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Implicit Mean-Variance Approach for Optimal Management
of a Water Supply System under Uncertainty

Mashor Housh, Ph.D."; Avi Ostfeld, F.ASCE?; and Uri Shamir, F.ASCE3

Abstract: This study addresses the management of a water supply system under uncertainty. Water is taken from sources that include
aquifers and desalination plants and conveyed through a distribution system to consumers under constraints of quantity and quality.
The replenishment into the aquifers is stochastic, whereas the desalination plants can produce a large and reliable amount, but at a higher
cost. The cost is stochastic because it depends on the realization of the replenishment into the aquifer. A new implicit mean-variance approach
is developed and applied. It utilizes the advantages of implicit stochastic programming to formulate a small size and easy to solve convex
external optimization problem (quadratic objective and linear constraints) that generates the mean-variance tradeoff without the need to
solve a large-scale problem. The results are presented as a tradeoff between the expected value versus the standard deviation. At one
end of the tradeoff curve, dependence on the aquifer results in low expected cost and higher cost variability. At the other end, when all of
the water is taken from desalination, the cost is high with no variability (deterministic). DOI: 10.1061/(ASCE)WR.1943-5452.0000307.
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Introduction

The planning and management of real-life water resources projects
are always conducted under uncertainty, such as uncertain de-
mands, flows, yields, costs, and benefits. A common approach is
to neglect the uncertainty and replace it with a deterministic esti-
mator. Philbrick and Kitanidis (1999) have shown the limitation
of this approach for water resource systems. They present three
models for reservoir management and demonstrate that a determin-
istic formulation does not perform as well as a stochastic formu-
lation. Recently, the consideration of uncertainties has become a
standard step in modeling of water resources. Numerous models
have been developed for the management optimization of reser-
voirs, in which inflows, net evaporation, hydrologic, and economic
parameters and system demands are considered to be random
variables (Labadie 2004).

In stochastic programming (SP) (Birge and Louveaux 1997),
the uncertain parameters are modeled as random variables with
prescribed probability density functions (PDFs). Generally, there
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are two types of SP: implicit and explicit stochastic programming
(ISP and ESP).

To understand the concepts of the ISP and the ESP, one must
first consider the following unconstrained optimization problem:
f(x,R) — min, where x is the vector of decision variables and
R is the stochastic process. A common tool to present the stochastic
process is that of scenarios (Dupacova et al. 2000) that are particu-
lar representations of how the process may be realized. The
stochastic process, R, is approximated by a finite number, ki,
of scenarios represented by the scenario set ). Each scenario
R e Q Vk=1,... ks has probability of p*, where

The ISP approach implies that decisions can be made only after
the value of R becomes known. The stochastic aspects of the prob-
lem are implicitly included and each scenario is used as input for a
deterministic optimization problem. Thus, the optimization prob-
lem depends on R¥ as a fixed parameter: f(x, R) — min V k; after
solving this optimization problem for each scenario k, the decisions
corresponding to each scenario x* are obtained. These decisions
construct the objective value set min f(x*, R¥) € Q; Vk and
the optimal solution set arg minx f(x, R¥) € Q, V k. The set of
optimal values, {2 r» and the optimal set of solutions, Q,, are treated
as stochastic elements and their probabilistic behavior is used to
derive decision rules for implementation.

ISP solves multiple deterministic problems; hence, an efficient
deterministic module is required. Hiew et al. (1989) and Crawley
and Dandy (1993) applied the ISP approach for the optimal man-
agement of a linear multireservoir model with uncertain inflows. In
many applications of the management of multireservoirs, a linear
model is not applicable because of the existence of nonlinearities
in the objective functions and constraints. In these cases, various
nonlinear algorithms are utilized. Barros et al. (2003) compared
the performance of successive quadratic programming (SQP) and
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successive linear programming (SLP) on a large scale Brazilian hy-
dropower system. Peng and Buras (2000) applied the general re-
duced gradient (GRG) to a nonlinear model. Cai et al. (2001)
presented a framework for solving a large-scale nonlinear water
management model by a genetic algorithm (GA) that can be
embedded within the ISP approach.

ESP incorporates the PDF of the stochastic process into the op-
timization problem. Hence, in an ESP formulation, each possible
decision results in a stochastic objective function f(x,R) with a
given PDF. Because it is not possible to minimize a PDF of f(x, R),
one must apply a statistical operator to the PDF (e.g., expectation,
variance, or quantile) before the optimization is performed.

Implicit Mean-Variance Motivation

The primary advantage of ISP over ESP is the ability to solve each
scenario separately, as opposed to ESP, in which all scenarios are
simultaneously optimized.

One of the more common approaches is to optimize the
expected value of the objective (Vasiliadis and Karamouz 1994;
Seifi and Hipel 2001; Kracman et al. 2006). However, optimizing
the expected value does not hedge against risk. Decision makers are
and should be interested in optimizing risk measures jointly with,
or sometimes instead of, the expected value.

Following the scenario-based robust optimization (RO) (Mulvey
et al. 1995), Watkins and McKinney (1997) incorporated the cost
variance as a measure of risk within an ESP framework. In this
framework, the objective function was defined as a weighted
sum of the expected value and standard deviation of the cost (mean
variance). In financial applications, this approach is considered
traditional, in which the variance of the outcomes serves as a
measure of risk (Markowitz 1959). Watkins and McKinney
(1997) demonstrated the advantages of using the mean-variance
framework as a measure of risk in the optimization model.

When other objectives than the expected value are optimized
(e.g., mean variance), one cannot solve the ISP formulation by
separately solving each scenario (as described in the following).
Hence, the primary advantage of ISP over ESP is lost. Creating
the mean-variance tradeoff by using classical ISP requires solving
many large-scale optimization problems, which makes this
approach impractical.

In the current study, the implicit mean-variance (IMV) approach
is developed and demonstrated. In IMV, the advantage of ISP (the
ability to separately solve each scenario) is utilized to formulate a
small convex external optimization problem to create the mean-
variance tradeoff without the need to solve large-scale optimization
problems.

The primary disadvantage of the implicit methods (classical ISP
and IMV) is that the resulting optimal operational policies are
unique to each scenario. Because the solution is different for each
scenario and the true scenario is not known, one cannot decide
which solution to implement. On the other hand, the ESP solution
is not scenario dependent; i.e., the optimal solution is inherently
implementable. However, computational difficulties in ESPs (espe-
cially when optimizing a nonlinear model) have led modelers of
large systems to rely on ISP techniques (Labadie 2004). Despite
this drawback, ISPs remain applicable tools for the analysis of
complex systems. The solution obtained from the ISPs can be used
to derive an implementable decision (not a scenario dependent de-
cision). Developing implementable decisions from the output of
ISP has been the subject of several studies. Hiew et al. (1989) used
multiple regression analysis to derive an implementable decision
for a multireservoir operation problem from an ISP solution.

Raman and Chandramouli (1996) used artificial neural networks
and Saad et al. (1992) employed principal component analysis
to derive the implantable decision from the ISP solution.

On the mean-variance tradeoff created by classical ISP or by the
proposed IMV method, each point is comprised of a set of optimal
decision vectors (one for each scenario). These decision vectors
serve as intermediate information toward deriving an implement-
able decision, as discussed previously.

A noteworthy property of IMV is that it can elucidate the shape
of the entire tradeoff curve (which is useful in itself and is required
to settle on a preferred tradeoff) by utilizing the minimum expected
cost solution and a small sized convex external optimization prob-
lem. Because most of the studies on ISP considered the minimum
expected cost solution (as shown in previous examples), this means
that with the addition of a little computation (solving the external
problems), these studies can be extended by the IMV approach to
produce the entire mean-variance tradeoff for the decision maker.

The mean-variance tradeoff is comprised of all noninferior so-
lutions; i.e., the solutions with the least value of the variance for the
specified value of the expectation. Each point thus generated has its
corresponding decision vectors. The decision maker is faced with
selecting a point (or, even better, a range for sensitivity analysis)
that has their preferred balance between the two objectives; at
the same time, they must examine the corresponding decision vec-
tors and the implantable decision derived from them to ascertain
whether they are willing to accept them or require further analysis.

The rest of this paper is organized as follows: the next section
contains the formulation of a deterministic model for optimizing
the operation of a water supply system (WSS) with its objective
function and constraints. Next, the ISP for the deterministic
WSS is developed, followed by presentation of the IMV approach.
In the last section, IMV is applied to the stochastic version of the
WSS model.

Deterministic Formulation of the WSS Management
Model

This section presents the deterministic formulation of a seasonal
multiyear model for the management of water flow and salinity in
water supply systems. Fig. 1 depicts a small hypothetical WSS (two
source nodes, four junction nodes, two demand nodes, and nine
links) that were used in developing and testing the model, whereas
the system shown in Fig. 2 is the central part of the Israeli National
Water Supply System, to which the method has also been applied.

Water is taken from sources (aquifers, reservoirs, and desalina-
tion plants) and conveyed through a distribution system to consum-
ers. The operation is subject to constraints on water levels and water
qualities in the aquifers, the capacities of the pumping and distri-
bution systems, the production capacity of the desalination plants,
and a limit on salinity removal ratio of the plants. The objective is
to minimize the total present value of the operation cost, which in-
cludes the cost of desalination, pumping, delivery, and an extraction
levy from the aquifers. The objective function and some of the con-
straints are nonlinear, leading to a nonlinear optimization problem.

The model does not include detailed hydraulics (i.e., the energy
equations or Kirchoff’s second law); it is implicitly assumed that
the short-term hydraulic operation within the season is feasible with
the seasonal quantities that are prescribed by the model. Still, the
cost of conveyance is related to the hydraulic characteristics of the
network links.

The network representation in the model can be classified ac-
cording to the physical laws that are explicitly considered in the
model constraints (Ostfeld and Shamir 1993; Cohen et al. 2000).
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Fig. 1. Simple example of a WSS
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Fig. 2. Layout of WSS and conveyance capacity of the links in Seasons 1 and 2 (mcm, rounded to one decimal place, to simplify the presentation)

Ostfeld and Shamir (1993) defined flow-quality models as those
that consider the balance of the flows and mass of quality param-
eters, but without explicit inclusion of the hydraulics. According to
this definition, the developed model is a flow-quality model. Sev-
eral flow-quality models have been developed in the last decade,
(Tu et al. 2005; Yates et al. 2005; Zaide 2006). The model presented

here differs by the spatial and temporal resolution and by the in-
clusion of more hydraulic characteristics of the network. The study
by Housh et al. (2012) provides full details.

In the model detailed in the following, p, d, a, z, S, and Y denote
pipe, desalination plant, aquifer, demand zone, season, and year,
respectively.
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Objective Function

The objective of the multiyear model is to minimize the present
value of the total cost:

t— ZS(ZdCDiy + ZaCEzqy + chciqy)
CoSst = ; (1 i l)Y

(1)

where cos ¢ = total operation cost ($); CDf,‘Y = desalination cost
($/season); CE;" = extraction levy ($/season); CC5” = convey-
ance cost ($/season); i = annual discount rate (dimensionless).
The desalination cost, CD, is comprised of a constant price per
unit of desalinated water plus a variable cost that depends on the
salinity removal ratio:
) <0 @)

e T
¢ *7 (100 — RRST )

where o, = parameter for the desalination cost function ($/m?);
Y = desalination amount (m’/season); RR5' = removal
ratio (%); and 3, = parameter for the desalination cost function
(dimensionless).
The extraction levy from the natural sources, CE, depends on

the water level in the source:

CEy" = CESY x Q3" (3)
CESY — (1= M= hmin VT oy (4)
¢ hmax - hmin a “

where CESY = specific levy ($/m?); Q5" = pumping amount
from the aquifer (m®/season); iy = water level (m); (hy,)SY =
minimum allowed water level (m); (A, )3 = maximum allowed
water level (m); (CE™)5Y = maximum levy ($/m?).

The conveyance cost, CC, depends on the head loss in a link
given by the Hazen-Williams equation, with the average flow of

the season and the elevation difference between its two ends:

% oy
XY (%

) x 0.736 x wSY x KWHCSY  (5)

ceyt =
! 200
Xp' = Az, + AHPY” (6)
S.Y 1.852
AHfSY =1.526 x 107 x <WS’§CY> X D;4‘87 xL, (7)
[I

where Xi'y = head loss (m); Q,S,'Y = total discharge for the season
(m?/season); wS? = number of pumping hours per season
(h/season); KWHC®" = pumping cost ($kW - h); AZ,, = elevation
difference (m) between the intake and discharge ends of the pipe;
AH ff;y = energy head loss (m); cg = Hazen-Williams head loss
coefficient (dimensionless); D), = link diameter (cm); L, = link
length (km).

Constraints

For the natural sources, aquifers and reservoirs, the water and
salinity mass balance constraints are:

SY— 03 = 5A, x (B3 — YT 8)
(CR)S,Y % RS,Y _ C(S.Y)—l « QS'Y
a a a a
— SA, x [C5V x hSY — ST s BiS TN 9)

where R3Y = recharge (m?); SA, = storativity multiplied by
area (m2); hy' = water level (m); C3¥ = salinity (mg/LCI™);
hfls'Y)_l = water level in the previous season (m); C((IS’Y)_1 = salinity

5Y = salinity of the

in the previous season (mg/LCI7); (Cg)
recharge water (mg/L C17).

The salinity of the desalinated water is

100 — RRg-Y)

C5~Y = Csea X ( 100

(10)

where Ci'Y = salinity of desalinated water (mg/L CI7); C,, = salin-
ity of sea water (27,000 mg/L Cl7); RRi"Y = removal ratio (%).

For each season S in year Y, the following linear equation
system ensures water conservation at the network nodes:

AxQ=b (11)

where A = junction node connectivity matrix of the directed graph
that represents the topology of the network; Q = [Qsource Opipes]” :
b =10, Qgemand]" s Osource = Vector of discharges leaving source no-
des; QOpipes = vector of discharges leaving intermediate nodes;
Qdemana = vector of outgoing discharges at demand nodes. For
example, the water supply network shown in Fig. 1 has two
source nodes, four intermediate nodes, and two demand nodes.
The junction node connectivity matrix for this network is
A € R%10 The vectors Q and b are Q = [Q,, 04, 0y, ..., 0g]"
and b=10,...,0,0._,0..,]".

Salt mass conservation at network nodes is satisfied by the
following equation set:

A'x Dy xC*=0, A" e RNx(Mim)

0
0 _—
(%)
CO = [Csource» Cpipem Cdemand]T

D, € RWMFm)x(M+m) diggonal matrix

DQ = diag([Qsoume» Qpipes» QdemandD

where Cyyree = salinity leaving source nodes; Cpes = salinity in
the links leaving intermediate nodes; Cyomang = salinity supplied
at demand nodes; n; = number of demand nodes; I € R =
identity matrix. For the network in Fig. 1, the matrix AV e RO*12
the matrix Dy € R'*!2, and the vector C° are defined as C* =
[C0rCarCi. .. Cs. Coy o]

The model assumes total mixing at network nodes, so the sal-
inities in all links leaving a node are equal. This dilution condition
is given by the following linear equation system:

BOx (=0 (13)

Each row of B? indicates equal salinity for two outgoing edges
that share the same inflow node, i.e., each row has only two non-
zero elements +1 and —1; when three links leave the same node,
there are two rows, each with two nonzero elements, +1 and —1.
For the network in Fig. 1, B® € R**!12,

Operation bounds

Bounds are listed in Eq. (14) on flow, salinity, and state variables,
reflecting both physical and operational limits:
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(hlnln)sy<hsy (hmﬁx)iiy; (len)SY <CSY (Cmax)g’y

OSQ ’ <(anaX)p’ 7 OSQQY S(QII'IZ\X)S.Y

(OQuin)y " £OF < (Oma)y”s (RRyin)y" SRRYY < (RRy )"
(Conin)5Y SC3Y < (Cpr) 3 (14)

where water quantities are in m’/season, salinities are in
mg/L Cl~, and elevations are in m; ()™, ()™ = lower and upper
bounds, respectively.

The preceding deterministic model was developed in the study
by Housh (2011). Sensitivity analysis was performed to check its
performance and behavior under various conditions. The sensitivity
analysis results showed the rational behavior of the model under
changes of parameters and initial conditions. The study by Housh
(2011) provides more details on the deterministic model.

Implicit Stochastic Programming

This section presents classical ISP and its application for the model
in the previous section.

Efficient Deterministic Module

The efficient deterministic model (EDM) described in the previous
sections results in a general nonlinear optimization problem of the
form

min F(x, R)

X

Subject to:
gi(x,R)=0 Vi=1,...,m

g;(x,R) <0 Vj=1,....m;
where x = vector of decision variables that include the flow and the
salinity variables in the network (Qpipes> Cpipes)> the aquifer varia-
bles (Q,, C,, h,), and the desalination variables (Q,, C,;, RR;) for
each season of all years; R = multiyear recharge vector;
F, g;Vi, g;V jinclude linear and nonlinear functions.

The general nonlinear optimization problem, as defined in
Eq. (15), can be solved with one of the existing general nonlinear
programming solvers, such as SQP (Fletcher 1985) or an interior
point algorithm (Waltz et al. 2006; Byrd et al. 2000).

A set of mathematical strategies was developed to increase the
computational efficiency of the optimization: (1) reduction of the
model size, (2) concise representation of the variables and
constraints, and (3) an efficient finite-difference scheme entitled
the time-chained-method (TCM) for computing the derivatives
required by the optimization algorithm. The TCM utilizes the
multistage structure of the model to reduce the computational time
from O(T%) to O(T), where T is the number of years (Housh
et al. 2012) A sensitivity analysis for the WSS deterministic model
was performed to check its performance and behavior under
various conditions. The sensitivity analysis results showed rational
behavior of the model under changes of parameters and initial
conditions, as shown in the work by Housh (2011).

These mathematical strategies substantially improve the
solvability and efficiency of the optimization problem, a critical
property when the model is run multiple times as a deterministic
module of the ISP approach.

The detailed description of these strategies exceeds the scope of
this paper. The following refers to the solution of the optimization

problem defined in Eq. (15), with a predetermined fixed vec-
tor, R, as an EDM. The EDM was programmed in MATLAB
and utilizes the interior-point algorithm with conjugate gradient
of the MATLAB FMINCON nonlinear optimization suite.

Incorporation of Uncertainty

There is considerable uncertainty in the recharge vector, R, due to
its dependency upon climate variability (Ajami et al. 2008), sea-
sonal effects, and climate change (Grantz et al. 2007). In this study,
the uncertainty in the recharge is considered, although the authors
recognize there is often significant uncertainty in other variables,
such as demands and desalination costs. Once the recharge is mod-
eled as a stochastic process, scenario based SP can be applied for
the WSS model.

The scenario-based SP assumes that the distribution of the sto-
chastic process R is a finite discrete probability space; that is, the
particular representation of how the process may materialize. The
stochastic process R is approximated by a finite set of scenanos
R¥ € Q V k, with associated probability p*, where Zk 1 pk=1

Various scenario generation methodologies can be used to pro-
vide the scenario set, such as Monte-Carlo sampling, principal
component sampling, moment matching, and bootstrapping. A sur-
vey of methods is provided by Dupacova et al. (2000).

An important aspect of solving stochastic models is the se-
quence of alternating decisions and observations. ISP separately
seeks an optimal solution for each scenario. Hence, ISP assumes
that the decision maker waits until the uncertainty is revealed be-
fore making a decision; i.e., delaying all decisions until the last
possible moment, after all uncertainties have been revealed. The
optimal solution relies upon all of the information about the future
for each scenario; therefore, this approach provides a set of scenario
solutions. Because of this assumption, the approach cannot be
implemented directly and is a passive approach.

The optimal solution (solution for each scenario) of ISP
constructs the objective values set, {25, which contains the optimal
objective value for each scenario, and the optimal solutions set, {2,
which individually holds the optimal decisions for each scenario.
These sets can be analyzed probabilistically and a decision rule is
used to aggregate these solutions to a single outcome for implemen-
tation (Hiew et al. 1989).

In ISP, one must solve multiple deterministic problems (one
deterministic problem for each scenario); hence, the previously de-
scribed EDM constitutes an efficient building block for ISP for
solving multiple deterministic problems. The ISP formulation is

m}nF(xk,R") Vhk=1,... ks
X

Subject to:

g(x* REY=0 Vi=1,...
gi(x* RF) <0 Vj=1,...

mpY k=1, ...,kf
,mj;szl, ...,kf

Eq. (16) is individually solved for each scenario k to construct
the objective value set min« F(x*, R) € Qp V k and the optimal
solution set arg min« F(x*, R¥) € Q, V k.

The formulation Eq. (16) can be solved for predefined criteria of
the optimal objective values set, 2. For example, the expectation,
E[] of Qf, i.e., E[Qp], can be minimized, and all of the decisions
corresponding to each scenario are determined in the same optimi-
zation problem:
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min E[F(x¥, R¥)]
*KV k

Subject to:
g(xX* Ry =0 Vik=1, conky Yi=1,..m,

g RS0 VYhk=1,....ky Vj=1 ....m

The EDM cannot be utilized to solve Eq. (17), because all of
the decisions of all of the scenarios are in the same optimization
problem. However, if both Egs. (16) and (17) are solved with the
same scenarios, the optimal solution obtained from Eq. (17) would
be the same as that obtained from Eq. (16). The minimum expect-
ation is also obtained by individually minimizing each scenario.
Obviously, in this case, one should choose to solve Eq. (16) and
utilize EDM.

In the general case, when a statistical operator other than the
expectation is applied, separately minimizing each scenario will
not yield the same solution. One may consider, for example, the
variance, »_[-] of Qr; i.e., > [Qp]. In this case, the optimal solution
cannot be individually obtained by each scenario; rather, the
following optimization problem has to be solved:

min > [F(x*, R)]

Subject to:

gi(x*, Ry =0 Vik=1,....ky Yi=1....m,
gi(x* RY)<0 Vk=1,....ky Vj=1,....m

(18)

Y

The minimum variance is zero. A zero variance is obtained
when all members of €2 have the same value, i.e., all of the sce-
narios have the same objective value. Because each scenario has its
own decision vector, the model can increase the costs to obtain €25
that has the minimum variance of zero.

A zero variance can be obtained by an infinite number of solu-
tions. For instance, if the same objective value of for all scenarios is
attained, and because the model is able to increase costs, a solution
that increases the objective values of the scenarios by a constant is
also optimal and produces zero variance. Among all optimal solu-
tions that produce zero variance, the most interesting is the solution
that produces zero variance with the smallest expectation; this sol-
ution can be obtained by increasing the cost of all of the scenarios
to match the minimum optimal cost of the most severe scenario. In
this case, E[{);] is equal to the minimum cost of the most severe
scenario and »_[Q] is zero.

Mean-Variance Approach

Mean-Variance by Classical ISP

ISP can be used within a multiobjective approach to produce the
Pareto front between the variance and the expectation; i.e., the
assembly of feasible points from which one cannot move to im-
prove the expectation without worsening (increasing) the value
of the variance. This tradeoff covers the interval from the point
of minimum expectation to the point of zero variance. The expect-
ation associated with variance of zero is equal to the minimum cost
of the most severe scenario, as elaborated previously.

The bounds of the tradeoff interval are obtained from the sol-
ution of Eq. (16), which requires separately solving each scenario.
This is because the mean of the objective values results in the

minimum expectation (E;,, left point on the tradeoff) whereas
the maximum of the objective values results in the severe scenario
cost (Epay. right point on the tradeoff). For each point E; in this
tradeoff interval, the following optimization problem is solved
to obtain one point on the tradeoff curve. In this formulation, the
epsilon-constraint approach for multiobjective optimization is uti-
lized (Miettinen 1999), which converts the multiobjective optimi-
zation problem into a one-dimensional problem by reformulating
some of the objectives as constraints:

min Y [F(x*, RY)]

VK

Subject to:

E[F(x",RY)] < E, (19)
g:(x*,R*) =0 Vk=1,....ky Vi=1,....m
g/(x",Rk)SO Vk=1,....ky Vj=1 ...,m

To obtain a point on the tradeoff curve, one has to solve Eq. (19),
in which all of the decisions corresponding to each scenario are
determined in a single optimization problem, and the EDM cannot
be utilized [Eq. (19) is obtained from Eq. (18) by adding one con-
straint to the first objective, i.e., the minimum expectation].

Implicit Mean-Variance

Deriving the optimal mean-variance tradeoff curve by classical ISP
requires solving the large scale optimization problem [Eq. (19)]
for each point on the tradeoff curve. In Eq. (19), all of the
decisions corresponding to each scenario are determined in the
same optimization problem; solving each scenario individually
would not result in the optimal solution of Eq. (19), as explained
previously.

The IMV approach developed in this study formulates a small
convex external problem to create the mean-variance tradeoff with-
out the need to solve a large-scale problem of the form defined
in Eq. (19).

IMV is assisted by Eq. (16) (where each scenario is solved
individually) to formulate a convex external problem that can be
solved efficiently.

IMV Framework

The IMV framework is comprised of the steps described in the
following.

In Step 1, EDM is utilized to solve Eq. (16) for each scenario,
and the results are stored as follows:

F’,ﬁ:m}}nF(xk,Rk) Vk=1, ...k (20)

In Step 2, the tradeoff covers the interval from the point of mini-
mum expectation to the point with variance of zero. The expect-
ation with zero variance is equal to the minimum cost of the
most severe scenario. Thus, E;, = Z],zf: W F k/ ks (left point) and
Enax = max(FXYK) (right point).

In Step 3, for each E; in the tradeoff interval, the following
problem is solved and one point is obtained on the tradeoff
curve. The values of E; are chosen based on the required resolu-
tion in the tradeoff curve. For example, to obtain a tradeoff
curve with 11 points (i.e., nine new points in addition to E,;, and
Ema), E; can be defined as E; = 0.1(Epa — Emin) X i + Emin
Vi=109:

JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT © ASCE / NOVEMBER/DECEMBER 2013 / 639

J. Water Resour. Plann. Manage., 2013, 139(6): 634-643



Downloaded from ascelibrary.org by Technion Israel Institute Of Technology on 01/06/19. Copyright ASCE. For persona use only; all rights reserved.

E<E;
Fk>Fk vV k

In Eq. (21), the variance is minimized, whereas F¥ (the cost
of each scenario) is the decision variable and the constraints
F* > F¥, V¥ k maintain the feasibility of the original problem.

The size of this optimization problem is smaller than the original
because it includes one variable, F*, for each scenario instead of a
vector of decision variables, x. The optimization problem
[Eqg. (21)] is convex and easy to solve because the objective func-
tion is quadratic and the constraints are linear.

In the external problem, only the tradeoff itself is produced in-
stead of the decision, x* V k. To obtain the decision for a chosen
point on the tradeoff, a goal seeking problem is formulated for that
scenario:

min[F(xk,Rk) —Fiu* Vk

X

Subjectto:
gG(xK RO =0 Vi=1,....m3Vk
g_,-(xk,Rk)SO Vi=1....m;Vk

where F’ fipl = optimal solution of Eq. (21).

Application

IMV versus Classical ISP

A water system with nine demand zones, three aquifers, five desali-
nation plants, and 49 pipes (Fig. 2) is solved in this study; the struc-
ture of this system mimics the central part of the Israeli National
Water System. The year is divided into two seasons that are labeled
“winter” (265 days with low demands and stochastic recharge given
by a scenario tree), and “summer” (100 days with high demands
and zero recharge). The full parameter set appears in the appendix.

The aquifer recharge is considered stochastic, given by a finite
number of scenarios. For water resources management models, it is
often possible to generate a large number of scenarios obtained by
simulation with stochastic models by using historical data and ex-
pert forecasting of more extreme scenarios. However, to demon-
strate the method developed in this study, it is assumed that the
annual aquifer recharge is given by a probability mass function
(PMF) of an independent random variable (no serial correlation).
Hence, the scenarios set for the multiyear recharge vector and its
corresponding probabilities are obtained by using multiplication,
i.e., multiplying the probabilities of the independent random
variable.

The PMF is given in Table 1, where r, is the recharge in year ¢
and R’ is the vector of recharges up to year .

For a three-year horizon, the scenario tree has eight scenarios
(i.e., paths in the tree), where each of the nodes, 2—15, receives
the values of the low recharge if the node index is odd, and those
of the high recharge otherwise.

Table 1. Probability Mass Function of the Recharge

Recharge Low recharge High recharge
Pt T2y 13, (MCM) 60, 10, 110 360, 280, 550
Prob(ra:14‘34,|R;:1“3) 0.5 0.5

In classical ISP, to obtain a point on the tradeoff curve, one
solves Eq. (19), in which the decisions corresponding to all scenar-
ios are determined by one optimization problem. For the WSS in
Fig. 2, for each year, there are eight different decision vectors with
62 variables each. This results in an optimization problem with
8 x 3 x 62 = 1,488 decision variables. Decision vectors are sub-
ject to 60 nonlinear constraints and 124 linear constraints and
bounds. This implies for each point on the tradeoff, an optimization
problem with 2,976 linear and 1,440 nonlinear constraints.

In the application, the model was run for three years, so the
number of decision variables in ISP is not large. In general, the
time horizon should be extended to more years. It is tractable to
solve IMV with an extended horizon, whereas in the classical ISP
it is not, because the optimization problem size increases exponen-
tially with the time periods. For the demonstration in this paper, a
horizon of only three years was chosen so the ISP formulation
could still be solved and compared with the IMV.

IMV formulates an equivalent external optimization problem
that yields the optimal Pareto front without the need to solve the
optimization problem, as described previously. The external prob-
lem [Eq. (21)] is quadratic, having eight decision variables (one
corresponding to each scenario) and nine linear constraints. Thus,
it is much easier to solve than ISP. The steps involved in solving the
IMV are described in the following.

In Step 1, solve Eq. (16) for each scenario. Each scenario cor-
responds to solving an optimization problem with 3 x 62 = 186
decision variables, 3 x 60 = 180 nonlinear constraints, and 3 x
124 = 372 linear constraints and bounds. The optimal objective
value for each scenario is shown in Fig. 3.

The results in Fig. 3 show, for example, that Scenario 4 with
high-low-low recharge costs less than Scenario 5, which is a
low-high-high recharge scenario, although Scenario 5 has, overall,
more water in the aquifers. This is because the high recharge value
in Scenario 4 in the first year is larger than the required demand and
the aquifers can store some water for future years. On the other

1.5 T T T T T u

Total Cost (B$)

Scenario

Fig. 3. Total cost ($billion) for each scenario
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hand, in Scenario 5, the low recharge is in the first year; hence,
despite knowing that the future holds high recharge, more water
from the desalination plant in the first year needs to be used, which
leads to a high cost in the first year, and consequently, to a higher
total cost.

In Step 2, the bounds for the mean-variance tradeoff interval are
obtained from the solutions to the scenarios in Fig. 3. The mean
of the objective values results in the minimum expectation
(Emin = 1.17B$, leftmost point) and the maximum of the objective
values yields the most severe scenario cost (E,, = 1.42B$, right-
most point).

In Step 3, for selected points in the interval 1.17 < E; < 1.42,
the following quadratic optimization problem is solved (with eight
decision variables and nine linear constraints):

1 ky 1 kr 2

min— Fk—— Z Fk
P8 4= 8
Subject to:

k 23)
1 f
gz F*<E,

k=1

The tradeoff curves obtained by IMV [Eq. (23)] and the one
obtained from the classical ISP formulation [Eq. (19)] are com-
pared in Fig. 4.

The tradeoff curves are practically identical, as shown in Fig. 4.
This clearly demonstrates the advantage of IMV over classical ISP
for producing the mean-variance tradeoff.

To obtain a point on the tradeoff by classical ISP, an optimiza-
tion problem with 1,488 decision variables is solved. Hence, to
obtain the tradeoff in Fig. 4, 10 optimization problems, each with
1,488 decision variables, are solved. In IMV eight problems are
solved with 186 decision variables and an external problem with
eight decision variables is solved for each point in the tradeoff.
A particularly noteworthy feature is that the eight optimization
problems in IMV are solved only once and there is no need to solve
these problems for each point in the tradeoff curve.

Furthermore, it is well known that solving a number of subpro-
blems obtained by decomposition is computationally superior to

T T T T T
—e— Original Problem
012} —f&— External Problem ||
0.1 N
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Fig. 4. Validation of the IMV tradeoff curve

solving a large-scale optimization problem (Rockafellar and Wets
1991; Mulvey and Ruszczynski 1995). Hence, solving eight prob-
lems with 186 decision variables each is “cheaper” than solving one
optimization problem with 1,488 decision variables. This decom-
position is critical when one considers the long time horizon and
large number of scenarios. For example, when the time horizon is
11 instead of three, the number of decision variables in ISP is
1,396,736, whereas in IMV, the large-scale optimization problem
is decomposed into 2,048 problems with 682 decision variables
each. Next, an external quadratic problem with only 2,048 variables
is utilized to produce the tradeoff curve. There is no available
optimization solver that is capable to solve a general nonlinear
optimization problem (similar to that described in this paper) with
1,396,736 variables.

The IMV approach is computationally cheaper than classical
ISP in producing the mean-variance tradeoff. IMV can be utilized
to produce the mean-variance tradeoff for problems in which the
ISP formulation is intractable, as demonstrated previously.

Tradeoff Analysis

Because water from the aquifers costs less than from desalination,
the tradeoff between the expected value of the cost and its variabil-
ity (SD) shows that as the cost rises (corresponding to less water
taken from the stochastic sources and more from desalination), the
variability decreases. Fig. 5 compares the first point ($1.17 billion)
with the middle point ($1.28 billion) in the tradeoff. The first year
total water withdrawal from the aquifers corresponding for the
minimum expectation solution (first point on the tradeoff) ranges
between 272-422 mcm, whereas for the middle point, the range is
much lower at 270-335 mcm.

The lower withdrawal from the aquifers in the middle point in-
dicates that the increments in the cost are expressed by less water
withdrawn from the stochastic sources and more from the desali-
nation, so as one moves to the right along the points on the tradeoff
graph, the solutions become more robust as they decrease the reli-
ance on the stochastic sources. The cost variability can be viewed as
a measure for the robustness of the solution.

As indicated earlier, the solution obtained by IMV cannot be
implemented, because the decisions have different optimal values
for different scenarios. For example, in the minimum expectation
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Fig. 5. Aquifer withdrawals (mcm): comparison of different points on
the tradeoff curve
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solution ($1.17 billion), among the eight scenarios, there are three
different values for the first year optimal withdrawal from the aqui-
fers. The first value (420 mcm) corresponds to Scenarios 1—4 that
begin with a high recharge, whereas the remaining scenarios that
start with low recharge are further subdivided according to the
recharge in the second year.

It may be possible to identify an implementable decision that is a
nearly optimal solution for a wide range of possible realizations
(Labadie 2004). Moving to the right along the tradeoff range makes
the solution more implementable, i.e., the values obtained from
different scenarios are closer. Thus, deriving a heuristic decision
rule for implementation would be made easier by moving along
the tradeoff curve.

Discussion

The mean-variance approach can be attributed to the scenario-
based robust optimization suggested by Mulvey et al. (1995). A
robust solution is defined as one that results in low variability.
Robustness (less variability) was projected in the WSS application
as smaller amounts of aquifer withdrawal, resulting in less reliance
on the uncertain water source and greater reliability.

Still, choosing the variance as a measure of robustness will not
always be correct. For example, one may consider a case in which
there is a high levy on extraction from the aquifers. In this case,
seeking a solution with less variability results in more water with-
drawal from the stochastic sources, resulting in less reliability and
less robustness.

The variability is not always a good measure of reliability and
robustness; this may depend on the problem parameters (e.g., ex-
traction levy). In fact, a similar conclusion was proposed by
Watkins and McKinney (1997), in which the variance was used
as measure of risk with two-stage ESP. They state,

“(1) This reduces the variability in cost across scenarios (by
moving all costs towards that of the “max cost” scenario), but
of course is illogical from a decision-making point of view.
(2) Nonetheless, since the first-stage decision remains nearly the
same, this limitation may not be important in this case.”

Although Watkins and McKinney’s conclusion was derived for
ESP, the first statement is still valid for ISP. However, the second
statement will not be valid, because the ISP approach does not

Table 2. Demand Data for the Large WSS

Demand (z) Season 1 (mcm) Season 2 (mcm)
1 116.9 50.1
2 9.1 39
3 53.9 23.1
4 36.4 15.6
5 18.2 7.8
6 90.3 38.7
7 9.1 3.9
8 18.2 7.8
9 198.1 84.9

Table 3. Aquifer Data for the Large WSS

constrain the first stage decision to have the same value as two-
stage ESP. Thus, understanding how the cost variability yields dif-
ferent optimal solutions must be investigated before considering the
variance as a measure of robustness in the ISP approach.

Summary and Conclusions

1. IMV substantially reduces the computational burden when
producing the mean-variance tradeoff and provides almost
the same tradeoff as that obtained from the original optimiza-
tion problem.

2. The IMV approach facilitates the building of the mean-
variance tradeoff within the ISP approach without the need
to solve a large-scale optimization problem. Producing the tra-
deoff Pareto front for a large-scale real system such as the one
considered in this study would be intractable without the uti-
lization of IMV.

3. Many studies have considered the minimum expected cost so-
lution within the ISP approach. Because IMV only requires the
minimum expectation solution for formulating the external
problem, these studies may be extended by the IMV approach
to produce the entire mean-variance tradeoff for a decision ma-
ker (adding a small computation of solving the external convex
optimization problems).

4. The inability of the mean-variance tradeoff to provide deci-
sions for implementation is well documented in the literature;
for example, this is discussed in the study by Labadie (2004)
and the references therein. Still, as demonstrated in the current
example, moving along the tradeoff toward solutions with less
variability produces solutions from which an implementable
decision is easier to derive. This is because of the proximity
of scenario solutions when the variability is small.

5. Robustness (implying less variability; Mulvey et al. 1995) re-
sulted in the WSS application as smaller amounts of aquifer
water were withdrawn, reducing reliance on the uncertain
water source.

6. A conclusion to be drawn from the discussion is that under-
standing the considerations of cost variability solutions in
making decisions is essential. Selecting the variance or SD
as a measure of robustness may lead to decision errors for
cases in which fewer variability requirements artificially/
inefficiently increase the cost of the scenarios to close vicinity,
thereby providing the existence of less variability.

Appendix. Parameter Set Description

The daily pumping hours are 14 and 16 h/day, respectively, for
the first and second seasons; hence, the seasonal pumping hours
are w3=! = 3,710 h/season and w5=2 = 1,440 h/season. The sea-
sonal capacities of the pipes are shown in Fig. 2, based on pipe
diameters, lengths, Hazen-Williams coefficients, topographic dif-
ference. and a hydraulic loss of 4%o. The energy cost for the first
season is KWHCS=! = 0.09 $/kW - h and that for the second
is KWHCS=2 = 0.11 $/kW - h.

Aquifer (a = 1.3) (Omax)S (mcm) (M )S (M) (hpin)S (m) hS (m) C% (mg/LCI7) SA (mcm/m) (CE™)S.Y* (M$/mcm)
1 130 100 1 2 300 65 0.2
2 111 100 1 3 300 37 0.2
3 290 100 17 19 150 25 0.2

“The recharge salinity is 150; recharge in the second season is 0.
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The seasonal demands for the nine demand zones are given
in Table 2. The maximum allowed water salinity in all zones is
set to 220 mg/LCl~. The maximum desalination amounts of
Plants 1 to 5 are (Qmax)g = [30, 100, 100, 200, 100] mcm, respec-
tively, whereas no desalination plants have requirements for a min-
imal supply, i.e., (Qpin)5 = 0 mem. The removal ratio of the plants
is between (RR0x)5 = 99.95% and (RR )35 = 99.75%, yielding
a product salinity in the range of 13.5-67.5 mg/L Cl~. The desali-
nation cost parameters are ¢y = 0.7 M$/mcm and 3, = —10°
(dimensionless), implying constant desalination cost per mcm in
all plants. Data for the three aquifers are given in Table 3. The maxi-
mum allowed salinity in all aquifers is set to 350 mg/LCI".
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