
OPTIMAL OPERATION OF MULTIQUAHTY 
NETWORKS.   II: UNSTEADY CONDITIONS 

By Avi Ostfeld1 and Uri Shamir,2 Member, ASCE 

ABSTRACT: A model is developed for optimal operation of a multiquality water-
supply network under unsteady conditions, for a time horizon that is divided into 
a number of time periods. The objective is to minimize total cost, which includes 
the cost of water at the sources, of treatment, and of the energy to operate the 
system. The constraints include equations that describe the change in flow and 
quality over time throughout the system, the physical laws of flow and concentra-
tions, and the requirements for level of service. The equations that describe con-
centrations in pipes are of a form that allows the flow direction to reverse during 
the iterative solution process. The model is solved with GAMS/MINOS. An ex-
ample system is optimized, with two sources, one with a treatment plant, two 
reservoirs, 6 consumers and 11 pipes, operated over five time periods. The system 
has been analyzed through a base run and three additional runs. 

INTRODUCTION 

This paper extends the model reported in the companion paper by Ostfeld 
and Shamir (1993) to optimal operation of a multiquality water-distribution 
system under unsteady conditions, which may result from time-varying water 
quality at supply nodes, or changing flows in the system, or both. 

For the unsteady analysis it is necessary to develop equations that describe 
quality changes with time, along pipes and in reservoirs. In the steady state 
model the flows through the pipes are fixed and the quality is constant in 
the supply sources. Therefore reservoirs have no role to play. In the unsteady 
model, however, the changes of quality with time in the reservoirs and along 
the pipes are modeled explicitly. 

The study of multiquality systems under unsteady conditions has so far 
been restricted to simulation (Shah 1985; Liou and Kroon 1987; Grayman 
et al. 1988; Cohen 1992). 

The equations that describe the change of quality over time and along 
pipes will be developed in this paper in a form that makes them suitable 
for incorporation as constraints in the optimization model. They are cast in 
a form that remains valid when the flow direction in a pipe is reversed. This 
new development may be useful in simulation models as well. 

The paper consists of three main parts; 

1, Development of the equations for modeling quality in pipes and in 
reservoirs under unsteady conditions, which are then embedded into the 
constraints of the optimization model. 

2. Formulation of the mathematical model for optimal operation over a 
planning period, which considers flows (Q), concentrations (C), and hy- 
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draulic heads (H), and is therefore of the Q-C-H type [see Ostfeld and 
Shamir (1993)]. 

3. Application to a system having two sources, one with a treatment 
plant, two reservoirs, 11 pipes, serving six consumers over five successive 
time intervals. Water quality is described by a single parameter. 

MODEL FOR OPTIMAL OPERATION 

The model for optimal operation is of the Q-C-H type, and contains 
constraints that describe the continuity, hydraulic, concentration, and en-
ergy laws. It is designed to provide the least cost operating policy over a 
planning horizon that is in the order of one day, divided into a number of 
consecutive time periods, each of one to a few hours. Flows and heads are 
assumed to remain constant during each time period, while the movement 
of concentration fronts during the period is accounted for. 

The nodes in the system are classified as either: TSN (source nodes with 
treatment plants), NTSN (source nodes without treatment), and IN (internal 
nodes, at some of which there are consumers). The NTSN nodes are par-
titioned into two types: WELLS and RES (reservoirs). The sources at WELLS 
are assumed to have an infinite capacity, compared to the amount of water 
to be extracted over the planning period. The quality and volume of water 
at RES nodes change over time, in response to flows into and out of the 
reservoir. 

The direction of flow in each arc in each time period will be determined 
in the solution. Certain arcs may allow flow only in one direction, for 
example, the pipe leading from a well, or a pump, which can operate only 
in one direction. 

The planning horizon, DT, is divided into a number of periods, Atn, n 
= 1, . . . , m. tn is the beginning of time period n. Initial conditions are 
given for n = 1, and final conditions for tm, 

MODELING TIME-VARYING QUALITY 

Equations that describe the changes in water quality over time and with 
flow through the system must be simple enough to be embedded in an 
optimization model, yet sufficiently accurate. Furthermore, we want to allow 
the flows in pipes and through reservoirs to be in either direction, so that 
the optimization model can select the directions that result in the best value 
of the stated objective function. Formulation of the quality equations is 
more difficult when flow directions are not fixed. In the following sections 
we develop such equations, which are then used as constraints in the op-
timization model. 

QUALITY CHANGES IN PIPES 

The propagation of pollutant concentration in a pipe is governed by the 
dispersion advection equation. However, Shah (1985) has already shown 
that in simulating multiquality networks, the spreading of concentration 
front by dispersion can be usually neglected relative to the "piston flow" 
by advection, under flow conditions normally encountered in water-distri-
bution systems. Still, even with advection alone, tracking the movement of 
concentration fronts through pipes and modeling the mixing at nodes is a 
complex task. 

Grayman et al. (1988) have simulated unsteady concentration distribu- 
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tions in a network by dividing each pipe into segments and following the 
progress of the fronts through the series of cells. Sinai et al. (1987) used a 
"transportation lag model" to simulate the progress of pollutants through 
the system. Embedding either of these into an optimization model would 
make the solution very complicated and costly. 

Instead, an approximate equation for modeling water quality in a pipe 
has been developed, to be used in the constraints of the optimization model. 

Consider a pipe of length L, in which flow at mean velocity V is from 
node u to node d. The time for a front introduced at u to reach d is: / = 
LIV. Denote by L(At) the distance traveled by the front during a time 
period of length Ar. At will be the time interval for the optimization model. 
Four cases can be defined: 

 

The average concentration in the pipe over At is given by an expression 
that must hold for all four cases. Furthermore, the direction of flow in the 
pipes is not known in advance. A positive direction is arbitrarily assigned 
each pipe, but the flow should be allowed to reverse itself by the optimization 
algorithm. Therefore, the expression for the concentration in a pipe should 
allow this to happen. 

Since the final equation is somewhat complex, we develop it in stages. 
Let the subscript n denote the time period, and tn to be the beginning of 
the nth time period, whose length is At,,. Flow in the pipe during the time 
period is assumed to be from node u to node d. Automatic selection of the 
direction will be discussed next. Denote by Cup the concentration of up-
stream node, and Cpipe will be the resultant average concentration in the 
pipe for the time period. 

When L(Atn) < L the average concentration in the pipe for the time 
period ta is given by: 
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The validity of (2) can be examined at two extreme cases: 
with NMAX being a large number (1022 has been used on a PS/2 computer). 
The average concentration of quality parameter k in pipe a, during time 
period n, is then given by (5a), with initial conditions by (5b): 
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where e is a small number, to avoid division by zero, if La(/\tn) = 0. This 
equation effectively zeros one or the other of the two main terms, depending 
on the sign of LTa(tn). This expression is written for each time period, and 
for each quality parameter. 

To allow for reversal of flow in the pipe, which means that it is not known 
in advance which node for each pipe and for each time period is the upstream 
node, a similar expression is used to "select" the upstream node as a function 
of the direction of flow in the pipe (which, as stated, is to be determined 
by the model): 

 

STORAGE AND QUALITY CHANGES IN RESERVOIRS 

The fluid mass balance equation for a reservoir is: 

 
where QINres and QOUTres are the inflow and outflow, respectively, Ares 
is the surface area, Hres the water level, and Vres the water volume. 

Since the flow in the arcs connected to the reservoir are allowed to reverse 
direction, like in all other arcs in the system, the model must allow for this. 
Eq. (9a) is written: 
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where i;(res) is the set of arcs connected to the reservoir, and the flows are 
taken positive when they enter the reservoir. If the level change in the 
reservoir is expressed as the difference between the values at the beginning 
and end of the period, then (9b) leads to: 

 
with the initial condition: 

Hres{t0) = Hresinitial ................................................................................... (9d) 

The basic mass balance equation for a quality parameter, assuming total 
and instantaneous mixing, in the reservoir, is: 

 
where ClNres and Cres are the concentrations at the inlet and in the res-
ervoir, respectively, and bres(t) is a first-order decay coefficient of the con-
centration. Substituting (9a) into (10a), the change in concentration in the 
reservoir can be expressed as: 

An initial value is given for the concentration: 

Cres{tn) = CresiniHal   .................................................................................(10e) 

Eq. (lOd) is written for each water quality parameter k, and each time step: 
n = 1, . . . , m, with an initial condition (lOe), given for each quality 
parameter. 

ADDITIONAL CONSTRAINTS 

The hydraulic constraints for each period are the same as those for the 
steady-state model [(l)-(2e) in Ostfeld and Shamir (1993)], namely: 

 
The change in concentration is: 

 
which finally leads to: 
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where RIMRN = reduced incidence matrix with respect to a reference node 
RN, in an undirected network; q = vector of discharge along arcs; W = 
vector of consumptions; Floop — fundamental loop matrix for a given 
(arbitrarily selected) spanning tree; AHloop = head difference for a set of 
fundamental loops and paths; AHpipe(q) = vector of head losses or gains 
along arcs; AHfa(qa) = head loss along arc a, calculated by the Darcy-
Weisbach formula; /fl(Rfl, efl/£)a) = friction factor, which depends on the 
Reynold's number (Ru), and the relative roughness (ea/Da), where efl = a 
roughness coefficient, and Da = the internal diameter of the pipe; La = 
arc length; qa — discharge in arc a; O,, = a constant that depends on the 
units used for La, Da, and qa; AHpa(qa) ~ head gain at pumping station on 
arc a; ag, fig, -yg = coefficients for the ath pumping station at is maximum 
efficiency [see (2e) in Ostfeld and Shamir (1993)]; xa, ya = dummy variables, 
which incur high (artificial) penalties in the objective function [see Ostfeld 
and Shamir (1993)]. 

Eq. (11) represents continuity of flows (Kirchoff's law No. 1 for water); 
(12)-(156) are the laws of energy (Kirchoff's law No. 2). These are the 
same as in the steady state model except for (156), which is different from 
the parallel one [(2e) in Ostfeld and Shamir (1993)]. Where a pump is fed 
from a reservoir, the flow in that arc should be allowed to reverse, and the 
reservoir can then fill by flow from the network, through a bypass pipe 

 
FIG. 2.   Smoothing Pump Curve: (a) before Smoothing; (b) after Smoothing 
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�Apumps ............................ (13a) 

�Q]        if « G Apumps . . . .  

 

 

 

The head losses for pipes are given by: 

The head gain for pumps, which are not fed from a reservoir, is given by: 

While for pumps fed from reservoirs, the head equation is: 



Initial average concentrations in pipes 
 

Pipe number 1 2 3 4 5 6 7 8 9 10 11 
Concentration (mg/j) 230 150 80 120 140 200 130 140 225 130 250 

 

FIG. 3.   BASE RUN DATA for Optimal Operation of Multiquaiity Network Example 

For pipes : 

 

V     { (i,j) : TS, R1,R2, W3, A...F) 

For nodes : 

 
i = TS, R1,R2, W3, A...F FIG. 

4.   Legend for Fig. 3 (Symbols Expiained in Text) 

around the pump. This is achieved by (15b), which smooths the pump 
function, as shown in Fig. 2. 

The heads at selected internal nodes (indexed in) have to be within bounds: 
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TABLE 1.   Pumping Stations Data 

  

  TABLE 2. Reservoirs Data  
Initial Data Water Level 

(m) 
Reservoir (1) 

Water level (m) 
(2) 

Concentra-
tion (mg/L) 

(3) 

Minimum 
(4) 

Maximum (5) 

Surface area 
(constant) (m2) 

(6) 

R 1 
R2 

10 
20 

120 
300 

7.3 15 12 
25 

1,000 
1,000 

This is a usual requirement at consumer nodes. Reservoir 
levels are limited to be within given bounds: 

 

The discharges or velocities in arcs may also be constrained within bounds: 
 

For directed arcs q™in = 0 and for undirected q"1'" < 0. The purpose of these 
constraints is to limit the discharges to be within acceptable levels, for 
example, those which correspond to velocity values in the range of 0.5-4 
m/s. Heads at well sources (indexed well) are known at all times: 

 

Mass conservation of quality parameters at nodes: 
 

where K = set of water quality parameters, indexed k; %{in) = set of arcs 
connected to node in; Cfn — concentration of quality parameter k at node 
in; qin = discharge at node in (qin > 0 when water is withdrawn from the 
node). Eq. (20) must hold for all nodes at all times for each of the quality 
parameters, with Cpipe'l given by (5). Recall that it has been assumed that 
quality parameters do not interact with one another, so each is governed 
by its own equation. 

The concentrations at certain npdes are limited to be within specific 
bounds: 
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TABLE 4.   Energy Charge during Operating and First-Order Decay Coefficients in 
Reservoirs 

 

Time Energy  First-Order Decay Coefficients 

interval 
(h) (1) 

charge 
(dollars/m3

) (2) 

 Reservoir R1 
(3) 

Reservoir R2 
(4) 

0-4 4-
10 10-
16 16-
20 20-

24 

0.05 
0.15 
0.18 
0.25 
0.35 

0.00125 
0.00127 
0.00128 
0.00126 
0.00124 

0.00123 
0.00128 
0.00126 
0.00122 
0.00121 

TABLE 5.   Source Data 

Source 

(1) 
Head 
(m) (2) 

Inlet 
concentralion 
(before 
treatment) 
(mg/L) (3) 

Coefficient of 
treatment cost 
(m3/dollars) (4) 

Minimum 
concentration 
possible at 
outlet (mg/L) (5) 

Water cost 
(before 

treatment) 
(dolfars/m3) 
(6) 

TS 
W3 

5 0 300 
80 

4.0 20 0.05 
0.5 

which is normally the case at consumer nodes. 
The concentration in sources without treatment plants is fixed for each 

quality parameter k: 
 

 

OBJECTIVE FUNCTION  
The objective function is the cost of operating the system over the plan-

ning horizon. It contains two types of terms: (1) The cost of water, its  
purchase or production at the sources plus the cost of treatment; and (2) 
the cost of energy to operate the pumps. 

The cost of treating water at treatment source nodes (TSN, indexed tsn), 
with respect to water quality parameter k, is given by: 

 
where; £~(tsn) = arcs directed away from the node tsn; Cinitialk

tsnn = 
concentration of quality parameter k, at the inlet of source node tsn; 
TCk

tsn = 
! treatment cost of quality parameter k, per unit volume of treated water, at 
source node tsn; Ktck

tsn — coefficient of the treatment cost of quality pa-
rameter k, at source node tsn. A schematic representation of the outlet 
quality for a single quality parameter, as a function of treatment cost, is 

: shown in Fig. 2, in Ostfeld and Shamir (1993). The 
range of plant removal ratios is restricted by: 

 PUO = V well e WELLS   ........................................... (22) 
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 Reservoirs Well 
source Treatment 

source 
 

Time interval 
(hr) 

Type of 
question and its 
number Rl R2 W3 TS 

Total 

 526.4 226.5 267.2 0 1020 
 

1.1 
0.52 0.22 0.26  1.0 

 

Q 
1.2    0MIN  

 2.1  
 c 2.2      
 3.1  
 

Tl 
0-4  

H 
3.2      

 569.4 325.2 365.1 1079.9 1260 
 

1.1 
0.45 0.26 0.29  1.0 

 

Q 

1.2      
 2.1 F 
 

C 
22    0.926  

 3.1   
 

T2 4- 
10 

H 
3.2      

 860.0 - 397.3 627.3 548.3 1090 1.1 
0.79 -0.37 0.58  1.0  

Q 

1.2      
 2.1  
 c 2.2    0.93 MAX  

� 
3.1 D 

 

T3 
10- 16 

H 
3.2  1.67    

 851.4 - 292.5 611.1 1180.6 1170 
 

1.1 
0.73 -0.25 0.52  1.0 

 

Q 

1.2      
 2.1 B 
 

C 
2.2    0.93 MAX  

 3.1  D 
 

T4 
16-20 

H 
3.2  1.97    

 499.2 181.5 244.3 0 925 
 

1.1 
0.54 0.20 0.26  1.0 

 

Q 

1.2    0MIN  
 2.1  
 

C 
2.2     

 3.1  
� 

T5 
20-24 

H 
3.2      

Remark :  a square is left blank for results which are 
either not relevant or non - binding. 

FIG. 5.   BASE RUN Results for Optimal Operation of Multiquality Network Example 
under Unsteady Conditions 

 

where RRtsn
k,max = maximum removal ratio of quality parameter k at node 

tsn. 
The cost of water and treatment is: 

 

 

(23c) 

�u = fixed 

charge 
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Reservoirs Well 
source 

Treatment 
source Time interval 

(hr) 
Type of question 
and its number 

Rl R2 W3 TS 
Total 

690.9 324.1 5.0, 1178.7 1020 l.1 
0.68 0.32 = 0  1.0 Q 

1.2   5 MIN   
2.1  C 
2.2   0.93 MAX  
3.1     

Tl 
0 - 4  

H 
3.2 41.72  -43.8   

702.8 . 552.2 5.0 1174.5 1260 1.1 
0.56 0.44 = 0  1.0 

Q 

1.2   5 MIN   
2.1 F c 2.2   0.93MAX  
3.1   

T2 4- 
10 

H 
3.2  5.52 - 109.1   

1006.2 78.8 5.0 1042.6 1090 1.1 
0.92 0.07 = 0  1.0 

Q 

1.2   5 MiN   
2.1  C 
2.2    0.84  
3.1  

T3 
10- 16 

H 
3.2 189.27  -35.4   

693.5 471.5 5.0 693.5 1170 1.1 
0.59 0.40 = 0  1.0 

Q 

1.2   5 MIN   
2.1 B c 2.2    0.86  
3.1   

T4 
16-20 

H 
3.2 15.25  -67.3   

662.1 257.9 5.0 0 925 1.1 
0.72 0.28 = 0  1.0 

Q 

1.2   5 MIN O MIN  
2.1  C 
2.2      
3.1  

T5 
20-24 

H 
3.2 31.86  - 44.5   

Remark : a square is left blank for results which are 
———      either not relevant or non - binding. 

FIG. 6.   SENSITIVITY ANALYSIS Results, CASE 1, for Optimal Operation of Mul-
tiquality Network Example under Unsteady Conditions 

for unit volume of water at well nodes; qwell, qtsn= discharge supplied by 
source node well and source node tsn, respectively; WCinitial

tsm = fixed 
charge per unit volume of untreated water at tsn nodes. The cost of energy 
is: 

 

 
where EC = energy cost; ECCPa = power coefficient of pumping station 
located on arc a, assuming efficiency is constant; kwhc = energy charge 
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2     ECCPaqa(tn)kHPa[qa{tn)}kwhc(tn)ten 



Reservoirs Well 
source Treatment 

source Time interval 
(hr) 

Type of question 
and its number 

Rl R2 W3 TS 
Total 

526.36 226.46 267.19 0 1020 1.1 
0.52 0.22 0.26  1.0 

Q 
1.2    0 MIN  
2.1  c 2.2      
3.1    

Tl 0 -
4  

H 
3.2      

579.5 300.5 380.0 1183.1 1260 1.1 
0.46 0.24 0.30  1.0 

Q 

1.2      
2.1 D c 2.2   I0.93MAX  
3.1   

T2 
4- 10 

H 
3.2  5.20    

861.2 -398.4 627.2 534.1 1090  1.1 
0.79 �0.37 0.58  1.0 

Q 

1.2      
2.1  c 2.2   I0.93MAX  
3.1 D 

T3 
10-16 

H 
3.2  1.49    

699.2 = 0 470.8 1179.6 1170 1.1 
0.60 = 0 0.40  1.0 

Q 

1.2      
2.1 B c 2.2   0 .93 MAX  
1.1    

T4 
16-20 

H 
3.2      

574.0 = 0 351.0 0 925 1.1 
0.62 = 0 0.38  1.0 

Q 

1.2    0 MIN  
2.1  c 2.2      
3.1  

T5 
20-24 

H 
3.2      

Remark :  a square is left blank for results which are 
either not relevant or non - binding. 

FIG. 7. SENSITIVITY ANALYSIS Results, CASE 2, for Optimal Operation of 
Mul-tiquality Network Example under Unsteady Conditions 

during time of operation; penalty = large positive number which incurs 
high (artificial) penalties in the objective function, on the dummy variables 
xa, ya, and so makes it possible to obtain a mathematical solution to the 
problem even when the physical system cannot meet all the head constraints 
[Note that penalty has no connection to the PEN terms in the smoothing 
(5a) and (6a)]. 

OPTIMIZATION MODEL 

The optimization problem to be solved, with the initial conditions (56), 
(9d), and (l0e), is: 

Minimize(WC + EC)    ..........................................................................(25) 



Reservoirs Weil 
source 

Treatment 
source Time interval 

(hr) 
Type of question 
and its number 

Rl R2 W3 TS 
Total 

526.4 226.5 267.2 0 1020 1.1 
0.52 0.22 0.26  1.0 Q 

1.2    0 MTN  
2.1  c 2.2      
3.1    

Tl 
0-4  

H 
3.2      

569.4 325.5 365.1 1183.1 1260 1.1 
0.45 0.26 0.29  1.0 

Q 

1.2      
2.1 F c 2.2    0,88  
3.1     

T2 
4- 10 

H 
3.2      

547.1 236.5 306.4 0 1090 1.1 
0.50 0.22 0.28  1.0 

Q 

1.2    0 MIN  
2.1   c 2.2      
3.1  

T3 
10- 16 

H 
3.2      

554.5 295.5 319,9 1182.3 1170 1.1 
0.47 0,25 0.27  1.0 

Q 

1.2      
2.1  c 2.2    0.87  
3.1  

.     T4 16-
20 

H 
3.2      

515.2 138.0 271.7 = 0 925 1.1 
0 56 0.15 0.29  1.0 

Q 

1.2      
2,1 A c 2.2    0MIN  
3.1  

T5 
20-24 

H 3.2      
Remark : a square is left blank for results which are 

either not relevant or non - binding. 

FIG. 8.   SENSITIVITY ANALYSIS Results, CASE 3, for Optimal Operation of Mul-
tiquality Network Example under Unsteady Conditions 

Subject to constraints: (5a), (9c), (lOd); (11)—(22), for all the time periods, 
and all the quality parameters considered. 

ASSUMPTIONS 

1. The water-quality parameters do not interact with one another. 
2. The water-quality parameters have a first order decay in reservoirs, 

but are conservative in pipes. 
3. Complete and instantaneous mixing in reservoirs. 
4. Complete and instantaneous mixing at nodes. 
5. The power coefficient for pumping stations is computed assuming that 

the efficiency is constant. 

677 



TABLE 6.   Cost (Dollars), and Relative Weight, of Objective Function Parts 
 

  Water and   
Run Energy treatment Penalty Total 
(1) (2) (3) (4) (5) 

Base 4.51 x 103 1.56 x 104 3.64 x 103 2.37 x 104 
 0.19 0.66 0.15 1.0 
Sensitivity anal- 5.1 x 103 1.2 x 108 5.8 x 105 1.2 x 10* 
ysis case 1 =0 = 1 =0 =1.0 
Sensitivity anal- 1.2 x 105 1.6 x 104 6.7 x  103 1.4 x 105 
ysis case 2 0.84 0.11 0.05 1.0 
Sensitivity anal- 3.9 x 103 1.1 x 104 0 1.4 x 104 
ysis case 3 0.27 0.73 0 1.0 

6. The cost of treating one water-quality parameter at a treatment plant 
is independent of the costs for other parameters. 

METHOD OF SOLUTION 

The solution is obtained with GAMS (Brooke et al. 1988)/MINOS (Mur-
tagh and Saunders 1982), on a PS/2 mod 80. GAMS is used to build the 
model, MINOS is used to solve it, by employing a projected augmented 
Lagrangian algorithm. A detailed description of the optimization technique 
can be found in Murtagh and Saunders (1982). 

EXAMPLE 

The optimization model was applied to the system shown in Fig. 3. It 
contains one source with a treatment plant (TS), which discharges into a 
reservoir (Rl) and from there water is pumped by a pumping station (PSR 1) 
into the system. The system is fed from two more sources: reservoir R2, 
through pumping station PSR2, and well W3, through PSR3. Water can 
flow back into the reservoirs, through the bypass around the pumps. The 
system supplies six consumers, located at nodes A-F, and contains 11 pipes. 
The operating horizon is 24 h, divided into five time intervals: 0-4, 4-10, 
10-16, 16-20, 20-24 hours. Fig. 4 contains the legend for Fig. 3. For pipes: 
# = number of pipe, and an arrow denotes a directed arc; CHWtj = friction 
coefficient of the Hazen Williams head loss formula; Lij(km) = length; 
Dij(mm) = internal diameter. Note that the Darcy-Weisbach head loss 
formula may be used here as well, as has been formulated in (14), and used 
in the steady state case (Ostfeld and Shamir 1993). For nodes: +Zi(m) = 
elevation of node i, Tables 1-5 contain the remaining data for the network. 

RESULTS 

Results are shown in Figs. 5-8 and in Tables 6 and 7, for a base run and 
three additional sets of input data, for the purpose of testing the response 
of the solution to various conditions. The data in Figs. 5-8 is organized as 
follows: each of the figures contains five blocks, denoted T\ to T5, cor-
responding to the five time intervals. In each block there are results that 
contain the following: 
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Discharge (Q): 

1. The amounts of water supplied from the sources and reservoirs: Rl, 
R2, W3, and TS (m3/h), then converted into their relative contributions to 
total supply (e.g., 52%, 22%, and 26% in Fig. 5 for 71, for Rl, R2, and 
W3, respectively, with TS not operating at this time). 

2. Flows which reach their bounds are indicated. 

Quality (C): 

1. Nodes at which the concentration reaches its bound are indicated. 

2. The degree of treatment at TS. 

Heads (H): 

1. Nodes at which the head reaches its bound are indicated. 
2. Pumping stations at which dummy variables are indicated (e.g., 1.67 

m at R2 at 73). When dummy variables are used, they contribute a penalty 
to the objective function. 

Table 6 lists the values in the objective function, of energy cost, water 
and treatment cost, and penalty cost [in ($)], for the base run, and the 
sensitivity analysis cases. Their relative contribution to the total cost is also 
shown, for each run. Table 7 lists the reservoir levels (m) and concentrations 
(mg/L), where the levels correspond to the beginning of each time interval, 
and the concentrations for each of the whole time periods. 

Sensitivity Analysis Results 
Excluding the base run, three additional runs, which were designed to 

test the sensitivity of the results to various changes in the data, are shown 
in Figs. 6-8. 

Case 1 
A very high cost (5 x 106 $/m3, compared with 0.5 $/m3 in the base run) is 

assigned to the water in the well source (node W3). As a result, treatment is 
at its maximum in T1 and T2, and least in T5. In T2 and T4 threshold 
concentrations are reached at nodes Fand B, respectively. Dummy variables 
are used. Due to the high cost of water given in well source W3, in com-
parison to the penalty induced on the dummy variables in the objective 
function, and the cost of treatment, the minimum possible is subtracted 
from W3 in all the time periods. Therefore, amounts of over 1,000 (m3/h) 
are taken from node TS, and treated to the maximum possible level at T1 
and 72. 

Case 2 
A low efficiency is assigned to the pumping station at reservoir R2 (0.001, 

compared with 0.75 in the base run). As a result, treatment is maximum in 
T2, 73, and TA. The minimum amount of water possible is taken from TS 
at T1 and T5. In T2 and T4 threshold concentrations are reached at nodes 
D and B, respectively. In 73 the pressure is minimum at node D. Dummy 
variables are used. The low efficiency of pumping station PSR2 increases 
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the energy cost of water supplied from reservoir R 2. Therefore, the reservoir 
R2 fills in T3 and no water is supplied from him in T4 and T5. 

Case 3 
A less restrictive requirement is placed on quality at node B in T4 (400 

mg/L, compared to 100 mg/L in the base run). The results show that the 
minimum is taken from TS at 7'1, T3, and T5. In T2 and T5 threshold 
concentrations are reached at nodes F and A, respectively. Dummy variables 
are not used. Due to the less restrictive requirement at node B in T4, in 
comparison to the base run, no treatment, and no water need be supplied 
from node TS in 71, 73, and T5, dummy variables are not used, and the 
threshold concentration requirement is met at node A in 75. 

CONCLUSIONS 

A model for optimal operation of a multiquality water-supply system 
under unsteady conditions has been developed, applied to a sample system, 
and solved. The results demonstrate that the equations which have been 
developed to describe water-quality changes in pipes and reservoirs over 
time, enable the model to select directions of flow, and to follow quality 
throughout the system. The runs made with the model, under a variety of 
data and conditions, show that the optimal solution is sensitive to changes 
in data, and it uses the flexibility afforded by mixing sources, and using 
treatment to meet consumers demands for quantities, qualities, and hy-
draulic heads, at minimum cost. 
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APPENDIX II.    NOTATION 

The following symbols are used in this paper: 
 

set of arcs, indexed a; 
subset of A, on which pumping stations are located; 
surface area of reservoir; 
concentration of quality parameter k, at inlet of source 
node tsn; 
concentrations at inlet of reservoir; concentration 
of quality parameter k at node in; maximum and 
minimum concentrations, respectively, of water-
quality parameter k at node in; average 
concentration in pipe; concentration of quality 
parameter k in arc a, computed by (5a); 
initial average concentration in arc a of water-quality 
parameter k; 
concentrations in reservoir; initial concentration 
in reservoir; concentrations at nodes u and d of pipe, 
respectively; concentration at upstream node 
calculated by (6a); fixed known concentration of 
water-quality parameters k at node well; 
concentration of water-quality parameter k at node 
well; 
internal diameter of arc a; 
planning horizon; 
downstream node of pipe; 
energy cost; 
power coefficient of pumping station located on arc 
a (a e Apumps C A), assuming efficiency is con-
stant; 
fundamental loop matrix for given (arbitrarily se-
lected) spanning tree; friction factor of arc a; total 
heads at selected internal nodes; minimum and 
maximum total heads allowed at the selected 
internal nodes, respectively; fixed known head at 
node well; water level of reservoir; initial water 
level in reservoir; minimum and maximum levels 
allowed in reservoir; head at node well; set of 
internal nodes, indexed in; set of water-quality 
parameters, indexed k; coefficient of treatment cost 
of quality parameter k, at source node tsn; 
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energy charge during time of operation; 
pipe length; 
distance traveled by water-quality front in pipe, dur-
ing time period of length Af; length of arc a; 
quantity defined for arc a in (3); 
natural logarithm; number of 
periods; 
subscript of set of time periods: 1, . . . , m; 
maximum number possible in computer being used; 
set of nontreatment source nodes, indexed ntsn; 
penalty terms used in smoothing (5a) and (6a); 
large positive number that incurs high (artificial) 
penalties in objective function, on dummy variables 

path matrix, connecting reference node RN with 
subset of internal nodes; inflow and outflow of 
reservoir, respectively; vector of discharge along 
arcs; flow in arc a; 
minimum and maximum discharges in arc a, respec-
tively; 
discharge at node in (qin > 0 when water is with-
drawn from node); 
discharge supplied by source node well and source 
node tsn, respectively; Reynolds number of arc a; 
set of reservoirs, indexed res; reduced incidence 
matrix with respect to reference node RN; 
maximum removal ratio of quality parameter k at 
node tsn; 
treatment cost of quality parameter k, per unit vol-
ume of treated water, at source node tsn; set of 
treatment source nodes, indexed tsn; beginning of 
time period n; upstream node of pipe; mean 
velocity in pipe; water volume of reservoir; 
vector of consumption (except for the reference node 
RN) at nodes; water cost; 
fixed charge for unit volume of water at well nodes; 
fixed charge per unit volume of untreated water at 
tsn nodes; 
set of wells, indexed well; 
dummy penalty variables; 
coefficients for aih pumping station at its maximum 
efficiency; 
head loss along arc a, calculated by Darcy-Weisbach 
formula; 
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head difference for set of fundamental loops and 
paths; 
vector of heads, losses or gains, along arcs; head 
gain at pumping station, located on arc a; time 
interval for optimization model; length of time 
period n; 
first-order decay coefficient of concentration in res-
ervoir; 
small number; 
roughness coefficient of arc a; relative roughness 
of arc a; pumping station efficiency; set of arcs 
connected to reservoir; set of arcs connected to 
node in; arcs directed away from node tsn; and 
constant dependent upon units used for La, Da, and 
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