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Abstract.

Optimal design of a water distribution network is formulated as a two-stage

decomposition model. The master (outer) problem is nonsmooth and nonconvex, while
the inner problem is linear. A semi-infinite linear dual problem is presented, and an
equivalent finite linear problem is developed. The overall design problem is solved
globally by a branch and bound algorithm, using nonsmooth optimization and duality
theory. The algorithm stops with a solution and a global bound, such that the
difference between this bound and the true global optimum is within a prescribed
tolerance. The algorithm has been programmed and applied to a number of examples
from the literature. The results demonstrate its superiority over previous methods.

Introduction

A water distribution network is a system of hydraulic
elements (pipes, pumps, valves, reservoirs) which are con-
nected together to convey given quantities of water, within
prescribed pressures, from sources to consumers.

Such a system can be described as a graph in which the
nodes represent the sources, consumption points, and con-
trol elements, and the links represent the connecting pipes
(Figure 1).

The overall planning process of water distribution net-
works consists of three phases: layout, design, and opera-
tion. Although each phase is dependent on the others, they
can be formulated and solved as separate problems. The
complete planning process is then carried out by iterating on
these three phases. In this work we address the design
phase, which has been investigated extensively for more
than three decades by many researchers. Many different
problem formulations and solution methods have been pro-
posed and tested. Still, the following fact seems to be
generally accepted: With existing optimization tools, it is not
possible to solve the general optimal design problem with its
full complexity [see Walski, 1987].

The design problem is difficult, mainly due to the following
facts: (1) The problem contains discrete elements, for exam-
ple, pumps, valves, and pipe segments. (2) Any formulation
of the problem that is realistic enough to be useful is
nonlinear and nonconvex. (3) Even a moderate size problem
is of a rather high dimension.

For simplicity of presentation we consider here simple
networks, which do not contain pumps and/or reservoirs.
Note, however, that with an appropriate formulation, net-
works with all these elements have also been handled by the
method presented in this work [Eiger, 1991]. Consider a
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looped water distribution network with a given topology and
topography. Assume that one or more water sources in the
network can supply water at a known (fixed) head. Assume,
also, that at a given set of nodes there are known water
demands, which must be supplied within a prescribed range
of pressures.

The objective is to find the lowest cost network which can
supply the demands under the given restrictions. Following
the original formulation by Alperovits and Shamir [1977],
which has been adopted in subsequent work [Quindry et al.,
1981; Saphir, 1983; Fujiwara et al., 1987; Fujiwara and
Khang, 1990] and restated in a more concise and complete
form by Kessler and Shamir [1989], the decision variables
are (1) lengths of all pipe segments in the network, making
each link of one or more fixed diameter segments, where
pipe diameters are taken from a given discrete set, and (2)
flows (rates and directions) in all network links.

We use the same formulation as that of Kessler and
Shamir [1989], but our solution method is entirely different.
We set out to resolve the following difficulties involved with
the design problem: (1) Because of the nonconvexity, one
cannot be satisfied with a local solution and some global
search is required. (2) A tight lower bound must be found in
order to evaluate the quality of the solution found. (3) Since
the optimization is nonsmooth, we must use a nonsmooth
algorithm that can handle minimization of nonconvex func-
tions.

Nonsmoothness is handled by the bundle-trust (BT) algo-
rithm of Zowe and Schramm [Schramm, 1989]. BT is an
algorithm which belongs to the category of bundle methods
(see the appendix). For a discussion of nonsmooth optimi-
zation techniques, see Shor [1985], Kiwiel [1985], and Zowe
[1986]. In order to obtain a bound on the objective value, we
use duality theory. A dual problem, paired with the primal
original problem, is found using ordinary Lagrangian duality.
The dual is solved to give the required bound. The dual
problem is a semi-infinite linear problem, that is, it has a
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Hi=120m

Elevation
Ez =150 m

All pipes are
1000 m long

Es=165m

Figure 1. The two-loop network [Alperovits and Shamir,

19771.

linear objective function and infinitely many linear con-
straints and is not easy to solve effectively. We take advan-
tage of the specific structure of the problem to show that the
dual is equivalent to a finite linear problem, which can be
solved effectively by any standard linear programming code.

The solution algorithm is a combination of a primal
process (used to improve local solutions) and a dual process
(used to tighten the bound). The two processes are combined
in a branch and bound type algorithm. The algorithm stops
when the gap between the best found value and the global
lower bound is within a stated tolerance. Of course, the
running time is dependent on that tolerance.

Review of Previous Research

Numerous solution methods have been developed to solve
the network optimization problem, using different formula-
tions. They range from rules of thumb, based on engineering
experience and insight, through heuristics used for specific
network types, to optimization by mathematical program-
ming techniques. The last category includes linear, nonlin-
ear, dynamic and mixed integer programming. Some of
these, which lead up to the approach presented here, are
reviewed briefly.

The linear programming gradient (LPG) method [Alpero-
vits and Shamir, 1977] was the beginning of a new approach,
in which the optimization problem is solved (locally) by
iterating between two stages. In the first stage the flows are
given, and the optimal pipe segments and node pressures are
found by solving a linear problem. In the second stage the
flows are modified, using an approximation of the ‘‘gradi-
ent”’ of the objective function. Alperovits and Shamir [1977]
and subsequent work based on the same formulation {Quin-
dry et al., 1981; Saphir, 1983; Fujiwara et al., 1987; Kessler
and Shamir, 1989; Fujiwara and Khang, 1990] ignored the
fact that the gradient does not always exist or considered this
fact to be insignificant. In most cases a suboptimal yet
feasible solution could be found. LPG can be applied for
looped networks which include pumps and/or reservoirs.

Kessler and Shamir [1989] used a graph theory formula-
tion, adding insight to the problem and reformulating the
model in matrix notations. Fujiwara and Khang [1990] made
some effort toward a global search, but no bound was
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produced to evaluate the gap between the solution and the
global optimal value. (Readers interested in previous works
are referred to Walski [1985], Kessler and Shamir [1989],
Goulter et al. [1986], Charles Howard and Associates, Ltd.
[1986], Karmeli et al. [1968], Kessler [1988], Morgan and
Goulter [1985], Quindry et al. [1979], and Rowell and Barnes
[1982].)

Problem Formulation and Theoretical Notes
Problem Formulation

Consider the design problem presented in the introduc-
tion. To meet space limitations, we present here the model
for networks of pipes only, with no pumps, boosters, or
valves. The method has been developed and tested for the
full problem [Eiger, 1991]. Following Kessler and Shamir
[1989], we formulate the problem as follows:

min ¢ Lx: Alg)x=b
x=0 N

qc€Q
where

g vector of flows in network links;

Q set of all flow vectors which maintain continuity of
flow at all network nodes;

x vector of lengths of all pipe segments (allowing

each link to be made of segments of all possible

diameters);

matrix which is dependent on ¢ and represents the

constraints which result from physical laws of

energy conservation and length restrictions;

¢ vector of pipe segment unit length costs;

b right-hand side vector.

A full, detailed description of the model is given by
Kessler and Shamir [1989]. Since we are using the same
model we shall not repeat it here, except for those parts
which are needed for completeness and clarity of presenta-
tion.

The constraints A(g)x =< b are of three types:

Alg)x=1b 2
AXq)x = Ah, €)
Alx=gq “4)

The number of equations in (2) is equal to the number of
basic loops in the network, where a basic loop set is a
minimal (not necessarily unique) set of loops, such that all
other loops can be represented as a linear combination of
them [Kessler and Shamir, 1989]. The ith constraint in (2)
states that the hydraulic energy loss on the ith basic loop is
equal to the head difference between its ends; b = 0 for
closed loops. It can be shown [Kessler and Shamir, 1989]
that imposing such a constraint on all basic loops ensures
this condition for any other loop. The block (3) has one
inequality for each path, over which the allowed loss of
hydraulic energy, (Ah,),, is restricted. The block (4) has one
equation for each link in the network. The ith equation states
that the sum of lengths of the pipe segments that make up the
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ith link must be equal to the given length of that link a;. The
total number of constraints in (2), (3), and (4) is denoted r.

The specific form of the terms (2) and (3) is obtained using
the Hazen-Williams equation, which relates the head loss
over a unit length of pipe to flow and pipe properties. Let d
be the diameter of the pipe and g the flow. Denote by J(d, q)
the head loss over a unit length of that pipe, in the direction
of the flow, given by the Hazen-Williams equation,

J(d, q) — a(chw—l.SSZ)d—4.87(q1.852) (5)

where «a is a coefficient which depends on the units used and
chw is the Hazen-Williams coefficient, which is a measure of
pipe smoothness.

Let R be the directed incidence matrix of links on nodes.
Assume that a direction has been chosen arbitrarily for each
link.

R;=1 if link j is directed toward node i

i

R;=-1 if link j is directed away from node i (6)

R;=0 if link j is not adjacent to node i

Let w be a vector such that its ith component w; is the
demand for water at node i, and define the set of flows in all
links of the network which maintain continuity at nodes:

0 ={q: Rqg=w} )

Q is an unbounded set. However, we shall use a bounded

subset, contained in @, with the following box definition:
Q={q: Rg=w, q""=gq;=q™* Vi} ®)
where g™ and ¢™** are parameters whose values are

determined heuristically. We shall return to this point later.

The model (1)-(4) is smooth (although nonconvex), but
because of its high dimension, it cannot be conveniently
solved. Instead, we use the following formulation:

min ¢(g) = min ¢'x: A(g)x<b )
geQ x=0

The inner problem

min ¢ Tx: Alg)x=b
x=0

is linear in x for any ¢ € Q, and can be solved by a linear
programming code. The objective function in the master
(outer) problem in (9) is recognized as an optimal value
function. It follows that the outer problem can be nonsmooth
[Clarke, 1983]. Nonconvexity of both models (1)—(4) and (9)
follows from the fact that the left-hand side functions in
blocks (2) and (3) are nonconvex in (x, g) space.

Dual Formulation

By solving either (1)-(4) or (9) we can find, at best, a local
optimal solution, which (due to nonconvexity) is usually
different from the global optimum and depends on the
starting point ¢°. This calls for a global search, producing an
improving sequence of local solutions. In order to evaluate
the quality of a current solution and to have a stopping
criterion, we must produce a global lower bound on the
objective value. Such a bound can be computed, according
to duality theory, by solving a dual problem, paired with the
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primal, original problem. To be useful, the bound should be
tight.

By standard Lagrangian duality we get the following dual
problem paired with the full original problem (1)-(4):

max — bTy: A(q)Ty +c=0 VgeEQ (10)

yEY

where y is the vector of Lagrange multipliers and Y is a set
of vectors y, defined as follows: For i such that the ith
constraint in (2)—(4) is an equation, y; is not restricted in
sign; for i such that the ith constraint in (1)-(4) is an
inequality, y; = 0.

Problem (10) is a semi-infinite linear problem, that is, it has
a linear objective function and infinitely many linear con-
straints (one finite block of constraints for each g in the
infinite set Q). At first glance, it is not clear how (10) can be
solved effectively. However, A(g) has a special structure,
which gives rise to some very useful mathematical proper-
ties.

Solving the Dual Problem

The statement of theorem 1 is as follows: The rows A;(q)
of A(q) in (10) are continuous functions of ¢, and Q is a box
given by (8). The infinite linear problem (10) is therefore
equivalent to the following finite-constrained linear problem:

max—b"y: A{g) Ty +c;=0 j=1,---,n;k=1,2 (11
yeEY
where

ql =qmin q2=qmax

The proof is as follows: The left-hand side of the jth
constraint in (11) has the following functional form:

v(q) = k; sign (q,)|q;|"**wiy) + ¢; (12)

where k; > 0, w;(y) is a linear function of y which does not
depend on the flow g, and g; is a component of the vector g.
It is easy to show that v,(q) is a monotonic function of g;
(although the direction of monotonicity may not be the same
for all constraints). As g; is bounded by qjmi“ =g; = q™
the minimum of the monotonic function v;(g) is at one of the
bounds. It is therefore sufficient to have in (11) the con-
straints formulated at the bounds only, instead of the infinite
set in (10).

Reducing the Problem Dimension

The dimension of the outer problem in (9) can be reduced
significantly by using an affine transformation; which leads
to a change of variables. Let L be the directed incidence
matrix of links on a set of basic loops. Assume that each
basic loop in the set has been assigned an arbitrary but fixed
positive direction, and assume the same for each link. A link
is assumed to be positively (negatively) directed in a loop if
it belongs to the loop and their mutual positive directions
agree (do not agree). The matrix L is defined as follows:

L;=1 if link j belongs to loop i, positively directed

L —1 if link j belongs to loop i, negatively

directed

=

(13)

L; =0 iflink j does not belong to loop i
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Let ¢ be the cardinality of the set of links (also the
dimension of g), and u be the cardinality of a basic loop set.
Consider the definition of Q in the form (7), i.e., Q = {q:
Rg = w}. From linear algebra theory, any vector ¢ € Q can
be written uniquely as a sum of a solution of the linear
equation system Rg = w (say ¢°) and some vector from the
null space of the matrix R (say §). It is easy to verify that the
null space of R is given by

GENull Reog=LTs  for some § ER. (14)
We have
°€0=>q(8)=q¢"+LTs€Q V8 €R". (15)

It follows that the next set equality is valid: If and only if ¢°
€ R¢ and Rg® = w, then

Q= Q' ={q(8) € R*: q(5)

=q%+ L7s, taking all 5 € RY} (16)

Note that a change of § can be interpreted as a simultaneous
change in flow, independently for each basic loop. Changing
the ith component of & is equivalent to decreasing or
increasing (depending on the direction of change) the flows
in all links which belong to the ith basic loop by an equal
amount. This technique was first proposed by Alperovits and
Shamir [1977].

The above results enable work in the dimension «, which
is typically much smaller than e. In fact, a box A is used as
the solution space instead of a box Q.

Calculation of Subgradients

To use the BT algorithm, one has to supply one (arbitrary)
subgradient of the objective function at each iteration. A
discussion of the theoretical aspects of calculating subgradi-
ents, with specific reference to the model (9), is given by
Ben-Tal et al. [1994]. Here we cite only the essential results.

The nondifferentiable problem we solve is

inf ¢(8)
sER"

(17)

where & is the vector of discharge changes in the u basic
loops and ¢(8) is the optimal value of the internal problem

inf CTx (18)
subject to
LIJ(g°+ LT8)x =0 (19)
PII(q° + L78)x = Ah, (20)
Ix=a 21
x=0 (22)

where [ is a matrix which represents the arrangement of the
pipe segments within the links, J is a vector of the hydraulic
gradients in the pipes, given by (5), and P is the path matrix
which represents the arrangement of the links within the
paths from a reference node. Equations (19), (20), and (21)
are the specific forms of (2), (3), and (4), respectively.
Suppose we have solved the inner problem for some §°,
and we have the primal solution x4 and the corresponding
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dual solution. Ben-Tal et al. [1992, equation (4.6)] show that
a subgradient ¢ € 3¢(8°) can be calculated from:

9=, modVs[LII(g® + LT8%]} x,

i€u
>

i€ 1(8% x¢)

AodVslPTT (g% + LT69]} %y (23)

where

x¢ optimal solution of the inner problem;
o optimal dual subvector associated with (19);
Ao optimal dual subvector associated with (20);
Vs derivative with respect to §;

1(8°, Xo) active subset of constraints in (20).

The mathematical conditions under which (23) holds are
specified by Ben-Tal et al. [1992]. It is, however, not
practical to check at every iteration whether they are satis-
fied. Since there is no known parallel formula for other
situations, when the conditions are not mét, the best strategy
anyhow is to use (23). If the subgradient given by it is not
correct at some point during the iterations (which could
happen, but infrequently), then the resulting local direction
may not be the best, and this will be compensated for by
subsequent good directions at (most) points where the con-
ditions are met. The use of (23) has proven itself in practice
[Eiger, 1991].

Branch and Bound Type Algorithm
Reducing the Duality Gap

From standard duality theory, it is known that a bound on
the primal optimal value is obtained by solving an appropri-
ate dual problem. When the primal is not convex, as in our
case, there will usually be a gap between the primal and dual
optimal values, called the duality gap, and it can be too large
to be helpful. We next show how a reduction of the duality
gap can be obtained. ‘

We state a theoretical result on which the method is based.
Rigorous treatment and proofs are given by Ben-Tal et al.
[1994], where more general results were obtained.

Recall that the variable g of the outer problem in (9) is
allowed to vary inside the box Q (8). The dependency of the
optimal value of (9) on Q is emphasized in the following
notation:

Denote by P, the primal problem (9) and by D its dual
(10). Let g* be a point in the optimal solution set of (9).
Define the following function (using notation of the previous
section):

d(A) = sup (—by: A(@)Ty +c=0,
yEY

Vag:llg—q*ll=r, A=0) (29

With the above notations we state the following results: We
first state theorem 2:

d()A) is continuous at A =0 (25)

This result follows from lemmas 2-5 given by Ben-Tal et al.
[1994] and the note following the proof of lemma 5 there.

The statement of theorem 3 is as follows: Let {Q;, i € I}
be a partition of Q. Then
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min Py = min (max DQ,-) =max Dy (26)

iel
and if d(A) is continuous at A = 0 and A ;(q) is a continuous
function on Q for all i, j, then there exists a partition (Q;)
with radius A > 0, such that for any ¢ > 0 the duality gap min
(Pg) — min; (max (DQf)) is smaller than e.
The proof of (26) is as follows. By weak duality for the pair
(PQ') and (DQ’):

min (P ) = min {min (PQ,-)} = min {max (DQ'_)} 27

i€l iel

Hence the left inequality in (26) holds. Let L(q, x, y) be the
Lagrangian function of (1). Then

max (DQ_) = max h{y) (28)
A
where
h(y)= min L(q, x, y)
qE€ Qix
However, for every y,
h(y)= min L(q, x, y) (29)
qE€Q,x
because Q; C @. Hence for every i € 1
max (DQ;) = max min L(g, x, y) = max (D) (30)

y=0g€Q,x

which proves the right inequality in (26). For proof of the
second part of theorem 3, see theorem 2 of Ben-Tal et al.
[1994].

Algorithm

A branch and bound algorithm was developed to solve the
design problem globally. In order to reduce computation
time, we use the following heuristics:

Smallest reasonable box. While from a mathematical
point of view, the set Q (or A) is unbounded, from practical
considerations it is desirable to restrict it to be as small as
possible. This will help to keep down the computation time
for the global search. Thus we seek the smallest region (A°)
in which the vector g should be allowed to change around an
initial ¢°, such that we can still be sure that the optimal
vector was not excluded. No analytic method was found for
this, so the following heuristic rule is used: The bounds on
the flow changes in each loop are taken as those minimum
(negative) and maximum values which just bring the largest
flow in a pipe belonging to the loop to reach zero. This
prevents a situation wherein all flows in a loop are in the
same direction, which, in the absence of a pump, is physi-
cally infeasible.

Need for outer iterations. The time to solve a problem is
strongly dependent on the size of the box A? and the target
gap. The overall efficiency is improved greatly by the fol-
lowing strategy. Start with a rather large A and large target
relative gap (say 10%). After solving the problem with these
parameters, repeat the process (next outer iteration) after
reducing the box and the target relative gap (increased
precision). The best way to change the parameters must be
found by trial and observation of the running times.

Starting point ¢°. The starting point can be taken from
previous trials or just by engineering considerations. Al-
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though the algorithm is not very sensitive to the starting
point, it is clearly better to have it as close as possible to the
optimal solution. For the chosen ¢°, A? is calculated. By
definition, 8 = 0 is the image of ¢° in the transformed space.
Thus, as a rule, 8 is taken to be equal to 0.

The algorithm is detailed next in a symbolic form, using
the following notation:

q° best known flow vector (or any other feasible

flow);
e required relative gap (percent) between primal
and dual optimal solutions;
m number of parts in each partition;
cmax length of branch, used as a criterion for starting
a new local search;
f* optimal value of the primal problem after the
latest local search;
6* optimal solution of the primal problem after the
latest local search;
bounded subset of the solution space, chosen
such that the global optimal solution is
included;
best global lower bound;
best primal objective value;
best optimal solution (g*);
minimal relative gap (percent) found.

A%q%)

Bound

fmin

Solution

Gap

The conceptual algorithm proceeds as follows: The input

consists of network data, q,, &, m, and cmax. Step 0
(initialization) is as follows:

€=0,c=0,8=0,A=A%"
Af=A
local search on A with 8 as a starting point
f=r* 8=28*%
Step 1 (main) is as follows:
partition A* into m parts Aie, i=1,,m
solve dual D on each part Af
record dual optimal solutions gf ,i=1," . m

find i*" € argmin gf.
i

Step 2 (check branch or bound) is as follows:
if 100((f— gfp)/f) =< g then (bound) go to 3

else (branch) go to 4.
Step 3 (bound) is as follows:

c=0

if € =0 then (end) go to 5

else: g5t =gl
t=¢-1

find i*" € argmin gf
i

goto2

endelse.
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Table 1. Two-Loop Network: Solutions for Different Gap Sizes
Gap, Time, tloc,

Run Jfmin B % D @ min %
1 402,352.06 400,743.17 0.40 204 1.00 0.90 40.46
2 404,676.45 400,743.17 0.97 162 1.00 0.62 32.71
3 404,676.45 398,618.83 1.50 144 1.00 0.58 35.29
4 408,889.23 400,743.17 1.99 120 1.00 0.46 32.70
5 408,889.23 399,052.19 2.41 105 1.00 0.38 27.73
6 408,889.23 397,584.00 2.76 93 1.00 0.34 29.68
7 408,889.23 395,144.65 3.36 84 1.00 0.32 32.82
8 408,889.23 392,828.60 3.93 78 1.00 0.31 34.45
9 408,889.23 388,661.18 4.95 75 1.00 0.31 36.72

Here, tloc denotes the percent of time spent in local search out of the total running time.

Step 4 (branch) is as follows:

c=c+1
£=¢+1
Ae=Aie¢_p

if ¢ > cmax then:
& = center point of A¢
local search with 3 as a starting point.
if f* < f then:
f=gr, 8=5*
c=90.
endif
goto 1.
Step S (end) is as follows:
Bound = gﬁ.
fmin = f
Gap = 100 ((f — Bound)/ f)
Solution = ¢(8)

print output.

f min D
410000 ———— T 240
f min
1220
408000 | 1200
{180
406000 |
1160
140
404000 [
1120
402000 1100
D 180
400000 R 60

Relative Gap , %

Figure 2. Optimal cost ( Jmin) and number of times the
dual problem is solved (D) versus the allowed relative gap
(percent) for the two-loop network.

The main properties of the algorithm are as follows: (1)
For all € > 0, we have a ‘“‘bound’’ condition after a finite
number of ‘‘branch” steps. (2) If at some iteration [(f —
Jmin)/ fmin] X 100 > Gap, then at some later iteration we
shall necessarily have f* < f after the local search. (3) From
properties 1 and 2 it follows that the algorithm must stop. (4)
The algorithm stops if and only if Gap =< &, except when the
specified maximum number of iterations or the maximum
running time has been exceeded.

Numerical Results

The method was tested on four example problems, which
were taken from the literature. Due to space limitation, we
have presented in this paper the method for networks of
pipes only and, therefore, detailed results will be presented
for only two examples. They are the two-loop network
[Alperovits and Shamir, 1977; Kessler and Shamir, 1989]
and the Hanoi network [Fujiwara and Khang, 1990].

Less detailed results are given for two additional net-
works, which include pumps and reservoirs, and more than
a single loading condition. Extension of the methodology to
cover these additions is detailed by Eiger [1991]. The two
additional examples are the complex two-loop network
[Alperovits and Shamir, 1977; Kessler and Shamir, 1989]
and the real network [Alperovits and Shamir, 1977].

The complex two-loop network is similar to the two-loop
network except that it is formulated and solved for two
different loading conditions simultaneously. In addition, one
pump and one reservoir are included. The real network has

Table 2. Optimal Solution of the Two-Loop Network

Initial Flow Optimal Flow
0 * Diameter, Length,
Link m3/h m>/h inches m

1 1120.00 1120.00 18.00 1000.00
2 —-30.00 373.34 10.00 761.98
12.00 238.02

3 1050.50 646.66 16.00 1000.00
4 505.50 0.97 1.00 1000.00
5 425.00 525.69 14.00 371.14
16.00 628.86

6 100.00 200.69 8.00 10.95
10.00 989.05

7 —130.50 273.34 8.00 78.14
10.00 921.86

8 —100.00 0.69 1.00 1000.00

1 inch equals 2.54 cm.
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Source

Figure 3. The Hanoi network [Fujiwara and Khang, 1990].

a much higher dimension, with two pumps and a reservoir.
The overall results for these last two networks will be cited
below.

All runs were made on a SUN Sparc 4 workstation in
FORTRAN. For the solution of the linear problems we used
a software package by CPLEX Optimization, Inc., 1991],
which was found to be most efficient. BT [Schramm, 1989]
was used as the nonsmooth routine.

The results are presented in Tables 1-5, using the follow-
ing additional notation:

actual gap at the end of the run (or the outer
iteration), equal to (fmin — B)/ fmin (100);
total number of times the dual problem was
solved, to the end of the run (or the outer
iteration);

total running time in minutes;

percent of time spent in local search out of the
total running time.

gap%

D

time
tloc%

Two-Loop Network

The network is shown in Figure 1. The data are those of
Alperovits and Shamir [1977]. Because the network is small
and simple it can be solved in a very short time and there is
no need for outer iterations.

Table 3. Hanoi Network: Solution for Different Gap Sizes
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The problem dimensions are as follows: x, the maximal
number of pipe segments, is 88; ¢, the number of links, is 8;
u, the number of basic loops, is 2; and the number of
constraints in the primal problem is 16.

Table 1 contains the results of a sequence of runs. In the
first run the target relative gap was set at 0.5%, and was then
increased by 0.5% in each run, to 5% in run 9. Each solution
required only one outer iteration.

Figure 2 shows the optimal cost ( finin) and the number of
iterations (D) versus gap (percent). The behavior of D is
typical, as was verified by other examples: a sharp drop
which then tapers off. Note that solving dual problems
consumes well over half of the running time. The solution
appears in Table 2. Link numbers are according to Figure 1.
Negative flow means that the flow is opposite to the positive
direction. The same solution was found (with negligible
differences) whenever the target gap was small enough
(=0.5%).

The best value of the objective function, 402,352.06, was
found with the smallest gap. The bound is 400,743.17, 1609
lower, which is a difference of only 0.4%. The best value
previously obtained has been 415,271, by Fujiwara and
Khang [1990] (see also Kessler and Shamir [1989, p. 1476]).

Hanoi Network

The network is shown in Figure 3. The data are given by
Fujiwara and Khang [1990]. The problem dimensions are as
follows: x, the maximal number of pipe segments, is 204; ¢,
the number of links, is 34; u, the number of basic loops, is 3;
and the number of constraints in the primal problem is 68.
Many runs were made, with the number of the outer itera-
tions ranging from 1 to 16. A solution with target gap less
than 0.5% was obtained in about 117 CPU minutes on a SUN
4 workstation.

Table 3 contains the results of a sequence of runs: each
with just one outer iteration. In the first run the target
relative gap was 0.5%, and it was then increased by 0.5% in
each successive run. Figure 4 shows the optimal cost ( fmin)
and the number of iterations (D) versus gap (percent). The
solution appears in Table 4. The same solution was found
(with negligible differences) whenever the target gap was
small enough (<0.5%).

The best value found was 6,026,660.26, only 0.4% higher
than the bound. Fujiwara and Khang [1990] report a value of
5,562,000. We have found that their solution is not feasible,
because not all minimum head requirements are met.

Complex Two-Loop Network
This is an expansion of the two-loop network [Alperovits
and Shamir, 1977, Kessler and Shamir, 1989]. It has a

Gap, Time, tloc,
Run fmin B % D a min %

1 6,026,660.26 6,001,973.67 0.41 7854 1.00 117.02 11.09
2 6,026,661.75 5,965,154.14 1.02 3999 1.00 59.82 11.82
3 6,026,804.90 5,934,273.46 1.54 2697 1.00 41.10 12.85
4 6,031,028.66 5,908,630.69 2.03 1995 1.00 30.22 13.32
5 6,036,715.74 5,883,283.93 2.54 1608 1.00 24.70 14.13
6 6,027,830.17 5,846,480.53 3.01 1089 1.00 17.70 19.87
7 6,032,858.78 5,816,703.47 3.58 843 1.00 14.43 24.11
8 6,032,858.78 5,789,435.93 4.03 687 1.00 12.44 28.24
9 6,026,916.93 5,724,806.53 5.01 612 1.00 10.84 27.08
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Table 4. Optimal Solution of the Hanoi Network

Initial Flow Optimal Flow

q’, q*, Diameter, Length,

Link m3/h m3/h inches m
1 19940.00 19940.00 40.00 100.00
2 19050.00 19050.00 40.00 1350.00
3 8705.00 7740.00 40.00 900.00
4 8575.00 7610.68 40.00 1150.00
5 7850.00 6885.68 40.00 1450.00
6 6845.00 5880.68 40.00 450.00
7 5495.00 4530.68 40.00 850.00
8 4945.00 3980.68 40.00 850.00
9 4420.00 3455.68 30.00 641.17
40.00 158.83
10 2000.00 2000.00 30.00 950.00
11 1500.00 1500.00 24.00 1198.96
30.00 1.04
12 940.00 940.00 24.00 3500.00
13 1895.00 930.68 16.00 800.00
14 1280.00 315.68 12.00 500.00
15 1000.00 35.68 12.00 550.00
16 1105.00 284.08 12.00 2730.00
17 1970.00 1149.08 16.00 634.13
20.00 1115.87
18 3315.00 2494.00 24.00 800.00
19 3375.00 2554.08 24.00 400.00
20 6120.00 7905.25 40.00 2200.00
21 1415.00 1415.00 16.00 514.12
20.00 985.88
22 485.00 485.00 12.00 500.00
23 3430.00 5215.25 40.00 2650.00
24 1320.00 3573.06 30.00 1230.00
25 500.00 2753.00 30.00 1300.00
26 525.00 -1260.25 20.00 850.00
27 1425.00 —360.25 12.00 7.28
16.00 292.72
28 1795.00 9.75 12.00 750.00
29 1065.00 597.19 16.00 1500.00
30 775.00 307.19 12.00 2000.00
31 415.00 —52.81 12.00 1600.00
32 55.00 —412.81 16.00 150.00
33 50.00 517.81 16.00 632.92
20.00 227.08
34 855.00 1322.81 24.00 950.00

1 inch equals 2.54 cm.

reservoir attached to node 7 via a pipe and a pump on pipe 1.
It operates under two loading conditions, one representing
daytime, when the demands are high and both reservoirs are
emptying, and the other when there are no demands (night-
time) and the reservoir at node 1 provides through the pump
the water required to fill the reservoir connected to node 7.
All data are from Alperovits and Shamir [1977].
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Figure 4. Optimal cost (fmin) and number of times the
dual problem is solved (D) versus the aliowed relative gap
(percent) for the Hanoi network.

Table S gives the values of the objective function obtained
in 10 runs, in which the relative gap was changed between
10% and 0.3%. The optimal cost varies in these runs between
291,079.34 and 295,622.32 (a difference of only 1.53%) while
the number of iterations increases substantially with the
decrease in the gap required.

The dimensions of the problem are as follows: x, the maxi-
mal number of pipe segments, is 154; g, the number of links, is
22; u, the number of basic loops, is 4; and the number of
constraints in the primal problem is 110. The best cost obtained
by Alperovits and Shamir [1977, p. 895] was 299,851.

Real Network

The real network is taken from Alperovits and Shamir
[1977]. It has 52 nodes, 68 pipes, two pumps, and one
reservoir. It was solved for one loading condition (condition
1 of Alperovits and Shamir [1977]). The number of basic
loops is 15, and there are 14 minimum head constraints. All
data are as given by Alperovits and Shamir [1977], except
that only one loading is considered. The dimensions of the
problem are as follows: x, the maximal number of pipe
segments, is 340; ¢, the number of links, is 68; u, the number
of basic loops, is 15; and the number of constraints in the
primal problem is 267. The best optimal solution was ob-
tained with the following parameters: initial gap, 25%; factor
for reduction of gap, 0.8; local criterion for branching, 8; and

Table 5. Complex Two-Loop Network: Solutions for Different Gap Sizes

Gap, Time, tloc,
Run fmin B % D « min %

1 295,622.32 264,663.79 10.47 93 1.00 1.49 46.54
2 295,622.32 271,370.91 8.20 138 0.49 1.96 35.53
3 295,622.32 277,077.00 6.27 177 0.43 2.35 29.63
4 295,622.32 281,300.93 4.84 243 0.38 3.01 23.15
5 295,622.32 284,321.59 3.82 372 0.33 4.25 16.36
6 295,622.32 286,668.61 3.03 621 0.29 6.63 10.49
7 295,622.32 288,476.16 2.42 939 0.26 9.68 7.19
8 295,622.32 289,927.27 1.93 1476 0.23 14.68 4,74
9 291,079.34 289,927.27 0.40 1683 0.21 16.91 5.39
10 291,079.34 290,215.41 0.30 1764 0.09 17.62 5.17
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stopping gap, 1.7%. This optimal cost is 721,320.57, obtained
after 24,972 iterations, with a relative gap of 5.59%.

Summary

The method presented has performed well for the example
problems, and we feel that it may have some potential to
become a practical design tool. Of course, a lot of work
should be done in order to adapt it to more realistic net-
works. Important realistic aspects which were not treated in
this work are, for example, water quality constraints and
reliability. Adding such aspects will, no doubt, complicate
this already difficult problem.

Appendix: Nonsmooth Optimization

If one or more functions in an optimization problem are not
continuously differentiable, we have to use a nonsmooth
method to solve it. For most of the nonsmooth methods, the
nondifferentiable function must be locally Lipschitz [Zowe,
1986]. The local Lipschitz continuity implies that the functions
are differentiable almost everywhere. There are several differ-
ences between the nondifferentiable and differentiable cases.

1. Since the gradient of a nonsmooth function does not
exist everywhere, we have to replace the gradient by the
generalized gradient [Clarke, 1983]:

af(x) = conv {g| 3 a sequence (x;);c y > lim x;

i—

= x, f differentiable at x;, i € N, and lim VF(x;) = g},

(AD

which is a well-defined, nonempty, convex, and compact
subset of R". If f is convex, the generalized gradient
coincides with the subdifferential:

af(x) ={g ERN|f(y) = f(x) +{g, y - x)Vy € R}
(A2)

2. A necessary optimality condition for an unconstrained
minimum of fis O € 3f(x). This condition is also sufficient
for convex f. For the constrained case, one can formulate
rules similar to the Karush-Kuhn-Tucker rules.

3. Classical gradient methods can fail for nonsmooth
problems. Bundle methods have been developed for solution
of nonsmooth optimization problems. Their main features
are as follows: (1) Subgradients g; evaluated in preceding
iterations at points y; in the bundle are stored. (2) This
information is weighed. For convex f one investigates the
linearization errors,

alxp, v): = ap = fx) —[Ay) +{(g;, xp — y)]

g:€0fly) (A3
at the current iterate x;, which gives a measure of the
distance of g; from df(x;). (3) Search direction d; = —z,; is

computed, where z; is a convex combination of the subgra-
dients in the bundle. The larger the weight af of a subgra-
dient g,, the less should be its influence on d;. (4) Line
search is performed along d; to compute the next iterate and
enrich the subgradient information; two different kinds of
steps are possible.
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Serious step
xk+1:=yk+1:=xk+tdk, >0

if a sufficient decrease of the function value is achieved at
Xk+1

Null step

Xe+10 = Yk+1

if the decrease is too small, but g, € 9f(y4+1) iNygeq: =
Xg+1dy, t > 0, enriches the subgradient information signif-
icantly.

Bundle-Trust Region Methods

These methods combine some features of the trust region
methods, from differential optimization, with the bundle
concept: The line search of bundle methods is replaced by
the trust region strategy.

For simplicity, assume that fis convex (for the nonconvex
case, see Schramm [1989]). The stored subgradients are used
to define the cutting plane model f;, of f around x,. With the
linearization errors af: = fxy) — [Ay) + {9; xx — ¥y
we can write

Pe(xp+ d) = fixy) + max {—af + (g;, d)}
(X I

(A4)

where J, is the set of indices of the subgradients in the
bundle. To compute the next iterate, the trust region ap-
proach consists of minimizing the model f; on a ball around
the current iterate x;, i.e., solving the trust region (TR)
problem:

minimize f(x; + d)
subject to

2 dl? = pye (A5)

with a given p; > 0.

The solution d; of TR gives the next trial point x; + d;.. Then
o is adapted for the next step. However, since TR is a problem
with a quadratic constraint, we prefer to investigate

minimize fi(x; + d) + G ;)| d|{? (A6)

which can be written as a quadratic programming problem in
(v, d) (the bundle-trust (BT) problem),

minimize v + (% )l dl?

subject to

v=af+(g,d i€, (A7)
Then we modify ¢, instead of p;. To reach a serious or null
step as in bundle methods, we substitute the line search of
bundle methods by a trust region approach. During this

so-called inner iteration we adapt ¢,.

Bundle Trust Algorithm: The Convex Case

Let A,-k, i € J;, be a solution of the dual problem of BT
(problem BT,):
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2
minimize% Z rgill + (e 2 Ak
i€ Jy i€ Jy
subject to
)\I-ZO lEJk,
(A8)
> oa=1
i€Jy

Choose a starting point x; € R” and parameters T > 0, 0 <
my <mp; <1,0<m3 <1, and ¢ = 0 and an upper bound
JImax = 3 for [J;|. Step 0 is to compute f(x,), g; € af(x;)
and put y; = x{, J; = {1} and k = 1. Step 1, the inner
iteration, is to compute x,.; and g, such that the serious
or null step criterion is satisfied, or determine that x, is
nearly e optimal (in which case we stop). For step 2, if |7, | =
Jmax then go to step 3; otherwise put J = J, and go to step
4. For step 3, reset by choosing J € J;, with |J| = J .. — 2
¥ = 0} € J. Compute

and max {i|i € Jy, a]
zp=—(t)dy = D Afg;
i€d,

ay = 2 Afaf

i€J;
Introduce an additional index &, and define
9E= Zks a,i(k'= ap, J+JU{k.

Step 4 consists of updating as follows: If the outcome of the
inner iteration is a serious step, then set

a;(+1= a{(+f(xk+1) = Axp) — (9 di)
iEJ, al’:ill =0.

If the outcome of the inner iteration is a null step, then set

k+1_ k

. k41 _
a; a; i€J, a;i=0a(xy, Ye+1)

Joi1=JUk+1}

and go to step 1.
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