
stages horizon.

In Fig. 1 scenarios 1e4 are indistinguishable up to stage 2 thus in
the explicit nonanticipativity approach, formulation (3), we must
impose nonanticipativity constraints: xs¼1

2 ¼ xs¼2
2 ¼ xs¼3

2 ¼ xs¼4
2 .

The implicit nonanticipativity approach, formulation (4), enforces the
nonanticipativity without writing these constraints explicitly. Thus,
instead of the decisionvariables xs¼1

2 ; xs¼2
2 ; xs¼3

2 ; xs¼4
2 wehave xnode¼2

2 .
In the equivalent deterministic formulation of the MSP (4) we

rely on a specified scenario tree which represents the stochastic
process and the inter-correlation in it. In general a scenario tree can
accommodate any distribution and thus can account for any
correlation within the random process. Various scenario tree
generation methodologies such as: Monte-Carlo sampling,
principal-component sampling, moment matching, and boot-
strapping can be used to provide the scenario tree. A survey for
such methods is given by Dupa�cová et al. (2000).

2.2. Illustrative example

Consider a hypothetical problem of managing a water supply
system (WSS) comprised of a reservoir, in which the recharge is
a stochastic process, and a desalination plant, both operated to
supply one demand node (Fig. 2). The recharge is represented by
the scenario tree (Fig. 3) and the objective is to minimize the
desalination cost over the time horizon. The recharge values at
nodes 2..15 takes the value 0 million cubic meters (MCM) if the
node index is an odd number and 10 (MCM) if the node number is
even. Each arc has an equal probability of 0.5. The mathematical
model of the problem is:
min
P
t¼1

Ctyt
 
Tf

!
s:t: :
xt þ yt ¼ Dt ct ¼ 1.Tf

0 � Pt
i¼1

ri �
Pt
i¼1

xi � Vmax ct ¼ 1.Tf

xt ; yt � 0 ct ¼ 1.Tf

(5)

where xt, yt are extraction from reservoir and production of the
desalination plant, respectively; Ct are desalination costs that rise
with time Ctþ1 � Ct ct; Dt is the demand; rt is the stochastic
recharge; and Vmax is the maximumwater storage in the reservoir.

For example, when the reservoir is very large, i.e.
Vmax > 10 (MCM), Tf ¼ 3 years and Ct¼1.3 ¼ [1,2,3]T (M$/MCM),
then substitution of the equality constraint in the objective func-
tion of Eq. (5) leads to the following mathematical model (one
decision variable at each stage):
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min � PTf
t¼1

Ctxt
 !
s:t:Pt
i¼1

ri �
Pt
i¼1

xi � 0 ct ¼ 1.Tf

xt � 0 ct ¼ 1.Tf

(6)

Following the MSP formulation in (4) the optimization problem
is:
min

0
@� x1 � 0:5

X3
k2 ¼2

2xk22 � 0:25
X7
k3 ¼4

3xk33

1
A

s:t: :

r21 � x1 � 0 r21 þ r42 þ r83 � x1 � x22 � x43 � 0 r31 þ r72 þ r143 � x1 � x32 � x73 � 0

r31 � x1 � 0 r21 þ r42 þ r93 � x1 � x22 � x43 � 0 r31 þ r72 þ r153 � x1 � x32 � x73 � 0

r21 þ r42 � x1 � x22 � 0 r21 þ r52 þ r103 � x1 � x22 � x53 � 0 x1 � 0; xk2¼2;3
2 � 0; xk3¼4::7

3 � 0

r21 þ r52 � x1 � x22 � 0 r21 þ r52 þ r113 � x1 � x22 � x53 � 0

r31 þ r62 � x1 � x32 � 0 r31 þ r62 þ r123 � x1 � x32 � x63 � 0

r31 þ r72 � x1 � x32 � 0 r31 þ r62 þ r133 � x1 � x32 � x63 � 0

(7)
where x1 is the first-stage decision; rnodet , xnodet corresponds to the
recharge and the decision (reservoir withdrawal) for each of the
scenario tree nodes 2.15 (Fig. 3).

The solution of this problem is given in Fig. 3, which has an
objective value of 270 M$.

3. Limited multi-stage stochastic programming

The size of the optimization problems derived from multi-stage
stochastic programs is frequently too large to be tractable by a direct
solution as the size of the optimization problem grows exponen-
tially with the scenarios and stages number. The challenge of
solving large-scale optimization problems with many variables and
constraints is one of the main concerns of stochastic programming.
Consequently, the common solution approach for these large-scale
problems is based on decomposition of the original problem into an
assembly of small and easier to solve sub-problems. Various
decomposition methods have been suggested (e.g., Rockafellar and
Wets, 1991; Mulvey and Ruszczynski, 1995). Decomposition in turn
requires assumptions concerning the convexity of the objective
function and the constraints. Decomposition of large-scale
optimization problem does not necessarily assure an efficient
solution method (Mulvey and Ruszczynski, 1995).

We propose an approach different from previous ones, titled
Limited Multi-stage Stochastic Program (LMSP). The LMSP is an
attempt to solve without decomposition or scenario reduction
techniques. In LMSP the number of decision variables in
each stage remains constant and thus the total number of
decision variables increases only linearly with the number of
scenarios and stages. The LMSP consists of four steps as outlined
below.

Step 1: The clustering criterion is based on the scenarios’
optimal decisions which are obtained by solving each scenario
individually vstct¼1.Tf

¼ arg min Fðxs;usÞ cs ¼ 1.sf.
Step 2: The nodes’ values vkt corresponding to the scenarios’

optimal decisions are calculated by:

vkt ¼

 P
s˛kt

psvst

!
 P

s˛kt
ps

! (8)

for each t¼ 2.Tf and kt¼ Kt�1þ1.Ktwhere s ˛ kt indicates the set
of scenarios which pass through the node kt. Eq. (8) transforms the
optimal scenario decisions to match the structure of the scenario
tree.

Step 3: Based on the values vkt obtained at the nodes, for each
stage t > 1 we perform a clustering based on these values. The K-
means clustering method was used in this study, while other
clustering methods could also be used. K-means is an iterative
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clustering method in which N vectors are parted into M clusters
where each vector belongs to the cluster with the nearest center,
and the center of each cluster is defined as the mean of all its
members (Seber, 1984).

Step 4: The LMSP model is solved, with the clustering scheme.
Applying the clustering imposes more constraints in the equivalent
deterministic formulation (4), for example xk22 ¼ x

k02
2 if node k2and

node k02 are in the same cluster. These constraints can be eliminated
by algebraic substitution of variables, thus reducing the number of
variables in the problem. For instance, instead of the decision
variables xk22 ; x

k02
2 we define xcluster¼1

2 .
The LMSP answers the following questions: given the scenario

tree of the uncertain future, what nodes are included in each
cluster and what are the decisions associated with each cluster
such that the objective is minimized. Ideally the two questions
should be addressed simultaneously. However, a good approxi-
mation can be obtained by solving the problem in two phases; the
first phase determines which nodes are included at each cluster,
accomplished by solving each scenario individually and analyzing
their separate results. The second phase determines the optimal
solution for each cluster, using the optimization solver on the
LMSP formulation.

Adding more constraints in the MSP will potentially raise the
minimum value of the optimization problem. Hence, the
minimum value obtained from the LMSP will always be larger or
equal to the minimum value obtained by the MSP. However, this is
not a significant drawback when one solves in a rolling/folding
horizon, where the problem is solved repeatedly and only the
first-stage decisions are implemented. Most important is the
quality of the first-stage decision (as the others are still to be
revisited in the following steps), and therefore the requirement is
that the process of clustering must not change significantly the
first-stage decisions, as compared to the original stochastic
problem.

In fact, only effects on first-stage decisions need to be consid-
ered because these are the sole decisions to bemade here-and-now
with information that is currently available. Decisions at subse-
quent stages will be generated with the new information revealed
by that time using a rolling horizon approach.

For the first-stage decisions of the MSP and the LMSP to be close
they must take into account the future uncertainty and the possi-
bility of recourse actions. The MSP considers the possibility for
recourse action for each node in the scenario tree while the LMSP
considers a smaller number of recourse actions, only for each
cluster. These recourse actions will not be implemented in real-life
and the only reason for their presence is to take into consideration
the effect of the uncertain future on the first decision. The LMSP
min

0
@� x1 � 0:5

X3
k2 ¼2

2xk22 � 0:25
�
9xC¼1

3 þ 3xC¼2
3

�1A
s:t:

r21 � x1 � 0 r21 þ r42 þ r83 � x1 � x22 � xC¼1
3 � 0 r31 þ r72 þ

r31 � x1 � 0 r21 þ r42 þ r93 � x1 � x22 � xC¼1
3 � 0 r31 þ r72 þ

r21 þ r42 � x1 � x22 � 0 r21 þ r52 þ r103 � x1 � x22 � xC¼1
3 � 0 x1 � 0;

r21 þ r52 � x1 � x22 � 0 r21 þ r52 þ r113 � x1 � x22 � xC¼1
3 � 0

r31 þ r62 � x1 � x32 � 0 r31 þ r62 þ r123 � x1 � x32 � xC¼1
3 � 0

r31 þ r72 � x1 � x32 � 0 r31 þ r62 þ r133 � x1 � x32 � xC¼1
3 � 0
reduces the number of the recourse action while preserving the
effect of the uncertain future on the first decision.

The desired computational saving determines the number of
clusters. The LMSP technique sets the same number of clusters for
each stage, i.e., a constant clustering scheme, as this ensures linear
increase in the number of decision variables with the number of
scenarios and stages as opposed to exponential in the MSP
formulation.

A special case iswhen there is only one cluster at each stage, so all
decision nodes at each stage share the same decision. In this case the
number of decision variables is minimal but this means solving
a single-stage Here-and-Now problem where there is just one
decision vector under all scenarios. At the other extreme, when the
number of clusters is determined such that each cluster contains
only a single node, the number of decision variables is maximal and
the LMSP formulation will coincide with the MSP. Specifying the
same number of clusters for each stage (for example two clusters at
each stage) ensures linear increase in the number of decision vari-
ables with the number of stages. By this clustering scheme the
model resulting fromthe LMSPapproach is somewhere between the
single-stage Here-and-Now approach and the classic MSP.

Noteworthy that the LMSP is not limited to constant clustering
scheme, and the number of clusters can be changes at different
stages. Consider the scenario tree in Fig. 1: one possible clustering
schemewould be (1, 2, 4, 2) clusters corresponding to stages 1e4. In
such clustering scheme decisions are made on the tree nodes up to
stage 3 (up to stage 3 the formulation is the same as in MSP, since
each cluster contains one node) and only in stage 4 we require
clustering the 8 nodes into 2 clusters. Such a clustering scheme
incorporates the detailed future up to stage 3 (say detailed repre-
sentation of near future) while after stage 3 an aggregation is made
on the decisions (less detailed representation of far future).

3.1. Illustrative example

The LMSP method is demonstrated on the hypothetical problem
presented in Section 2.2 and its results are compared with the
obtained in the MSP. Table 1 contains the optimal solution for each
of the eight scenarios (Fig. 1). Table 2 contains the node values,
according to Eq. (8).

If we choose to cluster the decisions into two clusters at each
stage, after applying the K-means algorithm on nodes 4e7 to
represent them in two sets we obtain: nodes {4, 5, 6} in the first
cluster and node 7 in the second cluster. The decisions for the
clusters are denoted as xC¼1

3 and xC¼2
3 for the first and second

clusters, respectively. This results in the following optimization
problem (9):
r143 � x1 � x32 � xC¼2
3 � 0

r153 � x1 � x32 � xC¼2
3 � 0

xk2¼2;3
2 � 0; xC¼1;2

3 � 0

(9)



Table 1
Optimal solution for each scenario (MCM), illustrative example.

Scenario Recharge Scenarios’ optimal decisions (Step 1)

s rs1; r
s
2; r

s
3 vs1 vs2 vs3

1 10, 10, 10 0 0 30
2 10, 10, 0 0 0 20
3 10, 0, 10 0 0 20
4 10, 0, 0 0 0 10
5 0, 10, 10 0 0 20
6 0, 10, 0 0 0 10
7 0, 0, 10 0 0 10
8 0, 0, 0 0 0 0
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The solution of this problem is given in Fig. 3. The objective
value of the MSP (270 M$) is somewhat lower than the LMSP
(277 M$) as expected because the LMSP contains additional
constraints (according to the explanation in Section 3). At nodes 1,
2, 3, 6 and 7 both the MSP and the LMSP have the same decision.
The LMSP decision at nodes 4, 5, 6 has the same value since the
nodes are part of the same cluster.

3.2. LMSP vs. scenarios reduction

It is important to distinguish the approach of clustering on the
basis of decisions (LMSP) from the scenarios reduction techniques
in which the stochastic process itself, namely the scenario tree, is
clustered/aggregated to produce more a compact tree and a smaller
optimization model. These reduction techniques are applied before
the model is introduced, independent of the optimization model
that will be used. The size of the scenario tree is reduced by
aggregating the tree nodes into separate sets to be later repre-
sented by a new node (Dupa�cová et al., 2003; Gülpinar et al., 2004;
Latorre et al., 2007; Heitsch and Romisch, 2005; Sutiene et al.,
2010). In contrast, the clustering in LMSP is intrinsic in the opti-
mization scheme as LMSP solves a set of optimization problems to
obtain the decision nodes clustering scheme. Consequently, the
clustering depends on the optimization model, so different opti-
mization objectives, constraints, or parameters will result in the
LMSP formulating different clustering. We view this as an impor-
tant and valuable property of LMSP over scenario reduction
techniques.

We claim that different models should require different clus-
tering schemes depending on the relationship between the
stochastic process and the optimization model. This relationship
should be discovered within the optimization process to make the
clustering accordingly. Hence, the clustering should be within the
optimization framework (as it done in the LMSP) and depend on
the specific optimization model that is being solved.

Another notable difference is that the LMSP keeps the scenario
tree intact without reducing its size. The clustering is made only on
the decisions related to the tree. The scenario tree is already an
approximation of the real stochastic process, thus reducing the size
of the tree worsens its approximation the future.
Table 2
Aggregated nodes’ values (MCM).

Node Scenarios Nodes’ values (Step 2)

vk22 vk33

2 1, 2, 3, 4 0
3 5, 6, 7, 8 0
4 1, 2 25
5 3, 4 15
6 5, 6 15
7 7, 8 5
To demonstrate that different models require different clus-
tering schemes, consider again the hypothetical problem in the
Section 2.2. When the reservoir volume is set equal to the
maximum annual recharge, i.e., Vmax ¼ 10 (MCM), the reservoir
cannot store water for more than one year, thus the optimal solu-
tion is to take the available water in each year from the reservoir
and supply the rest of the demand from the desalination plant.
Hence, scenarios that have the same recharge rt at stage t will have
the same decisions at stage t. On the other hand, when the reservoir
is very large, i.e. Vmax > 10 (MCM), the optimal solution prefers to
take more reservoir water at later stages since the desalination cost
rises over time (Ctþ1 � Ctct) and therefore the optimal solution
stores the recharge in the early stages for use in later years. As
a result, scenarios that have the same cumulative recharge

Pt
i¼1 ri

at stage t will have the same decisions at stage t (if two scenarios
have the same cumulative recharge at stage t then it implies that
they have the same water storage resulting in the same reservoir
withdrawal, i.e. the same decision).

The conclusion to be drawn from this example is that different
management models may require different clustering; the tradi-
tional reduction techniques would give the same clusters for both
models (with and without storage capacity) because the reduction
is made on the scenario tree, independent of the problem infor-
mation and before the model is introduced. For example a reduc-
tion technique may result in averaging the 0, 10 (MCM) recharge
(Fig. 3) into 5 (MCM) starting from stage 2, hence it reduces the
total number of scenarios from 8 to 2.

A deterministic optimization management problem of a water
supply system (WSS) is formulated in the following section. The
recharge is then considered to be uncertain and the MSP and the
LMSP methods are then applied.

4. Formulation of the management model of a large WSS

In this section, we present the deterministic formulation of
a seasonal multi-year model for management of water quantities
and salinity in a WSS. Long-term (years, decades) management of
a large-scale WSS can be captured in a model of medium temporal
and spatial aggregation that is used to manage simultaneously both
the sources and the network (Fisher et al., 2002; Draper et al., 2003,
2004; Jenkins et al., 2004; Watkins et al., 2004; Zaide, 2006). The
model used here was developed in Housh et al. (2012). It is
comprised of sources (aquifers, reservoirs and desalination plants),
a conveyance system (distribution network) and consumers
(demand zones) who require certain quantities of water under
specified salinity constraints. The objective is to operate the system
with minimum multi-year total cost under technological, admin-
istrative and environmental constraints. The cost and the
constraints of each year consist of seasonal desalination, pumping,
delivery and an extraction levy from the aquifers. Therefore the
decision variables are: water flow and water salinity distribution Q
and C respectively, and the removal ratios in the desalination plants
RR. Two sets of state variables describe the state of the system at
the end of each season: water levels ha in the natural resources
(aquifers and reservoirs) and water salinities Ca in the natural
resources.

The objective function and some of the constraints in the model
are nonlinear, leading to a nonlinear optimization problem. The
model does not include detailed hydraulics (the energy equations,
Kirchhoff’s second law); it is implicitly assumed that the short-term
hydraulic operation is feasible for the seasonal quantities which are
prescribed by our model. Still, the hydraulics is introduced in the
objective function by the head loss equation. We present here only
the basic derivation of the mathematical model. Full details can be
found in Housh et al. (2012).
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Let p, d, a, z, S, Y denote pipe, desalination plant, aquifer, demand
zone, season and year, respectively.

4.1. Objective function

The objective is to operate the system with minimum total cost
of (a) cost of desalination CD e a constant price per unit of desa-
linated water plus a variable cost which depends on the salinity
removal ratio (b) extraction levy from the natural sources CE e

which depends on the water level in the source (c) conveyance
costs CC e which is related to the head loss in a link, given by the
Hazen-Williams equation, and the topographical difference
between its ends. A small WSS is shown in Fig. 4 and a larger one
(Fig. 6) will be presented in the application section.

The objective of themulti-yearmodel is tominimize the present
value of the total cost of operation over the planning horizon Tf:

cost ¼
X
Y

P
S

 P
p
CCS;Y

p þP
d
CDS;Y

d þP
a
CES;Ya

!

ð1þ iÞY
(10)

where cost is the total operation cost ($); i is the annual discount
rate (�); CCS;Yp is conveyance cost ($/season); CES;Ya is extraction levy
($/season); CDS;Y

d is desalination cost ($/season).

4.2. Constraints

Natural sources e aquifers and reservoirs e are included in our
model, thus hydrological water and salinity mass balances are
imposed:

RS;Ya � QS;Y
a ¼ SAa

�
hS;Ya � hðS;YÞ�1

a

�
(11)

ðCRÞS;Ya RS;Ya � CðS;YÞ�1
a QS;Y

a ¼ SAa

�
CS;Y
a hS;Ya � CðS;YÞ�1

a hðS;YÞ�1
a

�
(12)

where RS;Ya is recharge (m3); SAa is the storativity multiplied by area

(m2); hS;Ya , CS;Y
a are water level and salinity respectively (m), (mgcl/

l); hðS;YÞ�1
a ;CðS;YÞ�1

a are water level and salinity in the previous

season respectively (m), (mgcl/l); ðCRÞS;Ya is salinity of the recharge
water (mgcl/l).

The salinity of the desalinated water is:

CS;Y
d ¼ Csea

 
100� RRS;Y

d
100

!
(13)

where CS;Y
d is desalinated water salinity (mgcl/l); Csea is sea water

salinity (27,000 mgcl/l); RRS;Y
d is removal ratio (%).
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Fig. 4. Demonstration WSS.
The distribution system can be represented as a directed graph
matrix A˛RN2�M where M is the number of edges (pipes) con-
necting the network nodes and N2 is the number of intermediate
and demand nodes.

For each season S in year Y, the following linear equation system
insures water conservation at the network nodes:

A,Q ¼ b (14)

where Q ¼ [Qsource, Qpipes]T; b ¼ [0, Qdemand]T; Qsource is the vector of
discharges leaving source nodes; Qpipes is the vector of discharges in
the links which are connected to intermediate nodes excluding the
links which are connected to source nodes; Qdemand is the vector of
outgoing discharges at demand nodes.

Salinity is also considered in the model so for each season S of
year Y the following linear equation system insures salt mass
conservation at network nodes:

A0DQC0 ¼ 0; A0˛RN2�ðMþn3Þ

A0 ¼
�
A

���� 0�I

	
C0 ¼ 


Csource;Cpipes;Cdemand
�T

DQ˛RðMþn3Þ�ðMþn3Þ diagonal matrix
DQ ¼ diag

�

Qsource;Qpipes;Qdemand

��
(15)

whereCsource is the salinity leaving source nodes;Cpipes is the salinity
in the links which are connected to intermediate nodes, excluding
the links which are connected to source nodes; Cdemand is salinity
supplied at demandnodes;n3 numberof demandnodes. Fullmixing
at nodes is assumed, so the salinities in all links leaving a node are
equal. This dilution condition is given by the linear equation system:

B0,C0 ¼ 0 (16)

where each row of B0indicates equal salinity for two outgoing edges
which share the same inflow node.

4.3. Operational bounds

Bounds are listed in Eq. (17): onwater levels and salinities in the
aquifer, reflecting both policy and physical/operational limits; on
link discharges, representing maximum conveyance capacity and
a fixed direction of flow; on water extraction from aquifers, rep-
resenting hydrological and hydraulic considerations/fixed direction
of flow; on desalinated water amounts, representing plants
capacity, contract conditions and outward flow direction; on
removal ratio, reflecting the plant’s technology and design; on the
demand salinity at demand nodes to ensure that the salinity of
water supplied is within the required limits.

ðhminÞS;Ya <hS;Ya < ðhmaxÞS;Ya ; ðCminÞS;Ya <CS;Y
a < ðCmaxÞS;Ya

0<QS;Y
p < ðQmaxÞS;Yp ; 0<QS;Y

a < ðQmaxÞS;Ya

ðQminÞS;Yd <QS;Y
d < ðQmaxÞS;Yd ; ðRRminÞS;Yd �RRS;Y

d �ðRRmaxÞS;Yd

ðCminÞS;Yz <CS;Y
z < ðCmaxÞS;Yz

(17)

Water quantities are in (m3/season), salinities are in (mgcl/l) and
elevations in (m); ()min is minimum allowed value; ()max is
maximum allowed value.

In Housh (2011), sensitivity analysis was performed to check the
model’s performance and behavior under various conditions. The
sensitivity analysis results show rational behavior of the model
under changes of parameters and initial conditions.
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4.4. Optimization problem

To reduce the model size we extract one dependent decision
variable from each equality constraint. The dependent variables are
then substituted into the objective function and the inequality
constraints so a smaller model (fewer decision variables) is ob-
tained. In the WSS model above, for fixed values of the flow vari-
ables Q and the removal ratio RR all the salinity variables C0 are
determined using Eqs. (11)e(13) and Eqs. (15) and (16). Parts of the
flow variables Q are also dependent; the dependent variables could
be extracted using the linear equation system (14):

Qdep ¼ A�1
1

�
b� A2Qindep

�
(18)

where A1 is a matrix of N2 independent columns of A; A2 is a matrix
ofM � N2 dependent columns of A; ()dep is the vector of dependent
flows; ()indep is the vector of independent flows. Hence, the inde-
pendent decision variables in the WSS optimization problem are
x ¼ [Qindep, RR] and the model can be formulated as the following
nonlinear optimization problem:

min F ¼ PTf
t¼1

ftðx1;.; xt ; r1;.; rtÞ
s:t: :
gj;tðx1;.; xt ; r1;.; rtÞ � 0 cj ¼ 1.n; ct ¼ 1.Tf

(19)

where t is the stage index t ˛ [1,Tf]; xt is vector of decision variables;
rt is the recharge; f,gjcj are linear/nonlinear functions. The stage
can be defined as season or year, depending on the available
recharge data.
5. Applications

In the WSS model there is uncertainty in the recharge rt since it
depends on climate variability, seasonal effects and climate change.
The following examples will focus on the uncertainty in the
recharge, though it is recognized that there are often significant
uncertainties in other variables such as demands and desalination
costs.

Since the objective and the constraints of the WSS model are
separable functions, the MSP formulation of the WSS optimization
problem (19) with the recharge described as a stochastic process
(depicted by the scenario tree) is given by formulation (4). TheWSS
formulation described above is solved using the MSP and LMSP
formulations.

Results and comparisons are presented in the next sections. Due
to the general structure of the objective function and constraints,
a general nonlinear optimization solver is warranted. The MSP and
the LMSP of the WSS model were programmed in MATLAB
employing the interior-point solver of the FMINCON nonlinear
optimization suite.

5.1. Application 1

A small WSS model (Fig. 4) has been solved in this example;
minimum cost of operating the systemwhich is fed from a one cell
aquifer and a desalination plant to supply two customers over three
years. The year has two seasons: the first has 265 days (“winter”
with low demands and stochastic recharge given as scenario tree)
and the second 100 days (“summer” with high demands and zero
recharge).

Each stage (year) in the problem comprise of 10 decision vari-
ables. The yearly aquifers recharges R ¼ ðr1;.; rTf Þ ðMCMÞare
considered stochastic, given by the balanced scenario treewith two
branches at each stage (Fig. 5). The conditional discrete probability
in each year is given by the probability mass function (PMF) in
Table 3, where rt is the recharge in year t, and Rt is vector of
recharges up to year t.

The scenario tree has 5 stages and 32 scenarios, where each of
the nodes 2.63 takes the values of the low (L) recharge if the node



Fig. 6. Network layout of the large system.
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index is an odd number, and the high (H) recharge if the node
number is even (Fig. 5).

Each decision node 2.63 in Fig. 5 has its own decision vari-
ables; the independent decision variables for each of the node are
the pipes flows Q1

3;4;6;8;Q
2
3;4;6;8ðMCMÞfor season 1 and 2, respec-

tively and the removal ratio RR1, RR2 (%) for season 1 and 2,
respectively.

In MSP the number of decision nodes is 31, and the number of
decision variables is 31�10¼ 310 where 10 is the length of a single
year decision vector. The minimum expected value of the MSP
solution is 565 M$. Applying the LMSP with two clusters at each
stage reduces the problem size to 9 decisions nodes (1þ2� 4¼ 9),
hence, the optimization problem has 90 decision variables. The
minimum expected value of the LMSP is 570 M$ (as expected
somewhat higher than the MSP solution).

The clustering scheme to the 31 decision nodes is given in
(Table 4) which is obtained after applying step 1 and 2 as described
in Section 3.

Examining the decision clusters at year 4, nodes 8e15 show that
the nodes which have history with L recharge at least twice are in
Table 3
PMF of the recharge, example 1.

Low recharge (L) High recharge (R)

rt (MCM) 0 100
Probðrt jRtÞ 0.5 0.5
the same cluster, except node 14 which have H recharge only one
time. This node has been added by the LMSP procedure to the first
cluster in the first run, since the H recharge is realized in the near
past of node 14. In year 5, nodes 16e31 the same rule is valid, where
node 30 has H recharge only one time. This indicates that not only
the cumulative amount matters, but also the lag from the decision
node are important.

To compare the LMSP and the MSP we present the yearly
desalination amount for each decision node. Note that each deci-
sion node has its own decision vector with 10 decision variables;
however, the yearly desalination amount was chosen to present the
decision characteristics. Fig. 5 compares the optimal desalination
amount obtained from the MSP and the LMSP solution. For
instance, in node 3 the MSP solution implies desalination amount
of 98 (MCM) where the LMSP solution implies 99.1 (MCM).

The LMSP was applied with two clusters at each stage, hence at
each stage the LMSP assign only two different values to the decision
nodes e.g. at stage 5, the LMSP solution is 24.2 (MCM) of desali-
nated water for the decision nodes in the first cluster and 98 (MCM)
of desalinated water for the decision nodes at the second stage.

As shown in Fig. 5, the MSP and LMSP provided very close first
year decision for implementation which considers the future
uncertainty and the possibility to recourse actions in the future.
MSP considers the possibility for recourse action for each node in
the scenario tree while the LMSP considers a smaller number of
recourse actions (clusters). These recourse actions project the
uncertain future effect on the first decision. In real-life application



Table 4
Clustering scheme, example 1.

Year Cluster 1 Cluster 2

1 NA NA
2 2 3
3 {4, 5, 6} 7
4 {8, 9, 10, 12, 14} {11, 13, 15}
5 {16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 28, 30} {23, 27, 29, 31}
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the MSP recourse action will not be implemented since it is solved
in Rolling/Folding Horizon. The LMSP is considered a good
approximation of the MSP when the first stage decisions are close
to one another.

This is due to the fact that decision makers solve the model
repeatedly and implement only the first stage decisions. As shown
in Fig. 5, the desalination amount in the first stage obtained in the
LMSP is very close to the obtained from the MSP; in fact all the
decision variables are very close to each other, however, we chose
not to present them to save space.

5.2. Application 2 (Large WSS)

The small system shown in Fig. 4 was used to test and verify the
method’s performance, which was then applied to a larger and
more realistic WSS. A water system with 9 demand zones, 3 aqui-
fers, 5 desalination plants and 49 pipes (Fig. 6) has been solved in
this example; the structure of this systemmimics the central part of
the Israeli National Water System. The year is divided into two
seasons, which can be called "winter" (265 days, lower demands,
stochastic recharge given as scenario tree) and "summer" (100
days, high demands, zero recharge).

The annual recharges to the aquifers Ra¼1.3 (MCM) are
considered stochastic, given by a balanced scenario tree with two
branches at each stage. The conditional probability in each year is
given in Table 5, where ra,t is the recharge in aquifer ‘a’ at year ‘t’,
and Rta is vector of recharges up to year t.

The scenario tree in this case has 32 scenarios, where each of the
nodes 2.63 takes the values of the low (L) recharge if the node
index is an odd number, and the high (H) recharge if the node
number is even.

Section 3.2 shows that the clustering scheme depends on the
model formulation, thus we had different clustering scheme with
and without storage capacity. The conclusion drawn from the
hypothetical example is that different models may require different
clustering. This example demonstrates how the clustering process
is affected by different parameters of the model; particularly
ðCEmaxÞa which determines the aquifers water cost (complete data
are provided in Housh et al., 2012).

The large-scale network is solved twice, Run1: ðCEmaxÞa ¼ 0,
Run2: ðCEmaxÞa ¼ 0:5 (M$/MCM), respectively. In the MSP the
number of the decision nodes is 31, thus the number of decision
variables is 31�62¼1922 where 62 is the length for each year’s
decision vector. The minimum expected value of the MSP solution
is Run1: 173.8 (M$) and Run2: 230 (M$) for the two problems Runs,
respectively. Applying the LMSP with two clusters at each stage
reduces the problem size to 9 decision nodes (1þ2� 4¼ 9), hence,
the optimization problem has 558 decision variables. Theminimum
Table 5
PMF of the recharge, example 2.

Low recharge (L) High recharge (H)

r1,t, r2,t, r3,t (MCM) 80, 80, 80 200, 200, 200
Probðra¼1::3;t jRta¼1::3Þ 0.5 0.5
expected value of the LMSP is Run1: 175.8 (M$) and Run2:
232.9 (M$), not much higher than the MSP solutions.

Recalling that Run1 is set with no cost for aquifer water and
Run2 is set with an aquifer water cost that depends on the level
(lower cost at higher water levels) the optimal solutions of the two
runs will have different characteristics. In Run1, since the aquifer
water is free, once there is recharge to the aquifer the solution is to
use it immediately, while in Run2 the solution will be to store the
water by taking less from the aquifer to increase the aquifer water
level and decrease the cost of its water. Water is stored in Run2
until aquifer water price competes with the price of desalinated
water. Hence, aquifer withdrawals (decisions) in the two runs have
different dependency on the recharge history.

The clustering in the LMSP procedure is made based on the
decisions. Hence, decision nodes that imply using large amount of
aquifer water would be in the same cluster and vise versa. However,
since decisions in Run1 and Run2 have different characteristics and
different dependency on recharge history the clustering scheme
resulted from the LMSP is expected to be different in the two runs.

The clustering schemes for the 31 decision nodes in Run1 and
Run2 are given in Fig. 7, which shows the history of the node in each
year and the corresponding clustering suggested by the LMSP. Each
node belonging to cluster 1 is in a “rich recharge cluster” while
cluster 2 is a “low recharge cluster”. For instance, node 8, which has
H recharge along its history, is in the first cluster in both runs,
whereas node 15, which has L recharge along its history, is in the
second cluster in both runs.

Hence, decision node 8 is “more” aquifer-based operation in
both runs (belongs to rich recharge cluster in both runs) and
decision node 15 is “more” desalination-based operations in both
runs.

Examining the clustering results at year 3 shows that nodes,
which have a history with H recharge at least once, are placed in
cluster 1 (high recharge history) in Run1. In contrast, Run2 clusters
the nodes that have history with L recharge at least once in cluster 2
(low recharge history). Hence, nodes 5 and 6 are clustered differ-
ently, caused by different run parameters, indicating that nodes 5
and 6 are aquifer based in Run1 while in Run2 they are desalination
based. This is because in Run2 the node history must contain more
than one H recharge before it is considered in cluster 1 (rich
recharge history).

The results for year 4 show that in both Runs nodes, which have
history with at least one H recharge, are in cluster 1 except node 14,
which has only one H recharge. This node has been added to the
first cluster in the first Run, since the H recharge is realized in the
near past of node 14. In year 5, nodes that have a history with H
recharge at least three times are in cluster 1 in both Runs. Node 28,
which has two H recharges in the near past, is also in cluster 1 in
both Runs. This indicates that not only the cumulative amount
matters, but also the lag from the decision node is important.

Nodes that have less than three times of H recharge history, but
have H recharge at the later year are considered in cluster 1 in the
Run1. In contrast, H recharge at the later year was not enough to
make these nodes first cluster members in Run2.

The success of the LMSP approximation is determined by the
difference in the first stage decisions between the LMSP and the
MSP solution. Table 6 compares the total annual desalination
amount in the first year, which is obtained from the MSP and the
LMSP solution for both Runs.

As shown in Table 6, theMSP and LMSP provided very close first-
year decisions for implementation; hence, solving the smaller
optimization problem in LMSP (558 decision variables instead of
1922) has an advantage, especially when we are solving in rolling
horizon mode. If we extend the time horizon in Application 2 from
5 years to 21 years (or if we increase the branches of the scenario
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Table 6
Comparison between the MSP and the LMSP with different extraction levy.

Run Approach Desalination (MCM)

Plant 1 Plant 2 Plant 3 Plant 4 Plant 5

1 MSP 25.0 46.6 12.1 288.6 130.5
LMSP 25.1 47.5 35.7 290.7 133.8

2 MSP 25.0 51.2 35.9 290.7 133.9
LMSP 29.9 55.1 36.4 293.3 134.0
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tree to 38 instead of 2), then the number of the decision variables in
the MSP would be around 1.3 million while in the LMSP with two
clusters the number is reduced to 2542 and to 3782 variables with
three clusters. There does not seem to be a readily available opti-
mization solver, which is capable of solving general nonlinear
optimization problems with 1.3 million variables. On the other
hand, we already reported solving optimization problemwith 1922
variables.

6. Conclusions

A computationally cheaper approximation of the MSP has been
developed. The LMSP approximates the MSP formulation by
restricting the number of recourse decisions. This restriction is
performed by means of a clustering procedure of the decision
nodes of the scenario tree. The LMSP keeps the scenario tree intact
without reducing its size; the clustering is made only on the deci-
sions related to the tree. The process of clustering the decision
variables did not change the first stage decision significantly, as
compared to the original MSP, this is crucial when solving in
folding/rolling mode.
In the applications we discussed the quality, the nature of this
approximation, and the size of the optimization problem obtained
as indicator for the computational time.

The results of using LMSP show that it provides a good
approximation of the MSP solution, while solving much smaller
optimization problem; 558 instead of 1922 decision variables in the
large example (Application 2), the saving in the number of decision
variables is as high as 70%. If we extend significantly the time
horizon (or the number of scenarios) the MSP approach leads to
a computationally intractable optimization problem as opposed to
the LMSP, which leads to an optimization problem solvable by
existing optimization solvers.

For theWSSmodel treated herein, the results show that not only
the cumulative amount of the recharge effects the decisions but
also the lag (distance) from the decision node is important. The
large-scale example strengthens the claim that different models
may require different clustering, depending on the relationship
between the stochastic process and the optimization model, thus
different model parameters require different clustering as obtained
by the LMSP solution.
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Nomenclature
General
t: decision stage
Tf: total number of stages
F: general nonlinear objective function
ft: general nonlinear objective function at stage t
gi: general nonlinear function (constraint)
u/R: stochastic process/recharge process of the entire horizon
x: vector of decision variable for the entire horizon
ut/rt: stochastic process/recharge process at stage t
xt: vector of decision variables at stage t
ut/Rt: stochastic process up to stage t
xt: vector of decision variables up to stage t
s: scenario
Sf: total number of scenarios
ps: probability of scenario

WSS model
p, a, d: pipe, aquifer and desalination plant, respectively.
z, S, Y: demand zone, season and year, respectively
CCS;Y

p : conveyance cost ($/season)

ðCEmaxÞS;Ya : maximum extraction levy ($/m3)

CES;Ya : extraction levy ($/season)

CDS;Y
d : desalination cost ($/season)

RRS;Yd : removal ratio (%)
Qsource/Csource: vector of discharges/salinity leaving source nodes
Qpipes/Cpipes: vector of discharges/salinity in the links
Qdemand/Cdemand: vector of discharges/salinity at demand nodes.

RS;Ya : recharge (MCM)
SAa: storativiy multiplied by area (m2)

hS;Ya =CS;Y
a : water level/salinity in aquifers (m)/(mgcl/l)

hðS;YÞ�1
a =CðS;YÞ�1

a : water level/salinity in aquifers (m)/(mgcl/l)
ðCRÞS;Ya : salinity of the recharge water (mgcl/l)

CS;Y
d : desalinated water salinity (mgcl/l)

Csea: sea water salinity (27,000 mgcl/l)

ð#maxÞS;Yp;a;d: maximum allowed value

ð#minÞS;Yp;a;d: minimum allowed value

(#)dep: vector of dependent decision variables
(#)indep: vector of independent decision variables

http://www.technion.ac.il/%7Emashor/
http://www.technion.ac.il/%7Emashor/
http://urishamir.wri.technion.ac.il/
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