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A new technique for optimal operation of multiquality water supply systems is proposed.
The technique, which is known as a Q-C-H (flow-quality-head) model, combines pre-
viously developed flow-quality (Q-C) and flow-head (Q-H) models for optimal opera-
tion of water supply systems. The decision variables in the model are the operation of
treatment plants, pumps and valves. The model minimizes the cost of water at sources,
treatment, energy, and loss of agricultural yield when water quality is low. The model
uses an iterative modified projected gradient method combined with the Complex meth-
od. As in the Q-C and Q-H models, the solution method is based on decomposition, dis-
aggregation/aggregation approach, involving internal and external optimization. The
decision variables of the external model are the flows in the loops of the network and
the removal ratios at the treatment plants. The operation of the pumps and valves are
the decision variables of the internal model. The method is demonstrated by application
to an example problem.

Keywords: Water supply systems; water quality; optimal operation of water systems;
network analysis; hydraulic analysis

INTRODUCTION

Optimal operation of multiquality networks has been discussed in the
previous papers of this series [4, 5]. Several earlier attempts to develop
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models for this problem were somewhat limited. Sinai et al. [17]
suggested decomposition of the complete solute transport problem
which include 3 variables (Q-flow, C-concentration of water quality
parameters, and H-head) into two simpler problems: Q-C (“chemi-
cal”) and Q-H (hydraulic). They also suggested transformation of
the Q and C variables to a solute flow variable ¥ = QC and to solve
for it. The result is a limited Linear Programming (LP) model with
hydraulic constraints, which can be used in networks where the di-
lution junction equation contains only one outflow unknown [17].
Mehrez et al. [11] used the same transformation of Sinai ez al. [17]
and developed a model for the optimal operation of multiquality
networks. Their model is more advanced than that of Sinai er al.
[17], yet it is also quite limited. This model is unable to simulate net-
works where the flow direction can be changed during the solution
procedure. The same limitation arises in Mehrez et al.’s model [11]. In
addition, it does not include treatment plants, and several constraints
on C and H are missing. Ostfeld and Shamir [13] developed a more
advanced model for the same problem. They used some of the math-
ematical tools developed by Cohen [2] and formulated a problem
which was solved by a general software package GAMS/MINOS.
This optimization technique does not make use of the properties of
the problem, and therefore the utilization of this method is again
limited.

In the present [2—5] the optimization problem is tackled by
decomposition of the Q-C-H problem into two subproblems Q-C
and Q-H. The two submodels are combined in this paper into a
general Q-C-H model, using the solution methods developed earlier
as building blocks.

Parameters of Water Quality and Consumer Types

Water quality may be described by primary and dependent quality
parameters. Primary parameters are defined as those which are inde-
pendent of other parameters. Dependent parameters are defined by
a relationship between independent parameters, for example, SAR
which is defined as the ratio between the concentration of Na, Mg
and Ca in the water.
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Water is supplied to 3 types of consumers:

1. Agricultural consumers, who have a crop yield function which
depends on water quality [4].

2. Domestic and industrial consumers who do not require water treat-
ment and do not incur costs from variable water quality at the con-
sumer’s connection.

3. Consumers with limits on the concentration of one or more water
quality parameters. Such consumers require that quality be with-
in specified limits, and no cost or benefit function for quality is
specified.

Mathematical Representation of the Network

The water supply system can be described as a graph, consisting of
arcs connected at nodes. See Cohen et al. [4] for a topological de-
scription of the network, and Cohen ez al. [5] for definition of paths
and the path matrix.

Flow Distribution in the Network

The optimal flow distribution is determined as part of the solution in
the following manner. An initial flow distribution, which satisfies wa-
ter continuity at all nodes is specified. This flow distribution is modi-
fied by the solution process, in a way in which continuity is retained.
This maintenance of continuity is achieved by considering the circular
flows, g, in loops and pseudo-loops, as decision variables, since when
these flows are modified the continuity at nodes is maintained. As
a consequence of this definition, the water flow continuity equa-
tions can be omitted, thus reducing the size of the optimization
model. The vector q is of order n;, the number of loops, with the ith
component of the vector being the flow in the positive direction of
loop i. Since the number of loops is considerably smaller than the
number of pipes, using the circular flows in the loops rather than the
flow in the pipes as the decision variables in this manner results in an
even smaller model.
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The relationship between the flows in all pipes of the network, q,,
are defined by:

6, =q+Lq (1)

where q! is the initial flow distribution, which satisfies the water flow
continuity equations, and (-)” denotes transpose. The discharges to be
supplied from the sources are defined by:

q,= Aq, = Al + L]q] (2)

where A is a submatrix of 4, obtained from those rows of 4 which
relate to source nodes. The discharges through the valves, boosters,
treatment plants and pump stations are:

4 = Biq, = B{[q) + L]q] k=p,b,1,v 3)

Hydraulics of the Network Components

See Cohen et al. [5] for the equations of pipes, valves and pumps. A
special method is developed to describe pump stations, as follows:
The head-discharge-efficiency function (operating surface) of a pump
station depends on the particular set of pumps (called “a configura-
tion”), which are in operation and their series-parallel interconnec-
tions. If these configurations are the decision variables, then the result
is an Integer Nonlinear Programming problem, which is difficult or
impossible to solve for a system of practical size. Cohen et al. [5] have
shown that a pump station can be used more efficiently if the configu-
ration also includes a control valve and by-pass. They also describe an
alternative formulation resulting from the inclusion of a valve and by-
pass for the operating surface of a pump station. The head-discharge
relationship is defined by a smooth continuous function over a domain
bounded by an envelope curve, 4,” (g,) (see Eq. (9) below), which is a
limit on the head that can be supplied by the pump station as a func-
tion of its discharge. Each head discharge point under or on this en-
velope is defined with its efficiency, the least cost configuration for
providing it, and the head which the control valve in the configura-
tion has to dissipate. For a given ¢ the efficiency as a function of the
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head is expressed as:
n= g Th'hﬁi lexp{w(¢; — 1)} + exp{=w (¢ — 0.5)}] 4)

where @(-) is a normalized function defined by:

w{x} =k, (5)

\/x2 + €o

h; is the head obtained by configuration i when the discharge is ¢, and
¢; is defined by:

_¥ exp{w(h — )}
= ;exp{wm — )} + exp{—w(h — h;)} (6)

Pump stations usually consist of different pumps. Consequently, the
envelope curve includes several nonsmooth points, which are smooth-
ed as follows. Assume a pump station with »n; nonsmooth points
4 {i=1,2,...,n}; each interval between two such points being derived
from a different envelope function; denote by g’(g) the function for the
interval (¢,4'*!). The smoothed envelope function is given by:

' iy 8ilg) exp(w{&i})
B0 =T e e)) 7

where:

L=@q-4)d" -9 (8)

The (g = 0, h = 0) point also has to be included. Inclusion of this point
is achieved by bringing the envelope curve down to this point for g < 1
(an arbitrary value, considered small enough). Thus, the smoothed en-
velope curve, including the operating condition at zero flow, is:

" o exp(w{q — 1}) + qa exp(—w{q - 1})
B = b)) reewlg 1)

where « is a coefficient which determines how steeply the curve is
brought down to zero.
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Cohen et al. [5] have shown that the solutions derived on the basis
of this transformation of the discrete operating surface into a con-
tinuous and smooth one are practical and effective.

FORMULATION OF THE HYDRAULIC
SUBPROBLEM

For a given flow distribution in the network, the power at each booster
is expressed as a quadratic function of the discharge, and heads are
computed with the Hazen-Williams equation (5, Eq. (12)). The maxi-
mum head in each pump station, 4, is given by Eq. (9) for the known
flow. The pumping head can vary in the range [0, h;,’]. Each valve causes
a head loss, even when fully open, denoted by (h:)o (5, Eq. (14)).

Thus, for a given flow distribution the operation of the boosters
is known and the optimal operation of the pump station and control
valves, which realize the given flow, is formulated in the following
Qq¢-H problem [S]. The decision variables of this Q,-H problem are;
h, — pumping heads at the n, pump stations, h, — the additional head
losses to those of fully open valves in the n, control valves. Thus, the
head losses in valves are determined from:

h, = + ()" where b, >0 (10)

The constraints consist of the continuity of energy (Kirchoff’s
second law) and the head limits at nodes. Since there may be no fea-
sible solution for the specified flow distribution in order to assure a
mathematical solution, a pair of artificial variables with opposite signs,
which are penalized in the objective function by coefficients 8" and 6,
respectively, are added to each constraint. Denote by x; and x; the
artificial variables added to the Kirchoff’s law constraints, and denote
by x; and x,, the artificial variables added to the head constraints.

The Qo-H optimization problem now becomes:

minfy = theop 11 QHE™' 1, + 8 (Xf +x7) +67(x; +x;) (11

where ¢ is the time period, k, is the cost per unit energy, 1, is a vector
of order n, whose elements are 1, o, is a constant whose value depends
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on the units used (for SI units o, = 104), Q, is a square diagonal
matrix whose components q,, are the discharges at the n, pump sta-
tions. H, is a square diagonal matrix whose components h, are the
pumping heads at the n, pump stations. E is a square diagonal ma-
trix whose components v, are the efficiencies.

Continuity of Energy (KirchofP’s Second Law)
Lh, — LW, +x{ +x; =b, + Lh} + L,(h?)° ~ Ly (12)

where b, is the head difference between the end of the loops: b,=0
when the loop is closed, and for a pseudo-loop b, equals the known
head difference between the ends of the pseudo-loop.

Head Limits

The head at each consumption node must be between a lower and an
upper limit. The head at each consumption node is expressed by the
energy equation along the path between the consumer node and a
reference node at which the head is known independent of the flows
{(e.g., a reservoirs or well)

W, — P.h} + P,(0})° — Pphj < Poh, — Pl + X +x,
< b! + Po; + Py(h3)° — Pyh - (13)

where 4/, and h” are the differences between the head at the reference
node and the lower and upper allowable heads at the consumer, re-
spectively.

Pumping Head Limits

At each pump station the pumping head is restricted to be less than the
maximum specified at the given flow.

H, <h, 14
P y4

with hj given by Eq. (9).
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Non-negativity

hy, b, X7, Xz, %), %, >0 (15)

This Q-H, problem has a nonlinear objective function and linear
constraints. The nonlinearity in the objective function is caused by
the dependency of the efficiency of a pump on the pump head h,.
However, this nonlinearity is normally mild over a wide range of h,,.
For given 7, all the multipliers of 4, in the first term of Eq. (11) are
therefore combined into a constant p”, resulting in a LP problem with
the objective function:

minfy = p'h, + 67 (x{ +x7) + 67 (x; +X,) (16)

where pT = tho0,0,E 1, v

The Qg-H problem is solved by what is known as the Algorithm
Qo-H, described by Cohen et al. [S]. The convergence of the Q,-H
algorithm has not been proven mathematically. However the algo-
rithm has been applied over a wide range of cases and found to al-
ways converge in at most 3 iterations (Cohen [2]). The solution of
this Qo-H problem gives the optimal pumping head, h}, and the
optimal head loss in valves, h}, for the given flow distribution. The
optimal opening ratio of each valve is obtained from Eq. (9) when &}
and the known discharge are substituted. The optimal operation of
each pump station to achieve the optimal pumping head #; is obtained
from Algorithm OPP, described by Cohen et al. [S], when h; and the
given flow are used. The optimal operation of each pump station de-
termined in this manner includes the pumps to be operated and their
series-parallel interconnections, the head loss dissipated by the control
valve and the by-pass flow.

MATHEMATICAL MODEL OF THE Q-C-H
PROBLEM

The network flow probiem which includes all three variables, i.e., flow
(Q), concentration of water quality parameter (C) and head (H) dis-
tribution is what is referred to as the Q-C-H problem. This problem
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was decomposed into two subprobiems: ‘‘chemical” (Q-C) and
“hydraulic” (Q-H) ones which were the subject of the two previous
papers in this series [4, 5]. The complete model of the Q-C-H problem
makes use of some elements of the Q-C and Q-H models. These two
submodels are connected by the flow (Q) distribution in the network.
Solving the two submodels independently does not yield the same
optimum as that of the combined Q-C-H model since there are some
interactions in the solute transport problem that should be described
in a complete Q-C-H model. The following is an attempt to present
a mathematical model for optimizing the steady state operation of
multi-quality water supply network where all the three variables Q, C,
H are considered.

Decision Variables

The primary decision variables of the Q-C-H problem are: q — the
circular flows; r—the removal ratios in the treatment plants (n;
subvectors of primary quality parameters, where r” is the removal
ratios of the primary quality parameter m at the treatment plants (see
[2—4]). ¢ — the values of the primary parameters in the system (n;
subvectors of primary quality parameters, where ¢” is the concentra-
tion of the quality parameter m at the nodes); ¢, — the values of the
dependent quality parameters in the system (n; subvectors of de-
pendent quality parameters, where ¢} is the concentration of the de-
pendent quality parameter m at the nodes).

The secondary decision variables are: the opening ratios of valves,
configurations to be operated within the pump stations, head losses in
control valves, and the by-pass flows. Recall that when q is known,
these variables can be defined uniquely and directly from the solution
of the Qp-H problem.

Objective Function

The objective is to minimize total cost of operation of the system and
losses incurred by reduction in productivity caused by lower water
quality over a specified time period ¢. The total cost is made of the
following components.
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Water Supply Cost

This is the cost of water supplied from the sources. In general, the
specific cost (per unit volume) varies with discharge. Thus, the speci-
fic cost of water at sources is given by a vector of functions, denoted
by w(q,), whose dimension is the number of sources. When the unit
cost at a source is fixed, the value of the function for that source is
a constant. The total supply cost from the sources, ¢,, for the entire
period ¢, is:

¢s = tw,(qs)qu (17)

Pumping Cost of Boosters

The total pumping cost of boosters, ¢;, for the time period is:

o = theapNp(qy) 15 (18)

where k, is the cost per unit energy, o is a constant which depends on
the units used (for SI units a;=104), Nx(q;) is the power-discharge
functions, and 1, is a vector of order n; whose elements are all 1.

Pumping Cost of Pump Stations

As described above, for a given flow distribution, defined by the cir-
cular flow, q, the pumping cost at pump stations is obtained from
the solution of the Qo-H problem, which is denoted by ¢,(q).

Treatment Cost
The total treatment cost, ¢, is [4, Eq. (6)]:
¢ = tw,(r)'q, (19)

Yield Reduction Cost
The total loss due to yield reduction, ¢,, is [4, Eq. (10)]:

¢y = ygBO 1y —y] (20)
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where y and y, are vectors with components y; and (yq);, respectively,
and B, is the income matrix associated with full productivity with di-
agonal element 7 equal to (by);.

Penalty Costs

Some consumers have limits on the concentration of water quality
parameters they can accept or use. These limits on water quality are
introduced into the objective function by a penalty function, such that
the solution is directed to be within the specified limits. For quality
parameter m in node i, ¢,,;, for which the limits are denoted by c},; and
c; the penalty function is defined by:

Pri = —Zmi eXp {@ (zmi) } (21)

where

Zmi = (Cmi — C::ni)(CMi - C:m‘) (22)

and w(-) is the “normalized function” as defined in Eq. (5). Cohen
et al. [3,4] showed that this function is convex, continuous and
smooth and can be controlled to prevent numerical difficuities often
caused by penalty functions.

The penalty cost with respect to the primary parameter m, ¢, is:

¢ = ZPmi(Cmi) = Z —ZmieXp{w@(zm)} N=Ni+N:+N; (23)
ieN ieN ‘

where the summation is only used over the nodes at which the value of
the quality parameter m is restricted between limits. Similarly, the up-
per and lower limits, ¢, and ¢}, which are imposed on the depen-
dent parameter m in node i are introduced in the objective function
by a penalty term defined by:

Pi = —em exp{w(em)} (24)

where

emi = (Cami — chi) (Cami — c:imi) (25)
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The penalty cost with respect to the dependent parameter m, ¢}, is:

#5=2 Prilcam) = 3 —emexp{m(em)} N=Ni+N+Ns (26)
iEN ieN

again with the summation only occurring across those nodes where the
value of the water quality parameter m is restricted.

Combining the components mentioned above yields the objective
function, f:

minf = w,(q,)"q, + tw,(r)7q, + tke 2pNs(q;) 15+

+6p(Q) +YoBolly — Y1 + > o7 + > 4] (27)
m=1 m=1

Constraints

The operator ¢,(q), which defines the solution of the problem Qq-H,
includes the hydraulic constraints: Kirchoff’s second law, limits on the
heads at consumers’, limits on the pumping head at pump stations
and limits on the opening ratio at valves. The additional constraints
of the problem Q-C-H consist of the mass conservation at nodes, the
dilution conditions, the relations between the dependent and primary
parameters, limits on the discharges in various components of the
network, and limits on the removal ratios at the treatment plants.

Mass Conservation Law

This law is expressed by n; (number of primary quality parameters)
sets of equations. Each set includes equations for all nodes, except the
source nodes.

Zaijq{;cj‘fn + Za,,q’a(l - ;jm)cj_;, - dici,,, =0 VieN, &Vme M,
JEE) icEy

(28)

where d; is the consumption at node i, M, is the primary quality
parameters group, a; is the element jj of the adjacency matrix A, c;n is
the concentration of primary quality parameter m in pipe j, which is



WATER SUPPLY SYSTEMS-III 13

defined by the smoothed dilution conditions [3,4]:

o cemexp{w(ayqh) } + cimexp{ — @(ayq4)}
exp{w(ayq%)} +exp{ — @(a;qa) }

(29)

ym

where k and i are the end nodes of pipe j. This formulation overcomes
the difficulty encountered by Shah and Sinai [15,16] in specifying the
dilution conditions, by allowing the flows in each pipe to reverse di-
rection during the iterations of the solution process as the optimal
flow distribution is identified. r,, is the removal ratios of the primary
parameter m at pipes belonging to E,, defined by:

fm =B tm (30)

Quality Parameter Relation Function

According to the definition of the dependent parameter group, each
dependent water quality parameter has a function which defines its
relationship with primary parameters. An exampie is SAR, which
depends on the concentrations of Ca, Na and Mg. These functions are
incorporated into the constraints:

Cdim = Xim{Ci1, €2y~ Cin) VIEN, &Vme M, (31)

where M, is the dependent parameter group, x;m{:} is the relation
between dependent parameter m and the primary parameters at node i.

Limits on Discharges
Boosters

The discharges through the boosters are limited:

0<q,<gq (32)

where q;= booster flow.

Valves

Limits on the discharge through the valve are imposed to prevent
cavitation, and to prevent reversal of flow if the valve is a one-way
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valve.

q,<q,<q, (33)

where ¢/ = maximum flow through valves.
For a one-way valve ¢, = 0, and for a bi-directional valve ¢, = —¢.

Pump Stations

The maximum discharge in each pump-station, ¢”, is obtained from
the envelope curve, defined in Eq. (9):

0<gq,<q, (34)

Using Eq. (3) constraints (26— 28) transform into:

q;(—qug <B£qu < qZ_B£q2 Wlthk:b, v,\p (35)

for boosters, one-way valves and pump stations q, = q, = q, = 0.

Sources

The upper limit, g7, is either the supply capability of the source or
some other restriction. The lower limit, q}, is to prevent reverse flow
or to prevent overflow if reverse flow into a reservoir occurs. The
constraints at all sources are:

q <gq,<q] (36)
Using Eq. (2) this translates into:
q,~Aq < ALlq< ¢/ —Aq] (37)
Limits on Removal Ratios
r'<r<r” (38)

where r’ and r” are lower and upper limits on the removal ratios at the
treatment plants for each primary water quality parameter. According
to the definition of the removal ratio r” <1.
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OPTIMIZATION STRATEGY

For a given flow distribution in the network and given removal ratios
in the treatment plants the water quality values throughout the net-
work are defined by Eq. (22), which becomes linear. The values of
the dependent parameters can then be obtained from Eq. (31). The
decision variables can thus be divided into two groups: the first
contains the control variables, u, which consist of the vectors q and r;
the second group, denoted by x, is the distribution of water quality
values throughout the network, and are called the state variables (or
resultant variables). Using this definition of terms, the Q-C-H problem
has the general form.

(Problem Pp) min fp(x, u) (39)
subject to:

g(x,u) =0 (40a)

W < h(u) < h' (40Db)

Jo(x,u) is the objective function given by Eq. (27). g(x, u) are the mass
conservation equations for the primary water quality parameters, in-
cluding the dilution conditions with respect to the distribution of
the quality parameters at nodes (Eqgs. (28) and (29)). h(u) are the func-
tions of the circular flows and of the removal ratios constrained
between bounds h' and h”. Equations (35) and (37) are related to the
circular flows (q), while the constraints denoted by Eq. (38) are relat-
ed to the removal ratios (r).
The Problem Py can be transformed into the equivalent problem:

(Problem P;) min¥(u) = fo(x(u),n) (41)

subject to: h' <h(u) <h” (42)

In other words, ¥(u) is a function of u and of x, such that x is obtained
by solving the equations g(x,u) =0, when u is given.

The Problem P, has linear constraints and a nonlinear objective
function. The complexity of the Problem P, is however considerably
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lower than that of the original problem, and therefore it is preferable
to solve it.

PRINCIPLES OF THE SOLUTION METHOD

Problem P; can be solved using the projected gradient method. The
main steps of the method are: (1) computation ¥(u); (2) computation
of V,¥; (3) computation of the projected gradient if at the current u
there are active constraints; (4) computation of the modified direction
of change; (5) updating u if optimality conditions are not satisfied; and
(6) using the Complex Method (Box, 1969 cited in [9]) when the algo-
rithm gets “stuck” in a non-smooth point which is not optimal. ‘

Computation of ¥(u)

For a given u=(q,r) the flows in all network arcs are known, and the
costs of supply, treatment and pumping at boosters can be computed
from Eqgs. (17), (18) and (19), respectively. The pumping cost at the
pump stations is obtained by solving the problem Q,-H, as described
by Cohen et al. [3, 5].

The yield loss cost ¢, and the penalty costs ¢} and ¢}, depend on
the water quality distribution which is found by solving the mass
conservation equations (g(x,u)=0). When q and r are given these
equations are linear. Furthermore, they can be decomposed into one
set for each water quality parameter. That is, for each water quality
parameter there is a separate linear system of equations, all with the
same coefficient matrix but with different right hand vectors. As a re-
sult, when q and r are given, the equation system g(x,u)=0 has the
following form:

K"=b" m=12,...,n3 (43)

where ¢™ is the distribution of quality parameter m at nodes. K is the
specific quality discharge matrix whose components are computed by:

d;Qy ifd; @y >0and i+
Ky= — du Qi + d; if dyQy <0 (44)
%
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Q;; is the flow from node i to j, dj; is element ij of the matrix D, and b™
is a vector of the mass flow input of primary parameter m, whose
components are computed by:

®"); = Z Qsic (45)
SENy

in which Qy; is the discharge from source node s to node i, and ¢7 is
the concentration of parameter m at source node s.

Since each system of equations has the same matrix, solution by LU
decomposition is preferable. That is, the matrix X is first decomposed
into a lower triangular matrix K; and an upper triangular matrix K,
such that K = K;K,,. The distribution of the primary parameter m is
obtained by solving

K, w" = b™ (46)
for w” and
K, " =w" 47

for ¢™. Since the matrices Ky and K,, are triangular, w™ and ¢” can be
obtained by forward and back substitution, respectively. The distribu-
tion of the dependent quality parameters are computed by the func-
tions defined in Eq. (31). They yield loss cost ¢, and the penalty costs
¢7 and ¢} are computed from Egs. (20), (23) and (26), respectively.

Computation of the Gradient

The gradient of W(u) with respect to the control variables u, V¥, is:

V¥ = Vuf + [Vug]Tﬁ (48)

where [V, g] is the Jacobian of Eq. (40a) with respect to u, and the
vector 3 is computed from:

[vxg]Tﬁ = _fo (49)

V.f consists of two subvectors V f and V,f:V,f=[V,fV.f 1"
where:

V.f = tF,B,[q} + Llq] (50)
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in which F, is the Jacobian of w/(r) with respect to r. The matrix is
square and diagonal in which element i is:

(F,); = dw'/dr’ (51)
V,fis defined by:
Vof = tLA [FA(g + LTq) + wj]
+ tL,BTW, + aptk.LiFpls + Vg, (52)

where F; and Fj are the Jacobian matrices of wy and N, with respect to
q, and g, respectively. Both are square diagonal, with components
defined, respectively, by:

(Fs)y = dw,/dg; (53)
(Fp)y = dN;;/dQZ (54)

V.9, is the gradient of the operator ¢,(q) which yields the optimal
solution of the problem Qy-H. Cohen et al. [3, 5] have shown that

Vatp = [LaSaLZ - LbSbLZ + Lvvaﬂ T
+ [LaSaP ~ LpSyP] + LyS,Py ] mp
+ LpSeﬂ'e + apket[lp — QPE;I(ST]I + SeSnZ):'Ep_lhp (55)

where m;, m, and 7, are the dual variables associated with Egs. (12),
(13) and (14), respectively.

Sa Sp, Sy and S, are square diagonal matrices of order n,, ng, n, and
np, respectively. Their components are defined by:

(Sa); = 1.852 kziz (42)0'852 (56)
($0)s = ok, (qi)av_l (57)
(Sp)i = dhi/a'q;, (58)

(Se)s = (dho)i/dq; (59)
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I, is a unit matrix of order n,, S;; and S, are the Jacobian matrices of
the pumping efficiency with respect to q, and h,, respectively. Both are
square diagonal matrices of order n, with components:

(Sn1)iy = d’l,i;/dq; (60)
(Sm2)y = d’?;;/dh; (61)

In the second term in Eq. (48), [V,g] is computed as follows. [V, g]
is the Jacobian matrix of Eqs. (28) with respect to u. It consists of
n; pairs of submatrices; each is of order n,, one is a derivative with
respect to q and the other with respect to r, where submatrix m is re-
lated to the primary parameter m. The vector G is computed by sol-
ving Eq. (40a).

The matrix [V,g] is block diagonal, where the matrix block m,
[V?g] , is related to primary parameter m. Furthermore, the submatrix
is the specific input mass flow matrix, K, and therefore the vector 8
can be computed in separate parts:

KTB™ = —-V"f VmeM, (62)

where 8™ is subvector of 3 related to primary parameter m. V7f is
derived from the gradient of the yield loss cost and penalties with
respect to the primary parameter m:

ny .
Vif = Vigy + Vigp + V7 (Z ¢JD>
Jj=1

ng . N
=F;"+F;"+(ZFJD+FJL)F;" (63)
=1

where F, is the Jacobian matrix of the relative yield function with
respect to the primary parameter m among the consumer nodes. Cell
im contains the derivative of the relative yield function at node i with
respect to primary parameter m:

' dyi
(F)’)im = _bo)’f)@ (64)
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FJ" is the column of the matrix F, related to primary parameter m.
The matrix Fp is related to the dependent parameters and is defined
similar to the matrix F:

Fp)i, = —bpyo == 65
( D)tm 0Y0 dcfi'; ( )
F, is the Jacobian matrix of the dependent parameters with respect
to the primary parameters. The matrix consists of n; submatrices.
Submatrix m is defined with respect to primary parameter m whose

cell kl is:

dxt
(Fc)kl = @ (66)

F, is the Jacobian of the penalty function ¢; with respect to primary
parameters. Cell im contains the derivative of ¢, with respect to pri-
mary parameter m:

dP;y,
(FZ)im - Ec‘,r;

kpZime
— —exp ()} |1~ 22 | [+ o~ 2] (67
in which z;, is computed from Eq. (22) according to c;, which is
obtained from Eq. (28) for the given q and r.

F; is the Jacobian of the penalty function ¢p with respect to the
independent parameters, and is defined similar to the matrix F,:

dP;,
(FL)im = i
kpeime
= —exp w(ei) l:l— ? ] C”i +C’i — 2cq; (68)
{ m } ezim+5 [ dim dim ‘m]

in which e,,, is computed from Eq. (25).
Since K in Eq. (62) has been decomposed into K; and K, the sub-
vector 8™ can be computed simply by solving

Klw™ = —V"f (69)
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for w” and then 8™ is computed from
KTB™ = wm (70)

The matrices K, and K, are triangular, and thus w™ and 3™ can be
obtained by back and forward substitution, respectively.

Computation of the Projected Gradient

Following Rosen [14], the projected gradient, s,, is:

in which N, is the coefficient matrix of the active constraints, and X is
obtained from

A

NIN,\ = -NTV, ¥ (72)
In the present problem N, has the form

A, 0
N, =22 =
0 U,
where A, is the coefficient matrix of the active set related to q, and J, is
the coefficient matrix of the active set related to r. V, ¥ =[V,¥; V,¥],
thus the system described by Eq. (72) can be decomposed into two
subsystems:

A AT = —AV, ¥ (73)

Jd T2 = -1V, (74)

where A; and ), are sub-vectors of \. Since J,J7 = I then the projected
gradient with respect to r, s,, is

=0 ifiel,

=-V,U ifi¢l, (75)

s/
s,

where I, is the active set with respect to r.
There are several methods for computing s,, the projected gradient
with respect to q. Cohen, et al. [3,4] show that the projected gradient
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can be computed directly as follows. First, the matrix A,A7 is decom-
posed into 47 and 4y such that A,AT = A; Ay, and then A, is computed
by solving

ALW = —Aqu\II (76)
for w and ), is obtained from
Ayh =w (77)

by back and forward substitution, respectively. Substituting A; into
Eq. (71) yields

S = —[Vo¥ + AL ] (78)

As long as the active set does not change, no recomputation of Ay and
Ay is needed, and the vector ), is computed for each new V,V¥. The
matrices of A; and Ay are updated if a constraint is added to the
active set, and a new decomposition is required only when the active
set is reduced, which occurs only when the current ||s,|| equals zero.
This aspect of the algorithm reduces the computational burden of the
model significantly.

Computation of the Modified Projected Gradient

The removal ratios at the treatment plants are in the range [0, 1],
whereas the circular flows can be of the order of tens, hundreds and
even thousands. Furthermore, the effect of a unit change in a removal
ratio is much greater than the effect of a unit change in the circular
flow. As a result, there is a scaling problem between r and q. Methods
for nonlinear optimization are in general senmsitive to scaling, and
especially so the projected gradient which is an extension of steepest
decent. Gill ez al. {8] (pp. 273-275) have suggested transformation
of the variables as a method to overcome these difficulties. In this
problem transformation can be performed by defining r in percent (%)
when the circular flows are in the order of hundreds or in parts per
thousand (%o) when the circular flows are in the order of thousands.
However, attempts to apply this approach to the problem failed, and
the computational difficulties remained. The alternative approach
used in the paper is to note that, for a separable quadratic problem, the
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optimal solution is achieved in one iteration, independent of the init-
ial point and the order of the scaling. As shown above, s, and s, are
orthogonal. Therefore the problem is both quadratic and separable
with respect to q and r, and the search direction can be found by the
following two-phase algorithm.

Algorithm TF (Two Phases)

Step a
Step b

Step ¢

Step d

Step e

Step

Step g

Assume initial search directions d;, = s, for q,and d, =, forr.
Compute a;’, the maximal step along d;, and o}, the maximal
step along d;, such that (q + o/jd}) and (r + o}'d;) do not vio-
late a constraint which is not included in the active set.
Compute oy, the optimal step length along d;;:

U(q+ ajd),r) = min {¥(q + oyd;,r)[0 < oy < oy}
The computation of the optimal step length is discussed
below.
Compute o, the optimal step length along d.:

¥(q,r + ojd;) = min {¥(q,r + ,d})[0 < o, < of

Note that the one dimensional search along q and r inde-
pendently and separately remains on the manifold of the
active set.

Compute the norm of the updated direction, s:

sl = [o5(d,)"d, + o () a) 2

Compute d,, the normalized modified projected gradient
direction related to q:

s = agd,/|Is|

Compute d,, the normalized modified projected gradient direc-
tion related to r:

s = ojd, /[Is|

r

Note that d, = d; if s,=0 and d; = d, if 5,=0.
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The optimal step length in steps ¢ and d could be determined by
one of the methods for one dimensional search, such as the Powell or
Davidon methods (Avriel [1], pp. 221~ 240). When the optimality con-
ditions are not met, a one dimensional search is performed along the
updated direction, s, such that an optimal step length is obtained. In
some cases, the computation of ¥ and V¥ can be computationally
intensive and therefore a non-exact search method is preferable. The
efficiency of the scaling method is probably reduced for non-exact
methods, since its efficiency for separable quadratic problem is derived
for an exact one dimensional search. This was examined over a wide
range of examples, and it was found that the overall efficiency of the
algorithm is good.

Incorporation of the Complex Method

So far it has been shown that the Q-C-H problem can be formulated as
a optimization problem in the subspace of q and r with a nonlinear
objective function and linear constraints. For a given q and r the opti-
mal operation of the pump stations and of the control valves are de-
termined by solving the Q,-H problem. The gradient of the objective
function is computed analytically as detailed above. Eiger et al. [6]
showed that the objective function in such an “inner-outer’” optimiza-
tion problem may have non-smooth points. In the present problem
this is due to the inclusion of ¢,(q), the solution of the problem Q,-H.
The objective function of the outer optimization is neither convex nor
concave, with linear constraints. Thus, even the application of a non-
smooth optimization method can not guarantee a solution.

The Complex Method was developed by Nelder and Mead [12]
for unconstrained problems. Box (1969), cited in Jacoby et al. [9], ex-
tended it to problems with inequality constraints. The method is based
on the objective function values and does not use gradients, so it is ap-
plicable to non-smooth problems. The efficiency of the method is im-
proved when the feasible region is convex, since the search process
is guaranteed to remain in the feasible domain. This is the case in the
present problem since the constraints are linear. The efficiency of the
Complex method is reduced substantiay, however, as the number of
decision variables increases. The modified projected gradient and the
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Complex methods are therefore combined. The process is performed
by the modified projected gradient while the projected gradient is effec-
tive, i.e., while it provides the descent direction. When the pro-
cess approaches a non-smooth (kink) point the gradient may show
incorrectly the descent direction, since the gradient is only one of the
members of the subdifferential set. In this situation the one dimensional
process terminates with a null step where the Kuhn-Tucker conditions
are not satisfied. At this point the Complex method is used to reach a
better point, with a search based only on function values.

Termination Criteria

When the relative change of the objective function at two successive
points is less than a set small value ¢, or/and relative change in the
decision variables in two successive iterations is less than another set
small parameter ¢,, then the Kuhn-Tucker optimality condition is sat-
isfied if the multipliers with respect to the active constraints at their
upper bounds are nonnegative, and non-positive for the active con-
straints at their lower bounds. Otherwise, the active constraint hav-
ing the multiplier with maximal absolute value is dropped from the
set, and the solution process continues with respect to the updated ac-
tive set. However, it is possible that the current point is non-smooth
and then the Kuhn-Tucker conditions are not true for the optimal
point. Thus if the subdifferential set consists of a null projected
subgradient the current point is optimal, otherwise the Complex
method is used to reach a better point, with a search based only on
function values. If no improved point is found, then the current point
is the best that can be found (from the initial point).

Algorithm Q-C-H

0 .= {q’ r°}. Initialize the iteration

Initialize Assume initial value u
counter k:=0.
Step 1 Compute the distribution of the primary quality para-

meters by solving:

K" =bp™"
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Step 2

Step 3
Step 4
Step 5
Step 6

Step 7
Step 8

Step 9

Step 10
Step 11

Step 12
Step 13

Step 14

D. COHEN et al.

Compute the distribution of the dependent quality param-
eter by using the relation functions:

Canm = Xnm(Cn1, €25 yCom) VnEN3 and Vme M,

Solve the Qp-H problem at the current flow distribution q”.
Compute the value of the objective function, ¥(u*).
Compute V, f from Eq. (63).

Compute 8’ by solving:

K'B" = -V7f VYme M,

Compute V,fand V,ffrom Egs. (52) and (50), respectively.
Compute V,¥ and V,¥ from:

V¥ =V, f+[VeB
V,—\I’ = qu+ [Vrg]Tﬂ

Compute A; by solving:

ALApA = —A,V, ¥

Compute A; from \;=—V,¥
Compute the projected gradient with respect to q from:

sg = —[Vg¥ + A7 ]
and with respect to r from:

s=0 ifiel
s =-V,0 ifi¢l,

Compute the modified projected gradient as described in
Algorithm TF.

Compute the optimal step length along the modified pro-
jected gradient, o . :

Check the optimality conditions. If satisfied goto Step 16,
otherwise goto Step 15.
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Step15  Updating: If the active set has changed, update the act-
ive matrix 4, and the decomposition matrices 4; and A.

Update ¢ and r from q**! :=qk+a*dq and r**1=r*4
a*d,, update the iteration counter: k:=k+1, and return to
Step 1.

Step 16 Complex search: Use the Complex procedure. If an im-
proved point is found, go back to Step O with the im-
proved point as the initial flow distribution, otherwise, go
to Step 17.

Step 17  Compute the optimal operation of the valves with g, and h,
at the current point substituted. q, is defined from Eq. (3)
according to q*, and h, is obtained from the solution of the
problem Q-H, at the current point.

Step 18 Compute at each pump station the optimal configuration,
the optimal head loss dissipated by the pumping control
valve and the optimal by-pass flow by using the algorithm
OPP, described by Cohen et al. [3, 5] where q, and h, are
considered. Note that g, is defined from Eq. (3) according
to q*, and h,, is obtained from the solution of the problem
Qo-H at the current point.

EXAMPLE

The technique described in the previous sections was applied to the
network shown schematically in Figure 1. The network consists of
9 pipes, 9 nodes, 2 pump stations, 2 boosters, and 4 control valves
and is fed from two constant head reservoirs at nodes 8 and 9, and de-
livers to consumers at nodes 4, 5, 6 and 7. The network is operated
2000 hours and the cost per unit energy is 0.22 NIS/kWh ($1US=3.6
NIS, NIS= New Isracli Shekel).

The water quality parameters of importance in this system are
salinity, magnesium and sulphur. The relevant quantity and quantity
data for the sources are given in Table L.

At the consumption nodes 4, 5 and 6 a quadratic yield function of
the following form was defined with respect to salinity y = ap + a;c +
ayc?, in which y is the relative yield, ¢ is the salinity in mg-cl/l, and
ag, a; and a; are constants as shown in Table II. At node 7 salinity is
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FIGURE 1 Schematic description of the network.

TABLE 1 Data for sources

Water quality
Maximal Salinity  Magnesium  Sulphur

Specific cost Elevation* discharge
Node NIS/m® m m3/h mgcl/l mg/l mg/l
8 0.638 —252.5 325 450 140 500
9 0.256 —255.0 700 860 250 300

* Elevations are negative because the system is in the Jordan Valley, below sea level.
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TABLE II Data for consumption nodes with respect to quality

Coefficients of the yield function ~ Upper limits for water quality

Node bo * yo Salinity Magnesium  Sulphur
- NIsx107® & a*10°  ax10°  mgell mg/l mgjl
4 0.700 1.0 1250  -2707 - 250 500
5 0.448 10 -306 3890 - 200 500
6 1.200 1.0 1250  -2707 - 200 450
7 - - - - 600 170 450

Note: by * yp is the income when there is no yield loss due to water quality.

TABLE III Hydraulic data for consumption nodes

Consumption  Elevation  Minimum pressure head Maximum pressure head

Node m>/h m m m
4 70 —258 40 80
5 70 -217 40 80
6 120 —242 35 80
7 160 —246 40 80

constrained by an upper bound. Upper limits as shown in Table II
were defined for the other water quality parameters.

Other relevant data for the consumption nodes are given in Table II.

Treatment plants for salinity and magnesium are placed on pipe 2,
and a treatment plant for sulphur is placed on pipe 1. The cost with
respect to treatment (removal) of salinity is w, = 2.151 % 10~* r* and
with respect to magnesium and sulphur is w, = 1.32 10~* r? in which
w, is the specific cost in NIS/m>, and r is the removal ratio in %. All
the removal ratios are limited to 75%.

Identical control values with the following head loss function
were placed on pipes 3, 4, 9 and 8. h, = 107¢2m; %, in which &, is the
head loss in m, g, is the discharge in m*/h and m, is the opening
ratio. Boosters, each with cubic head-discharge function, are placed on
pipes 6 and 7. hy = a9 + a1qp + azq,z, + a3q; and linear power-discharge
function N = by + b1q;, where h; is the head in m, N, is the power in
kW, and g, is the discharge in m?/h. The values of the coefficients
a;(i=0,...,3) and b(i=0,1) for the head discharge and power
discharge functions are given in Table IV.

The data for pipes are given in Table V.

All pipes have Chw=120.
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TABLE IV Coefficients of the head-discharge and power-discharge functions of
boosters

Booster  Placed on pipe ag a A x10*  A3x107 By B,
1 6 34765 —0.025 23175 -1626 16303 0.0109
2 7 17.382 —-0.012 1.1587 —0.813 18.795 0.0054

TABLE V  Data for pipes

Pipe 1 2 3 4 5 6 7 8 9

length (m) 400 1300 3700 1000 4300 2600 800 5000 3500
diameter (mm) 250 250 300 250 300 250 250 250 250
initial flow (m’/h) 300 120 180 120 140 70 300 140 20

The network consists of 2 loops: one closed loop of pipes 3, 7, 8, and
9, and one pseudo-loop between the nodes 8 and 9 which includes
pipes 1, 2, and 3. The initial flows, the positive directions of the pipe
flows and of the circular flows are shown in Figure 1.

The pump station placed on pipe 1 (pump station A), consists of 3
pumps of type a and one pump of type b. The pump station placed on
pipe 2 (pump station B), consists of 2 pumps of type ¢ and one pump
of type d. The head-discharge and efficiency-discharge functions for
the four types of pipes are given in Figures 2 and 3. Only parallel con-
nections between the pumps are possible.

The optimal solution is f* = 647108.83 NIS, and the optimal circ-
ular flows are ¢} = —88.19, ¢ = —~14.09m?/h (flows relative to those
in Fig. 1). The optimal distributions of flows and quality parameters
are given in Figure 4.

The optimal removal ratios of salinity and magnesium in the
treatment plants placed on pipe 2 are 23.72% and 25.72%, respec-
tively. The optimal removal ratio of sulphur in the treatment plant
placed on pipe 1 is zero. The optimal operation of the pump station
and the pressure heads at the consumer nodes are summarized in Tab-
les VI and VII, respectively.

The solution was obtained after 27 iterations in 4.39 sec on an IBM-
3081 computer. The values of the objective function during the so-
lution process are shown in Figure 5. The results are presented in
Tables VI-IX.
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FIGURE 2 Head-discharge functions for the pumps in the pump stations.
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FIGURE 3 Efficiency-discharge functions for the pumps in the pump stations.

The method was also applied to the water distribution system of
Central Arava Region, which supplies an area in the southern region
of Israel. This system has 38 nodes, 39 pipes, 11 sources (wells), 9
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FIGURE 4 Optimal distribution of flows and water quality parameters.

pumping stations consist of 28 pumps, 14 control values, 14
aggregated consumers and 7 treatment plants located at the sources,
where the product water is pumped into the distribution system. Water
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TABLE VI Optimal operation of pump stations

Pump station  Configuration Head (m) Flow (m*/h) Head loss (m) By-pass (m>/h)

A axaxaxb 57.27 211.81 043 8.19
B d 63.39 233.40 0.11 0.069

*The head loss is due the control valve.

TABLE VII Pressure heads at the consumer nodes

Pressure head (m)

Node  Elevation (m) Demand (m’/k) min. max. optimal
4 ~ 258 70 40 30 49.68
5 -217 70 40 80 40.00
6 —242 120 35 80 39.31
7 — 246 160 40 30 57.87
10000
<
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FIGURE 5 The values of the objective function during the solution process.

TABLE VIII Optimal operation of the boosters

Flow Head Power
Booster On pipe m/h m kw
1 6 70.00 33.59 17.07
2 7 285.91 21.52 27.28

quality in this system is expressed by 3 parameters: salinity,
magnesium, and sulphur, all of which are assumed to be conservative,
i.e., they do not decompose or interact, and only dilute by flow and
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TABLE IX Optimal operation of the control valves

Flow Opening ratio Head loss
Valve On pipe m/h % m
1 3 77.71 100 0.604
2 4 134.09 97.79 1.859
3 8 125.91 100 1.585
4 9 591 100 0.003

mixing. 4 nodes are supplies to domestic consumers and the others to
agriculture. For the domestic consumers the quality parameters are
restricted by upper limits, defined by water quality standards. At the
agricultural nodes, net income and reduction yield functions reflecting
the sensitivity of crops are defined. The other quality parameters at
these nodes are restricted by upper limits. The solution for the Central
Arava Network was obtained after 50 iterations in 75.76sec on an
IBM-3081 computer.

SUMMARY

This paper presents the full flow-quality-head (Q-C-H) model for
operating a multi-quality water supply system under a single loading.
The model combined the two models (Q-C and Q-H) of the previous
papers in this series.

The characteristics of the Q-C-H model are:

¢ The objective is minimization of the total cost which includes cost of
water at the sources, pumping, treatment and loss of income due to
low water quality.

e The dilution conditions and the performance of each pumping
station are smoothed.

e The problem is decomposed into an inner-outer structure and the
inner problem is decomposed into a flow-quality Q-C and a flow
head Q-H model in which the Q-H model is solved by SLP. The
outer problem is solved by the projected gradient method combined
with the Complex method.

An example network is solved for demonstration. The solution was
achieved in 27 iterations when the operating cost reduced from 2 * 10°
to 647108 NIS.






