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A stochastic optimization model for containment of a plume of groundwater contamination through
the installation and operation of pumping wells is developed. It considers explicitly uncertainty about
hydraulic conductivity in the aquifer and seeks to minimize the expected total cost of operating the
pumping wells plus the recourse cost incurred when containment of the contaminant plume is not
achieved. Four different formulations of the model are examined, ranging from simply replacing all
uncertain parameters by their expected values to a full stochastic programming with recourse model
involving nonsymmetric linear quadratic penalty functions. The full stochastic programming with
recourse model, which minimizes the expected total costs over a number of realizations of outcomes
of the random parameters, is nonlinear and possibly nonconvex and is solved by an extension of the
finite generation algorithm. The value of information about the uncertain parameters is defined through
the differences between the values of the optimal solutions to the different formulations. A sample
problem is solved using all four formulations. The results indicate that the explicit incorporation of
uncertainty does make a difference in the solutions obtained. The work indicates that stochastic
programming with recourse is a useful tool in management under uncertainty, and that it can be used

with reasonable computational resources for problems of moderate size.

INTRODUCTION

The objective of managing groundwater in contaminated
areas is to either remove the plume of polluted water,
contain it within a specified zone, or control its flow away
from wells, streams, and lakes in which water quality is to be
protected. These objectives can be attained by inserting
curtain walls into the aquifer between the plume and the
zone to be protected, or by digging up and removing the
polluted soil, but more usually by installing and operating
pumping and/or recharge wells so as to control the flow field.
Planning and operation of such remediation schemes is aided
by simulation and optimization models. Simulation allows
the investigation of ‘‘what if’ questions, which allow the
comparison of alternative schemes. Optimization models are
designed to find the solution that is best according to a
specified objective, usually economic, while satisfying a set
of stated physical, technological, legal, and other con-
straints.

Any groundwater management scheme has to be planned,
installed, and operated under many uncertainties. These
uncertainties stem from incomplete information about the
aquifer properties, its boundaries and boundary conditions,
the location and intensity of the pollution sources, and the
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existing flow field in the aquifer before remediation has
begun, as well as from economic, regulatory, and political
factors.

In this paper we present an optimization model for (1)
locating pumping and recharge wells within an aquifer and
then (2) operating them, in steady state, so as to control
groundwater gradients and thus keep a plume of polluted
water from entering a protected zone. The primary innova-
tion of the approach presented in this paper is that the
optimal solution is sought under uncertainty about the hy-
draulic conductivities in the aquifer. The objective function
includes the cost of operating the wells, as well as recourse
costs resulting from the possible leakage of contaminated
water into the protected zone. Neither the costs of operating
the wells, nor the recourse costs due to leakage of the plume,
are known with certainty in advance since they depend on
the stochastic aquifer parameters.

In this paper we focus on the uncertainty about aquifer
properties, for several reasons. First, aquifer properties
(such as hydraulic conductivities) can never be known with
certainty. Hydraulic conductivities are measured from
pumping tests or by taking soil samples (cores) from the site
and measuring these samples in the laboratory, but these
methods provide only local or at best zonal data. In princi-
ple, other uncertain parameters such as boundary conditions
and locations of contaminants could be determined without
completely disrupting the site. Secondly, once a problem has
been formulated that includes the uncertainty in the aquifer

parameters, many of the other sources of uncertainty can be
considered without additional conceptual difficulty.
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We use a stochastic optimization method, which incorpo-
rates the uncertainties and their economic consequences
explicitly into the objective function and into the relevant
constraints. In this model the decisions about location and
sizing of wells are made ‘“‘here and now.” However to
determine the exact cost of operating the wells and the
amount to be paid in possible recourse costs we must **wait
and see’’ how these pumping rates affect the head field
across the site and how the contaminant plume reacts.

The equations that describe groundwater flow are incor-
porated into the optimization model as constraints. Even
though some of the coefficients in these constraints are
treated as random parameters, for any actual realized values
of these parameters the equations must always hold, since
they describe physical laws. The goal is to contain the plume
by creating a groundwater gradient that will prevent flow
into the protected zone, but this goal cannot be guaranteed
to materialize for a given pumping/recharge scheme, due to
the randomness of the aquifer parameters.

Some previous groundwater management models have
incorporated this uncertainty by using chance-constrained
linear programming. Chance-constrained models have the
advantage that they are no larger than the corresponding
deterministic models and thus are not too difficult to solve.
However, they have the disadvantage that only the proba-
bility of violating a constraint is controlled, while the extent
and consequences of a violation, when it does occur, are not
taken into account. Thus, for example, if a constraint on
some water quality standard can be violated no more than
2% of the time, then a solution which would allow this
standard to be exceeded only slightly but with a somewhat
higher probability, say, 2.5% of the time, would not be
accepted. However, a solution with a very extreme violation
of the standard which occurs, say, 1.9% of the time, would
be accepted. To remedy this deficiency somewhat, several
probabilistic constraints could be incorporated together into
the same chance-constrained model (at the cost of expanding
it) but even then the cost resulting from a violation cannot be
taken into consideration.

In the method presented in this paper, stochastic program-
ming with recourse, the form of the penalties will affect the
frequency and the extent of constraint violations. Recourse
models are often much larger than the corresponding deter-
ministic models, and require different solution techniques.
However, due to advances in both stochastic optimization
methods and in computer technology, useful stochastic
optimization problems can be formulated and solved without
excessive computer resources.

This paper will discuss a number of formulations of a
stochastic programming model for managing groundwater
quality under uncertainty. The formulations vary in the
degree of complexity: in general, the more complex formu-
lations allow greater realism and modeling flexibility. We
shall examine and compare the solutions from these different
formulations, to determine the effect of uncertainty on the
management process and to give insight into the value of
obtaining information at various times in the planning and
management process. We demonstrate these techniques on a
sample problem involving the containment of a polluted
plume. As evidence of the computational feasibility of these
techniques, all calculations are carried out on a personal

commiter ) )
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literature relevant to this problem and to the background of
stochastic programming. We then present the stochastic
optimization model developed for this probiem, analyze the
value of information, and finally show results for a sample
problem.

LITERATURE REVIEW

Deterministic optimization models for the containment of
contamination by gradient control have been developed by
Molz and Bell [1977], Remson and Gorelick [1980], Colarullo
et al. [1984], Atwood and Gorelick {1985], and Lefkoff and
Gorelick [1986]. In the following subsection, optimization
models for groundwater management that include uncer-
tainty are discussed, followed by a brief overview of meth-
ods for solving stochastic programming problems with re-
course.

Groundwater Management Under Uncertainty

One traditional way of dealing with uncertainty in optimi-
zation models is to do postoptimality sensitivity analysis to
determine the effect on the optimal solution of small changes
in model data. Aguado et al. [1977] used sensitivity analysis
to examine the effect of changes of hydraulic conductivity on
the optimal solution of a model for site dewatering. They
developed a model to minimize pumping while meeting
specified head values by embedding the discretized equa-
tions for groundwater flow as constraints in the optimization
model. After solving the model for an isotropic, homoge-
neous aquifer they then changed the hydraulic conductivity
at each nodal point and solved the optimization model again
to determine how the change in this parameter affected the
optimal pumping plan. Willis [1979] also used embedding for
a model to manage a site for both water supply and waste
disposal. He used parametric methods to examine the allow-
able changes in waste concentrations as the water quality
standards are relaxed. Gorelick [1982] used a concentration
response matrix in an optimization model to determine the
maximum waste disposal rates that still meet water quality
standards over time. He also used parametric methods to
examine the sensitivity of the total waste disposal capacity
to changes in the disposal rate at individual wells.

Uncertainty can also be modeled using stochastic simula-
tion. Bredehoeft and Young [1983] used a simulation model
to investigate how variation in surface water supply affects
investment in well capacity for an area where both ground-
water and surface water are used for irrigation. The study
investigated the extent to which well capacity is being used
to avoid income fluctuation of farmers in the area.

A method that has been used to incorporate uncertainty in
the optimization model itself is to use chance constraints, so
that certain constraints are not met exactly under all condi-
tions, but instead are only met with a specified level of
reliability. Tung [1986] used a response function in a model
to maximize the yield from a confined, homogeneous, and
nonuniform aquifer without violating head limits specified at
various points in the aquifer. He treated the transmissivity
(7) and storativity (§) as random variables, formulated the
head restrictions as chance constraints, and used first-order
analysis and quasi-linearization to develop the linear deter-
ministic equivalents of the chance constraints. Tung also

used stochastic simulation to investieate the validity of his
model. Wagner and Gorelick [1987] developed a nonlinear
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chance constraint model to find optimal remediation plans
(either pumping for contaminant removal or recharge for
in-ground dilution) so as to meet water guality standards at
specified points in the aquifer. This procedure coupled
parameter estimation and response matrix methods to first-
and second-order moment analysis to transform parameter
uncertainty into chance constraints on concentration levels.
This study also used simulation to validate the assumptions
made in the first-order moment analysis. Hantush and
Marino [1989] developed a model to maximize the pumping
from an aquifer linked to a stream, while maintaining limits
on heads in the aquifer and depletion from the stream over
time with a specified level of reliability. This model consid-
ered variation in hydraulic conductivity and specific yield
due to measurement error, spatial averaging and the *‘inher-
ent stochastic description’’ of porous media. This model
used an analytical approximation to link drawdowns and
stream depletion rates due to pumping, and formulated the
chance constraints analytically (using lognormal distribu-
tions). In all of these chance constraint models, sensitivity
analysis was also performed to assess the effect of the
reliability levels used for the chance constraints.

Maddock [1974] developed an optimization model for the
management of the conjunctive use of surface water and
groundwater, which included uncertainty by using statistical
analysis. The aquifer was modeled with a distributed param-
eter model. The demands imposed on the sources were
modeled as being stochastic. The objective was to minimize
the discounted expected energy cost of pumping. This ex-
pected cost was derived by including the statistics of the
water demand so that the operating decisions are based on
the variance and correlation of these demands, as well as on
their expected values. The constraints included meeting
expected water demand and on average meeting downstream
water rights.

Gorelick [1987] and Wagner and Gorelick [1989] devel-
oped optimization models that incorporate uncertainty by
finding solutions that are optimal over a number of possible
realizations of uncertain parameters. Gorelick [1987] devel-
oped a model based on a response matrix to minimize the
pumping required to keep contaminated groundwater from
flowing out across a capture curve in an aquifer with
spatially variable hydraulic conductivity. He generated 130
possible realizations, and then selected 10 representative
realizations. The constraints for all 10 realizations were
incorporated into the optimization model, and a minimum
pumping solution was found such that the contaminant
would be contained within the capture curve for all 10
realizations. Wagner and Gorelick [1989] developed a non-
linear model also based on a response matrix for remediation
of a contaminated aquifer. The objective was to minimize
pumping while meeting water quality standards. The uncer-
tainty in this problem is due to spatial variability in the
hydraulic conductivities. One formulation developed a plan
with minimum pumping to meet standards over 30 realiza-
tions of hydraulic conductivity. A second formulation found
the optimal pumping rate for a single well for each of 1000
realizations. The results of these 1000 realizations were then
used to characterize the probability distribution of pumping
rates.

Ranjithan et al. [1990] developed a method using neural

networks to screen realizations of hydraulic conductivities
(or transmissivities) to determine which realizations should
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be used in a subsequent optimization model. This neural
network procedure can be used to identify the one or the few
realizations of the random parameters that will most con-
strain the final design. for example, those realizations that
will require high volumes of pumping to contain a contami-
nant plume. Once the neural network has been trained, a
large number of hydraulic conductivity realizations can be
screened and considerable computational savings can be
realized by using only these ‘‘pessimistic’’ realizations in
stochastic optimization methods.

Andricevic [1990] and Andricevic and Kitanidis [1990]
developed methods using stochastic differential dynamic
programming to develop pumping plans for groundwater
management and monitoring. In the work by Andricevic
[1990] the objective was to minimize the expected value of a
weighted sum of the deviations from both specified pumping
levels at each pumping well and specified head levels at each
control point. In the work by Andricevic and Kitanidis [1990]
the objective was to minimize the expected value of a
weighted sum of pumping and exceedance of a specified
concentration standard. In both of these methods, uncer-
tainty about hydraulic conductivity is included in the model
by treating the hydraulic conductivity values as a random
field. These models are dynamic, meaning that the pumping
strategies are revised over time, as the effects of the pumping
plan and additional monitoring data become known. Both
models allow management plans and monitoring plans to be
developed concurrently.

Risk analysis methods are also used to deal with uncer-
tainty. In risk analyses the uncertainties in model inputs
(such as timing and sizes of spills and leaks) are translated
into uncertainties in outputs (such as probability of exceed-
ing standards or the probability of contamination of a well).
Risk analyses specifically dealing with groundwater include
Kaunas and Haimes [1985], Hobbs et al. [1988], and Lich-
tenberg et al. [1989].

Stochastic Programming With Recourse

Stochastic programming with recourse involves a two (or
more) stage decision process. First a decision is made and
implemented: then the world unfolds. At a later stage
recourse actions are taken, usually at some cost. The cost of
a decision then consists of (1) a deterministic cost incurred
“‘here and now’" as the decision is put into effect, and (2) a
stochastically distributed “‘wait and see’ penalty or re-
course cost, which is incurred after the stochastic elements
of nature are realized. In contrast with chance constraints,
stochastic programming with recourse allows increasingly
higher penalties to be incurred for increasingly larger viola-
tions of standards.

In recent years, several methods have been developed for
stochastic programming with recourse for problems with
stochastic variables which can be described with discrete
distributions. Many of these methods rely on decomposition.
Rockafellar and Wets [1976, 1983, 19864, b] developed
algorithms based on Dantzig-Wolfe (price-directed) decom-
position, by exploiting the duality properties of general
linear-quadratic stochastic programming problems with re-
course. They developed a decomposition method called the
finite generation algorithm (FGA) for the two-stage convex
quadratic problem, which uses a linear-quadratic penalty

recourse function. This method is shown to have linear
convergence at every step.
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The FGA was successfully applied to solve a problem
involving the management of lake eutrophication {Somlyody
and Wets, 1988). Eiger and Shamir [1991] used this method
to model the optimal multiperiod operation of a multireser-
voir system with uncertain inflows and water demands.

Algorithms have also been developed based on Benders’
(resource-directed) decomposition. Dantzig and Madansky
[1961], Van Sivke and Wets [1969], and Birge and Louveaux
[1985] have developed methods for stochastic linear two-
stage problems with recourse based on this approach.
Nested decomposition methods for linear multistage prob-
lems were developed by Birge [1982a] and Noel and Smeers
[1985]. Louveaux [1980] developed a nested decomposition
method for multistage stochastic quadratic programming
problems.

FORMULATION OF A STOCHASTIC PROGRAM
WITH RECOURSE

As an example of a stochastic program with recourse for
managing groundwater quality, we will look at the problem
of containing an area of groundwater contamination by
maintaining hydraulic gradients across a ‘‘capture curve’ or
‘“‘interception envelope.”” Although many elements in this
problem could be uncertain, we focus on the uncertainty in
the values of the hydraulic conductivity. In this problem, the
recourse costs are modeled as a penalty that depends on the
degree of “‘leakage’” across the capture curve. This formu-
lation is one of simple recourse, since the penalties are
simply assessed, and are not a result of ‘‘second-stage’’
decisions made in order to minimize the recourse costs.

We start by formulating a problem for an area with
homogeneous soil of known hydraulic conductivity. We then
extend this formulation to an area with heterogeneous soil
with imperfectly known conductivity. Note. the term hy-
draulic conductivity is used throughout this paper for gener-
ality. However, for the aquifer modeled in this paper the
aquifer thickness is constant so we could also describe this
model as incorporating uncertain transmissivity.

Deterministic Optimization Problem

We consider a confined aquifer with uniform thickness b,

wihish ic madsalad ac v — 1

(See for example, Figure 1.) The aquifer contains an area of
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contamination, which we wish to prevent from crossing a
**capture curve,”” which is prescribed along certain edges of
these elements. In order to contain the contamination it is

PP T e Prmatn o mendiaeedr lada remem e st e

fiecessary to creale a gradient into the capture zone across
the capture curve by pumping one or more possible control
wells. The pumping will lower water fevels inside the capture
zone and create the desired gradients.

The objective is to minimize the total daily cost of the

remediation strategy. The deterministic objective function is

\ 2

/
minZA,w,-(s—h,-)—Az(E W,') (1)

i
where

A, daily cost of pumping, (dollars m ™3 (m of
elevation) ~')(86,400 s d ~1);
w; pumping rate in cell i, m%/s;
s height of the ground surface (measured from the
bottom of the aquifer), m;
h; head in cell i, m;
A, daily benefit, (dollars (m?)~2) (86,400 s d ).

The first term represents the cost of pumping. The second
term represents the payoff or benefit from the use of the
water that is removed from the aquifer. Water pumped from
the site may be used (possibly after treatment) for industry
or irrigation. This benefit term could be any linear or
quadratic function of the pumping rates (w;). For illustra-
tion, we assume the benefit of water to be proportional to the
square of the total amount of pumped water.

The groundwater system is modeled by embedding the
discretizations of the partial differential equations governing
groundwater flow as constraints in the optimization problem.
These constraints (developed in Appendix A) are

> Fihi=wi—fi Vi 2)
J

where F; ; are coefficients determining flow between cells i
and j whose values depend on the geometry of the finite
difference model and the hydraulic conductivities (K ,),
and f; are constants for cell i that depend on the boundary
conditions.

Constraints are added to require that the head gradients
(and thus the water flow) be inward across the capture curve,
as follows:

hi" —

hM=0 VI (3)

where h™ are the head values on the inside of the capture
curve, h™ are the head values of the outside of the capture
curve, and / is the index of cell pairs that form the boundary.

Lastly. in this model we allow only pumping (no re-
charge), so the pumping rates are restricted to be nonnega-
tive. They are also restricted to be below some maximum
value:

Osw;=w

Vi (4)

Thus this deterministic optimization problem has a non-
linear objective function subject to linear constraints.

Stochastic Optimization Problem

The nneartainty in thic prahlam ic accitmad ta rama feam

the stochastic nature of the hydraulic conductivities (K).
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Fig. 2. Linear-quadratic penalty function.

First we assume that these hydraulic conductivities can vary
from place to place within the region. Additionally, for a
given site we assume that we do not know the exact values
of the hydraulic conductivities, but instead we know only
that they are lognormally distributed, with known mean and
variance, and spatially correlated with a known correlation
structure.

Uncertainty is included in the optimization formulation by
sampling the stochastic field of continuous hydraulic con-
ductivity values. This sampling is done by obtaining a
(possibly quite large) set of realizations of this distribution,
with each realization consisting of a distinct value for the
hydraulic conductivity of each cell. These realizations are
indexed by w(w = 1,2, - -+, Q). Each realization is assumed
to occur with probability .

Each realization w will result in a different matrix F and,
for a fixed pumping plan w, a different set of heads for each
realization. Thus we write F_, h,, h!", and h2" in the
stochastic formulation.

Since the problem is now stochastic, we cannot guarantee
that a selected pumping plan will actually result in

R - =0 ViV, (5)

We define the amount to which this constraint is violated
at any boundary [ and for any realization w by

Vi = A%~ hiG. (6)

A positive value for this violation term means that there is
some leakage of contaminated water into the protected zone,
past the planned capture curve. This leakage is assumed to
result in a recourse cost, such as treatment costs for water
pumped at the supply wells or costs for some other remedial
action required to counteract the contamination of the pro-
tected zone. This recourse cost is represented by a linear-
quadratic penalty function for a violation v as follows (see
Figure 2):

plvip, g =0 )
plvs p, q)=%u2/p 0=v=pg (7
plvs p. q) =qu — %pqz v =pq.

The parameters p and g must be positive, and are specified
by the decision maker.
The shape of this penalty function was chosen for a

number of reasons. First, it allows the decision maker great
flexibility. The slope of the linear portion, the point of
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transition from the quadratic to the linear portion, and thus
the shape of the entire function can be controlled through
choice of the parameters p and ¢. This function also has a
number of desirable theoretical properties, including the fact
that it is differentiable everywhere, and that it has an easily
expressed conjugate function (Rockafellar and Wets, 1986a,
b].

Now, for a given pumping plan w, the cost will consist of
the energy cost of pumping plus the recourse cost minus the
benefit obtained from the pumped water. This cost will vary
for each realization of the hydraulic conductivities. The
objective is to minimize the expected cost. The stochastic
optimization problem is then

min E ™, z Awis — h; )+ 2 plv; )
w i 1

2

- A: 2 A

i

subject to
2 Fi.j.whj.w =Wy _fi Vive
J
Vw=h" = kS VIVe
O=w;=w Vi, (8)

For simplicity in this application, the same values of the
penalty parameters p and g are used for all locations along
the boundary cells and for all realizations. It would be
possible to use different parameters, for example, to penalize
violations at one location more than at another.

This formulation involves simple recourse, since the pen-
alties are uniquely determined once the ‘‘here and now™
decision variables are set. More generally, the recourse
costs themselves may be found from an optimization prob-
lem that is solved after the ‘*here and now"’ plan has been
implemented and after the uncertain values have become
known.

The penalty function p(v) can be expressed as a quadratic
function subject to linear constraints [Rockafellar and Wets,
19864], as follows:

1
p(v) = min ;(1")2/p + gu”

W1

subject to

1" + '('” =0

v" = 0. 9)

Thus, by replacing p(v, ,,) in (8) by the objective of (9) and
by adding in the constraints from (9), the stochastic program
can be rewritten as a quadratic objective function subject to
linear constraints. This form of the problem was used to
develop the solution method; however, for clarity, we will
continue to write p{v, ) in the formulations presented in this
paper.

To use (8) as a management tool. sufficient discrete
realizations should be generated to characterize the contin-

uous distribution. For a problem with a small number of
random variables, where each variable can be represented
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by a small number of values, the complete distribution could
be represented by generating a realization for every possible
combination of random outcomes. However, due to the
number of random variables and extent of variation, in this
problem it is not computationally feasible to generate a
complete set of realizations to completely characterize the
distribution. Also, even if we did generate a complete set of
realizations of the discretized distribution, the resulting
optimization problem would be too large to solve. Thus we
used a Monte Carlo approach to obtain samples from this
distribution, and used this set of Monte Carlo-generated
realizations to represent the distribution in the optimization
problem.

We can reduce the number of variables in this problem by
exploiting the fact that the values of 4; , are completely
determined from the flow constraints, once the values of w;
have been set. (We say that the values h; , are dependent
stochastic variables.) The matrix —F, is positive definite
{Appendix B). Thus we can remove the dependent variables
h; ., from the problem by rearranging the head constraints to
obtain

Hiw= D Filolwi=fi). (10)
J

Substituting (10) into (8), we obtain the following optimiza-
tion problem:

min 2 Ty Z Apwils — 2 F;,-I_w{n'j - fi
w i i “

\ 2

—
‘A: Z Wy
i

+ 2 plegy)
!

subject to

Viw= 2 Giiulw,—f} YV
i

O0=w; =< Yi

(1)
where

Grjw=F 0"~ [F}

ljw

]ou(. (12)

(Regarding notation, note that the violations concern only
the ! heads along the boundary. namely, #/", and /.. Thus
to calculate the violations ; , we need only certain rows of
matrix F;', which we denote as [F '] and [F, '1°". If we
have I elements and calculate gradients at L points, F_ ! is
of size/ x I,and G, [F;']"™, and [F,']""" are of size L x
1)

In the development of the original finite difference equa-
tions we included a term w; for each element. even for those
elements with no wells. For elements / with no wells we
restrict w; = 0. Further reduction of the size of this probiem
is possible by eliminating these decision variables. This
straightforward reduction was made in the final implemen-
tation, but will not be explicitly discussed in the formulations
given in this paper.

Method of Solution

Dy ucing tha aptimizatinn farm of tha panaltiec fram (Y

the optimization problem (11} can be written as an optimi-
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zation problem with a nonlinear and possibly nonconvex
objective function subject to linear constraints. In this prob-
lem. the decision variables are the pumping rates (w;). The
violations (v, ,) are completely specified by these pumping
rates. and can be thought of as dependent variables. Thus
the problem actually involves only a moderate number of
decision variables. However, there remains the necessity of
having a set of violation constraints for each realization
included in the problem, leading to an extremely large
number of constraints. Thus due to its size, this full optimi-
zation problem could not be solved easily.

Rockafellar and Wets [1986a, b] have developed the
finite generation algorithm (FGA) for solving convex linear-
quadratic stochastic optimization programming problems
with recourse. The FGA solves the dual problem, which has
a large number of decision variables but a moderate number
of constraints, by using decomposition in the dual space to
obtain an approximation to the dual problem that is much
smaller than the original. Each iteration of the FGA involves
the solution of this small dual approximation and updating of
the approximated terms,

When the objective function (of the primal) is convex, the
FGA is guaranteed to converge to the global optimum. The
extended FGA used in this work [Wagner, 1988] allows for
the inclusion of nonconvex quadratic elements in the objec-
tive or constraints. The nonconvexity is included by the
addition of a proximal point term to the original problem
large enough to convexify the problem and allow the formu-
lation of the dual problem. This proximal point term is also
updated at every iteration. For a nonconvex problem the
final solution may only be a local optimum.

In the implementation of the extended FGA used in this
paper, in each iteration a convex nonlinear optimization
subproblem is solved using GAMS (version 2.02)/MINOS
(version 5) [Brooke et al., 1988]. Solution of the largest
optimization problem considered in this paper could be
solved in about 1 hour on a PC clone.

Representation of the Hvdraulic Conductivities

The hydraulic conductivities for each realization were
obtained by using a turning bands program to generate a
realization of the random hydraulic conductivity field
[Tompson et al., 1987]. This turning band program generates
spatially correlated variables from a normal distribution with
mean of 0 and standard deviation of 1. The program can
produce output from a normal distribution with user-
specified mean and standard deviation by linear transforma-
tion of the variables, as well as from a lognormal distribution
by taking the log of the normally distributed variables.

These variables are spatially correlated in two dimensions
according to the stationary exponential correlation function:

E 2 f’ 27172
C(,Ei:rrzcxp{—[(i—]) +()‘—) ] } (13)
1/ N2

stationary anisotropic covariance for two points
separated by vector ¢&;

o~ variance of the random field;

£, eenparatinn alang dimencinan i (7 = 1 7.

A; correlation scale along dimension i.

where
Cé)

(153
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(Note that the turning bands program actually generates
hydraulic conductivities over three dimensions, and we have
used one plane from this space.)

Each run of the turning bands program produces a real-
ization of the hydraulic conductivities for each cell; realiza-
tions from separate runs are independent. Thus each real-
ization is equally likely, so 7, = 1/§).

One additional step is needed to use the hydraulic conduc-
tivity values in the finite difference equations. The hydraulic
conductivities generated by the turning bands program are
for cell centers. However, in the finite difference equations.
we require the hydraulic conductivity that will give the
correct flow between the centers of the two elements. To
find the ‘"average’ or effective hydraulic conductivity be-
tween the two elements, we employed the common ap-
proach of using the harmonic average:

2K K)

= (14
K+ K, )

Keﬁ

These hydraulic conductivities are incorporated into the F

matrices, as described in Appendix A. These matrices were

inverted before they were incorporated in the optimization

programs. using a FORTRAN program for LU decomposi-
tion [Press et al., 1986].

THE VALUE OF INFORMATION IN THE
DECISION-MAKING PROCESS

The value of the information about the hydraulic conduc-
tivities depends on when in the decision-making process the
information is obtained and to what extent this information
can affect further decisions. To examine the value of infor-
mation, we will develop a number of different stochastic
optimization formulations based on the framework devel-
oped above, and use their solutions to define measures of the
value of information.

The best case for a decision maker is when there is no
uncertainty at all, and the problem is deterministic. We
examine this case by solving the deterministic problem of (1)
subject to (2)~(4), with all hydraulic conductivities set to
their expected value. In our case. the site is then homoge-
neous, since the hydraulic conductivity distributions are all
assumed to have the same mean.

In the next case examined. the gradient constraints across
the capture curve are treated, not as hard constraints. but as
constraints which may be violated at some cost. This penalty
cost for constraint violations is included in the objective
function. This case is the closest to the following formula-
tions of the stochastic problems, and is therefore used for
comparison. We define EV as the value of the optimal
solution to the problem with all data set to their expected
values.

The next best case for the decision maker is when there is
uncertainty in the data, but this uncertainty is resolved
before the decision has to be made. Since we are conducting
an a priori analysis, before the outcomes are known, we
must consider all possible outcomes. In other words. it is as
if the same decision problem were posed repeatedly, but
each time with a different realization of the random vari-
ables. We therefore have to solve many deterministic opti-

mization probloma, have o difforsnt

optimal solution with a different optimal value. We are

cach of which moy
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interested in the distribution of the optimal value of these
“wait and see”” problems. In reality. for this problem. we do
not have the option of “*waiting”™’ 10 “"see”” the hydraulic
conductivity values before we make a decision. However,
the expected value of these optimal solutions is a lower
bound on the optimal value of the actual recourse problem
iMadansky. 1960]. and we may gain insight by looking at the
ensemble of these optimal “‘wait and see’ values and
solutions. We define WS as the expected value of optimal
solutions to the wait and see problems.

When the uncertainty cannot be resolved before the
decision has to be made. we have the recourse problem (11).
The solution to this problem provides the **here and now™’
pumping scheme, which is to be implemented immediately.
We then *‘wait and see” what the added cost is. inciuding
the recourse cost. The optimal solution minimizes the ¢x-
pected total cost (pumping cost — benefit from water +
recourse cost). We define RP as the value of the optimal
solution to the recourse problem.

Finally, we can also calculate the value. over all realiza-
tions of the hydraulic conductivities. of implementing the
pumping plan resulting from the solution of the problem with
all variables set at their expected values, while including the
recourse costs for each realization. We can then calculate
the expected value of these values. We define EEV as the
expected value of the optimal solution of the expected value
problem. with recourse costs included, implemented over
the ensemble of {} realizations.

Muadansky [1960] has shown that for a linear program with
uncertain right-hand sides the following inequalities hold:

EV = WS <= RP = EEV. (15)

We shall examine the actual values obtained in our example
to see whether these inequalities hold for our nonlinear
convex and nonlinear nonconvex sample problem.

Birge [1982h] has defined the value of the stochastic
solution (VSS) as

VSS = EEV - RP (16)

which is the difference between the expected total costs
(including recourse) for the solution from the model not
explicitly considering uncertainty (the expected value mod-
el), and the model that did explicitly consider uncertainty
(the full recourse model).

RESULTS

In this section. a sample problem of determining a pump-
ing plan to contain an area of groundwater contamination is
described. This problem is then solved using the above
stochastic programming formulations. and the results of the
different formulations are compared.

Description of the Sample Problem

The sample contaminant containment problem used in this
paper (Figure 1), is a smaller version (10 x 11 cells) of a
sample problem examined by Gorelick [1987). Measuring
from the bottom of the aquifer. the confining layer is at 100
m and the surface at 150 m. A 19 gradient is imposed by
conctant hood boundurios of 110 m to thoe north tmd 100 e

the south. To the east and west are no-flow boundaries. The
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capture curve (shown in the figure) has 17 ‘‘edges,”” and
there are 23 possible pumping wells.

The daily cost of pumping (A;) was set to $13.824 m~?
m ™' d ™", This figure is based on 0.0032 kWh of energy to lift
I m® of water a height of 1 m and $0.05 kWh™' for
electricity. In all formulations, two sets of problems were
run, one set including no benefit of water (A, = 0) and the
other set with the benefit A, = 500 (m?)~2d~'.

The maximum pumping rate () was set to 0.1 m* s ! for
all wells. This maximum rate is quite high, and was rarely an
active constraint.

The mean hydraulic conductivity was taken from Gorelick
[1987]) to be 0.0004 m s ™', giving a transmissivity of 0.04 m>
s~!. To generate realizations of heterogeneous hydraulic
conductivities, the turning bands program requires the (geo-
metric) mean hydraulic conductivity value of the lognormal
hydraulic conductivity distribution and the standard devia-
tion of the underlying normal distribution. A standard devi-
ation of 1 was used. Thus 95% of the In K values should fall
between —8.82 and —6.82, corresponding to a range of K
values of 0.000147 to 0.00108 m s~'. For all cases, the
hydraulic conductivities were assumed to be isotropic and
exponentially correlated with the correlation scale equal to
10 m.

One hundred realizations of the hydraulic conductivities
were generated (0 = 100). Ideally, a different set of realiza-
tions would be run for each formulation, but due to the time
involved in inverting the F matrices, both the “*wait and
see’’ and the recourse formulations were run with the same
100 realizations.

For all cases, the parameter values were p = 0.1 and ¢ =
10.

Problems with a single realization such as the expected
value problem and the individual “‘wait and see’” problems
were solved directly using GAMS (version 2.02)/MINOS
(version 5) [Brooke et al., 1988]. The recourse problem was
solved using the extended finite generation algorithm [Wag-
ner, 1988].

Expected Value Problem Results

If we set all the hydraulic conductivities to their expected
values (0.0004 m s~'), we obtain a deterministic problem
with homogeneous soil. We can model this problem two
ways: (1) with the gradient restrictions as ‘‘hard’’ con-
straints, or (2) with violations of the gradient restrictions
allowed but penalized in the objective function.

The nonlinear program with the gradient restrictions as
**hard’’ constraints is

min z A]W,' § = z F_,-le{wj—f)'}) - AZ(E Wy
i J

5

subject to
> Gifgw;-fy=<0 VI
J
O=sw,=Ww Vi ]
where £ ' anu O cuinaln i capevied values uf i 07!

and G matrices.
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The nonlinear program with the gradient restrictions as
“‘soft’” constraints is

EV = min 2 Aywgls — 2 Fifj‘{wj -
] i

i

2

+ 2 plv) — A,y E w;
]

i
subject to

v = z Gl’.j{“’j_f}} Vl
J

O=w,=w Vi

(18)

Table 1 presents the results for both of these models for
two problems. The first problem involves no benefit of water
(A, = 0) and so is convex. The second problem does
involve a benefit of water (A, = 500) and is not a convex
problem. As expected, the cost is lower and the optimal
pumping rates are higher for the case when benefit is
obtained from the water. When the gradient restrictions are
treated as *‘soft”’ constraints the total cost is less, again as
expected. All results show symmetry, also as expected.

The expected value problem with the penalized gradient
constraints is the closest formulation to the subsequent
problems, and can best be used for comparison. Thus from
these runs EV = $169.71 for the no-benefit case and EV =
$131.71 for the benefit case.

Distribution Problem Results

If we were able to repeatedly ‘‘wait and see’” what the
hydraulic conductivities were and subsequently solve the
optimization problem, we would obtain a distribution of
optimal pumping costs. In order to approximate the ‘‘wait
and see’’ distribution we solved 100 deterministic problems
(one for each realization of the hydraulic conductivities) and
then analyzed the statistics of the outcomes. The *‘wait and
see”’ problem is

WS, =min > Aywis~ > Fildw; = f}
i J

i

2

2 wi

i

+ z plvie) — A,y
]

subject to

vk T 2 G judw; = fit Vi
J

0_<.w|~5147 vi.

(19)

We then estimate the expected value of the distribution by
taking the mean of these solutions:

Q

PR

wo
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TABLE 1. Results of Expected Value Problems
Pumping Rates, m® s !
Well Location* Hard Constraints Penalized Gradient Restrictions
Row Column No Benefit With Benefit No Benefit With Benefit
3 5 0 0 0 0
6 0 0 0 0
7 0 0 0 0
4 4 0.063 0.078 0.063 0.070
5 0 0 0 [4]
6 0 0 0 0
7 0 0 0 0
8 0.063 0.078 0.063 0.070
5 3 0.072 0.072 0.071 0.071
4 0 0 0 0
S 0 0 0 0
6 0 0 0 0
7 0 0 0 0
8 0 0 0 0
9 0.072 0.072 0.071 0.071
6 4 0 0 0 0
S 0 0 0 0
6 0 0 0 0
7 0 0 0 0
8 0 0 0 0
7 S 0 0 0 0
6 0 0 0 0
7 0 0 0 0
Total 0.270 0.300 0.268 0.282
Costs, dollars
Penalized Gradient
Hard Constraints Restrictions
No Benefit With Benefit No Benefit With Benefit
Pumping 179.09 179.39 160.43 168.68
Benefit 0.00 —45.00 0.00 -39.76
Penalty 0.00 0.00 9.28 2.79
Total 179.09 134.39 169.71 131.71

*Well location refers to Figure 1.

The first set of runs was intended to examine the convex
problem, where no benefit is derived from the water that is
pumped from the site. One hundred scenarios were run,
producing a minimum cost ranging from $46.90 to $437.53,
with an average of $171.54. A histogram of the results is
shown in Figure 3. About 83% of the total costs were
between $150 and $250. The penalty cost ranged from $2.73
to $302.85. These penalty costs represent between 6% and
70% of the total cost with an average of 44% over all 100
outcomes. The optimal number of wells used for these
scenarios ranged from a minimum of two to a maximum of
five wells, with 93% of the outcomes using two, three, or
four wells. The 11 interior wells were never used. Of the
remaining 12 wells, the wells at the beginning and the end of
the fifth row were used 79% and 77% of the time, respec-
tively.

In the second set of runs we included benefit obtained
from the water pumped from the site (A, = 500). Minimum
total cost ranged from —$6914.45 to $409.25. (Only two
outcomes had negative costs, indicating that enough benefit
could be obtained from the pumped water so as to make a

praft Doe thaca tiria oncae, tha aptimal puospicg plan

included some of the wells’ being pumped at their maximum

rates, leading to unrealistic head gradients. Thus these two
pumping plans are neglected in the subsequent calculations.)
About 78% of the outcomes had minimum total cost of
between $100 and $200. The average minimum total cost of

FREQUENCY
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40 ~
\\\\‘
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\
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RANGE (DOLLARS)
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Fig. 3. Cost distribution of **wait and see’’ problem.
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the plans with positive cost was $152.55. This average cost is
less than the no-benefit case ($171.54) since the revenues
from the water pumped out can be used to reduce the total
cost of operation. The percent of total cost of operation that
is due to the penalty cost had a range of between 0% and 73%
with an average of 34%. The number of wells used ranged
from a minimum of two to a maximum of 12, with 92% of the
outcomes using two, three, or four wells. As in the runs with
no benefit from the water, the 11 interior wells were never
used. Again the wells at the beginning and the end of the fifth
row were the most widely used, 72% and 65% respectively.

From these runs, WS = $171.54 for the no-benefit case
and WS = $152.55 for the benefit case.

Recourse Problem Results

The recourse problem includes a number of realizations of
the hydraulic conductivities. The solution to the recourse
problem provides the pumping plan that minimizes the
expected total cost (including recourse cost) over these
realizations. For these problems, 100 sets of hydraulic
conductivity realizations were used. This problem (devel-
oped previously) can be stated as

RP = min 2 T z Apwils — 2 Fijwwi =1}
w i J

- Az 2 W
;

+ 2 plyy
!

subject to

VIiVw

L

=D Gjulw— f}
J

O=sw,=w Vi (21)

Table 2 presents the recourse problem solutions. Again,
two cases were run, one with and one without benefit of
water. The expected total cost for the case with no benefit of
water was $217.51, which included 51% for expected re-
course costs. The total costs over the 100 outcomes ranged
from $108.34 to $508.33. A histogram of the results is shown
in Figure 4. The total pumping in this case was 0.181 m* s '
The expected total cost for the case including benefit of
water was $196.96, which included 48% for expected re-
course costs. The total costs over the 100 outcomes ranged
from $103.07 to $436.18. The total pumping in this case was
0.216 m* s~

In both of these solutions only four or five wells, out of a
possible 23, are to be used. These wells are on the “‘edges”’
of the pumping area. We also note that the pumping pattern
is no longer symmetrical. Over one realization with hetero-
geneous soil we would, in fact, not necessarily expect the
pumping plan to be symmetrical; however over enough
realizations we might expect the plan would be symmetrical.
Thus this asymmetry may indicate that more than 100
realizations should be used in the model. Gorelick [1987] also
obtained asymmetric optimal pumping plans.

From these runs, RP = $217.51 for the no-benefit case and
RP = $196.96 for the benefit case.

The prublun funr the vaov  withivad Lrnndic of

convex, so the finite generation algorithm will converge

et
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TABLE 2. Results of Recourse Problems

3 -1

Well Location* Pumping Rates, m~ s

Row Column No Benefit With Benefit
3 S 0 0
6 0 0
7 0 0
4 4 0.045 0.072
5 0 0
6 0 0
7 0 0
8 0.058 0.086
5 3 0.045 0.036
4 0 0
S 0 0
6 0 0
7 0 0
8 0 0
9 0.033 0.022
6 4 0 0
5 0 0
6 0 0
7 0 0
8 0 0
7 5 0 0
6 0.006 0
7 0 0
Total 0.187 0.216
Costs, dollars
No Benefit With Benefit
Pumping 107.28 124.99
Benefit 0.00 —23.33
Penalty 110.23 95.30
Total 217.51 196.96

*Well location refers to Figure 1.

[Rockafellar and Wets, 1986a, b] and it will converge to the
global minimum. For the nonconvex case (with benefit of
water) we have no such assurances. To test the convergence
of the solution and the robustness of this solution, the
optimal solution obtained from the recourse problem was
perturbed by first adding and then subtracting a small value
to each possible pumping well in turn. The expected costs of
these perturbed solutions were then computed. For very
small perturbations (+0.001) some perturbed solutions did

FREQUENCY
40

T S

0 60

100 160 200 260 300 360 400 460 600 660 600
RANGE (DOLLARS)

BN ccrieriT nurnio

B .o ocroeriT Auee

Fig. 4. Cost distribution of recourse problem.
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Fig. 5. Comparison of total costs.

have slightly lower expected costs than the reported *opti-
mal’’ solution, indicating that the algorithm had not quite
converged. However, perturbing the solutions by (*0.05)
did result in all expected costs from the perturbed solutions
being higher than the unperturbed solution. indicating that
the reported solution is indeed quite close to an actual (at
least) local minima.

Expected Value of Using the Expected Value Solution
in the Recourse Problem Results

Finally, we can find the expected value of using the
expected value solution in the full recourse problem (EEV).
For this example we find that the EEV for the no-benefit
case has an expected cost (including recourse) of $262.71,
with 40% of this cost due to recourse costs. For the case
including benefit, EEV is $230.45, with 46% due to recourse
costs.

We also see that the form of the solutions is somewhat
different when uncertainty is explicitly included. The re-
course solutions call for less pumping than the expected
value solutions. In a sense, the solutions from the recourse
formulations can be thought of as reserving some of the
budget available ‘*here and now’’ to pay the ‘*wait and see”’
recourse costs.

In summary, for the no benefit of water case,

(EV = $169.71) = (WS = $171.54) < (RP = $217.51)

= (EEV = $262.71) (22)
and for the case when benefit of water is included,
(EV =$131.71) = (WS = $152.55) = (RP = $196.96)

= (EEV = $230.45). (23)

These values are represented graphically in Figure 5. We
see that Madansky’s inequalities do hold for these nonlinear
problems. The value of the stochastic solution (EEV ~ RP)

io £4£.20 fu: the uu Leunsfit vuos wis 2 33,42 fun (e Lo fit
case. Thus, ignoring the uncertainty in the model formula-
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tions (by using the EV solutions and then paying recourse)
increases the expected costs by 219 in the no-benefit case
and 17% in the benefit case. Aquifer remediation programs
are often extremely expensive; thus savings in the range of
20% could be quite significant.

It is also interesting to compare the expected costs of the
recourse solution with the expected ‘*wait and see’ cost.
The “‘wait and see’” expected cost is 21% less than the
expected recourse cost for the no-benefit case and 23% less
in the benefit case. Thus we estimate that we are paying a
penalty of about 20% due to the fact that we must determine
a pumping plan without knowing the heterogeneous hydrau-
lic conductivities.

We also tried using the average of the “‘wait and see”
solutions as a pumping plan in the recourse problem. This
averaged plan is given in Table 3. The expected cost was
$296.28 in the no-benefit case and $220.86 in the benefit case.
These solutions represent a 369 and 129 increase over the
cost of the optimal solution to the recourse problem. One
problem with simply averaging these solutions is that the
three to five wells that were used in each solution were often
different wells, so that this averaged plan involves many
wells pumping at low levels. a plan which is unlikely to be
optimal.

TABLE 3. Averaged "*Wait and See'" Results

1

Well Location* Pumping Rates. m® s~

Row Column No Benefit With Benefit
3 S 0.009 0.009
6 0 0.004
7 0.019 0.028
4 4 0.077 0.058
5 0 0
6 [\] 0
7 0
8 0.082 0.057
§ 3 0.056 0.055
4 0 0
5 0 4}
6 G 0
7 0 0
8 0 0
9 0.059 0.044
6 4 0.009 0.004
S 0 [}
6 0 0
7 0 0
8 0.010 0.006
7 5 0.006 0.008
6 0.008 0.005
7 0.008 0.010
Total 0.343 0.288

Costs, doliars

No Benefit With Benefit
Average WS Costs 171.54 152.55+
Pumping 201.04 167.17
Benefit 0.00 —41.47
Penalty 95.25 95.16
Total of pumping. benefit 296.29 220.86

and penalty

“Well 10Calion rerers 1o rFigure 1.
tDoes not include two realizations with negative costs.
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CONCLUSIONS

Uncertainty in aquifer parameters affects the management
of groundwater quality. Solutions from models that explic-
itly incorporate uncertainty are different from those that only
use the expected values of uncertain parameters, and models
that incorporate uncertainty can lead to savings, at least in
the expected value sense.

Stochastic optimization can be used to explicitly incorpo-
rate uncertainty in management models. These techniques,
although sophisticated, can be used without extensive com-
puter resources. Small problems can be solved using PCs;
larger problems could be solved on workstations.

The simple recourse formulation is useful for incorporat-
ing uncertainty and can, we believe, be used to model fairly
realistic situations. The extended finite generation algorithm
is available to solve nonlinear and nonconvex problems
(with possibly only locally optimal solutions). This model
allows considerable flexibility to the decision maker in the
representation of and managerial response to uncertainty.

There are a number of possibilities for extensions of this
work. Larger and more realistic containment problems could
be solved using this technique. Presently the most time-
consuming step, and the step requiring the most computer
resources, is the inverting of the F matrices. The current
inversions were done using a fairly time-efficient algorithm,
but no attempt was made to save space by exploiting the
special banded structure of the F matrix. More sophisticated
matrix storage and inversion routines would allow faster
preprocessing of the data to the extended finite generation
algorithm and so would allow considerably larger problems
to be solved. In the actual optimization step, the size of the
problem is determined only by the number of possible
pumping wells, not by the number of finite elements consid-
ered, so the size of the area studied need not be of great
concern.

Chance constraints could also be included in the finite
generation algorithm, with no additional work, by including
the deterministic equivalents as ‘‘hard” constraints in the
recourse model. This approach was used with the finite
generation algorithm for convex problems by Eiger and
Shamir [1991] for a problem of managing reservoir opera-
tions. Additionally, measurements of hydraulic conductivi-
ties taken at the site can be incorporated into this procedure,
and thus reduce the uncertainty in these values. Using a
method developed by Wagner and Gorelick [1989] the real-
izations of the hydraulic conductivities generated for use in
the optimization problem could be made conditional upon
available measurements.

The solution methods could also be extended in a number
of ways. Some preliminary work has been done in including
concentration variables so as to directly manage the water
quality [Wagner, 1988]. It would also be interesting to see if
the model could be extended to a dynamic case, in order to
examine the transient behavior of gradients and contami-
nants under possible containment and remediation plans.

APPENDIX A
The following partial differential equation is used to de-
scribe two-dimensional steady state flow in an anisotropic
confined aquifer:

h h
Zkp )+ Z(kpZ)2s=0 (A1
dx ax ay ay
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1 2 3

4 5 6

7 8 9
Fig. Al. Nine-element system.

where

x, y length, width, m;
K; hydraulic conductivity in the direction i/, m s~ !;
b aquifer thickness, m;
h head, m;
& point input/output of water, ms ™.

We discretize this equation to obtain the following finite
difference equation:

(hnm'—hn—lm) (hnm_hn+lm)
-K, ——————bAy - K . -
Ax Y * Ax by
(hn.m - hn,m - l) (hn,m - hn,m + l)
—Ky_Ay——be—Ky—'——Ay—be
=Wam (A2)

where Ax, Ay are the length and width of the element
(meters), and w, , = 8AxAy.

Using the above equation for each element, with the
appropriate set of boundary conditions, we obtain a system
of linear equations that describes the response of the heads
in each element to the imposed pumping rates.

This model is applied to the site shown in Figure 1, which
has fixed head boundaries to the north and south, and
impervious boundaries to the east and west. The fixed heads
are applied at the boundary of the site (thus at the boundary
of the cells), so the corresponding denominator in the flow
terms is Ay/2, not Ay.

The finite difference equations are linear in & and w. By
rearranging the / finite difference equations we obtain a
linear system which can be represented (in vector notation)
as:

Fh=w-f (A3)

where

F I x I matrix of the head coefficients;

h I vector of head variables;

w N vector of pumping variables;

f I vector of constants (from the boundary conditions).

Since nonzero coefficients appear only on terms linking
neighboring elements, the matrix F has special banded

ctruvtuiv: Duvi vamuple, suiabluiing thiv faite vlvinvio as in

Figure Al, matrix F has the following structure:
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0 0O 0 0 O
0 0 0 0
0 0 0
0 0 0
F= 0 . 0 (A4)
0 0 0
0 0 0
0 0 0 0
0 0 0 O 0

where the boldface dots represent nonzero elements.

APPENDIX B

Statement. The matrix —F , is positive definite.
Proof. We start with the following example (Figure A2).
Let Ax = Ay = b = 1. The matrix F for this system is

_K"‘m —
K'l,m

4K, Kym

F= Ky — 4K, |

(B1)

The value of —w'Fw is then
-w'Fw= (K, +4K)w}

— 2Ky Wi + (K + 4K, )Wk, (B2)

Rearranging,

~WFw =K, (w, —w,)2+ 4K, wl+ 4K2 w2 >0

(B3)

unless w, = w,, = 0. So —w'Fw > 0 for all w, and —F is
positive definite for this example.

In general for an N X N system with heterogeneous soil,
for each realization w we generate a distinct value of K for
each pair of adjacent nodes. We show that the sum —w'F_w
can be broken up into a sum of positive terms, each
involving only one of the distinct K values.

For any two nodes n and m, we have K, ,,,, which appears
in F, only at positions (n, n), (m, m), (n, m) and (m, n).
Premultiplying and postmultiplying —F, by w, the only
terms involving K will be

n,m

2 2
C[Kn,mwn - 2Kn.mwnwm + Kn‘mwm]

= c[Kymwy = w120 (B4)

¥ w, and w,,

where ¢ is the positive constant b(Ax/Ay) for north-south
flow and b(Ay/Ax) for east-west flow.

For nodes n along the no-flow boundaries, the term for
horizontal flow across the boundary is set to zero, so the

Fig. A2. Two-element system.
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corresponding K, values for these terms do not appear in
F

w
For nodes n along the constant head boundaries, K, will
appear only in one term, with value 2cK, w2 > 0 for w, #
0. (In the example the values were 4cK,w} because these
nodes were along two constant head boundaries.)

Thus all conductivity values, whether on the boundaries
or not, can be grouped into nonnegative terms, with some
terms strictly positive. Thus —w’F  w > 0 for all w # 0, and
—F*“ is positive definite.
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