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This paper describes the second in a series of three models for optimal operation of
multi-quality water supply systems. This second model, which is termed the Q-H (flow-
head) model, seeks to determine the optimal operation of pumps and valves, and does
not consider water quality aspects. However, the model belongs to the group of three
models for multi-quality systems because it is one of the two building blocks (the other is
the flow-quality Q-C) of a full-flow-quality-head (Q-C-H) model. This Q-H model is
based on continuous representations of the head-flow and power-flow functions of the
pumping stations, which in turn results in a continuous non-convex optimization
model. For a given flow distribution in the network, Qo, the Q,-H model is solved for
the optimal operation of pumps and valves. The flow distribution is then modified
by changing the circular flows, using a projected gradient method combined with the
Complex Method which employs the results of the Qg-H solution, such that the locally
optimal solution at the next point has a better value of the objective function. The
process is continued until one of the termination criteria is satisfied. The circular fiows
thus serve as decision variables in an external problem, while in the internal problem
the decisions are the operation of pumps and valves. The method is demonstrated by
application to a sample problem.
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INTRODUCTION

Optimal operation of a water supply system, without consideration
of water quality, has been addressed by a number of researchers and
practitioners. Carpentier and Cohen [2] proposed a method based
on Dynamic Programming (DP), combined with a decomposition-
coordination and aggregation—disaggregation approach. They de-
veloped the approach and associated computer programs for use in
a real water supply system in France. However, to the best of the
authors’ knowledge, at this time the system is not operational. Zessler
and Shamir [14] used another variant of DP known as Progressive
Optimality (PO), which can be used when the objective function is
convex. Their iterative process leads to the global optimum for a con-
vex objective function. Jowitt and Germanopoulos [9] and Olshansky
and Gal [12], used a Linear Programming (LP) model to optimize
the operation of a water distribution system. In their model, the
time horizon (usually 24 hours) is divided into a number of periods
(usually 5-8), such that demands can be taken as constant and
energy tariff remains fixed during the period.

The approach taken in this paper differs from the methods discussed
above. It is an improvement of existing methods for identifying the
optimal operation of single quality water supply systems. However, it
is also a component in a full approach, called the Q-C-H model, for
optimal operation of a multi-quality water supply system which is
described in a companion paper [6].

Mathematical Representation of the Network

A water system can be described or represented as a graph, consisting
of arcs connected at nodes. See Cohen et al. [5] for a topological
definition of the network.

A path is defined between each consumer node and a node at which
the head is fixed independently of the flow distribution, e.g., a res-
ervoir or well. The paths of the consumers to fixed head nodes are
represented by the path matrix, P,, whose components are: (P,); = 1
if path i includes pipe j and the positive directions of both coincide.
(P2); = —1 if path i includes pipe j and their positive directions are
opposite. (P,); = 0 if path i does not include pipe j. The placement
of pump-stations, booster pumps, and control valves on pipes is
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specified, respectively, by the matrices B,, B, and B,, whose compo-
nents are (By);=1 if element i is on pipe j, and (By);=0 otherwise,
for k=p, b, v. The cyclic matrices related to pump-stations, boosters
and contro! valves are:

Ly =L,Bl k=p,b,v (1)

Similary, the path matrices related to pump-stations, boosters and
control valves are:

Py =P,B] k=pb,yv (2)

Decision Variables

The decision variables of the Q-H problem are as follows.

I' are the pumps which operate and their series-parallel inter-
connections within pumping stations. Each operating set is called
“a configuration”. m, are the opening ratios of the valves. q, are
the discharges to be supplied from the sources. h, are the head
losses in pipes, h, are the head losses in valves, h, are the pumping
heads of the boosters and h, are the pumping heads of the pump
stations.

The flow distribution in the network is determined as part of the
solution. An initial flow distribution, which satisfies water continuity
at all nodes, is specified. This initial solution is modified in the so-
lution process, in a way which retains continuity. Continuity is main-
tained by considering the circular flows in loops and pseudo-loops, q,
as decision variables, since when these flows are modified, the con-
tinuity at nodes is maintained. As a consequence of this definition,
the water flow continuity equations can be omitted, thereby reducing
the size of the optimization model.

The vector q is of order nl, the number of loops, with the ith
component of the vector being the flow in the positive direction of
loop i. Since the number of loops is considerably smaller than the
number of pipes, using the circular flows in the loops rather than the
flows in the pipes as the decision variables in this manner results in
an even smalier model. The relationship between the flows in all pipes
of the network, q,, and the circular flows is defined by:

. =q+Lq 3)
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where q? is the initial pipe discharges, which satisfy the water flow
continuity equations, and (-)7 denotes the transpose. The discharges
to be supplied from the sources are defined by:

q, =Aq, = A[q] + Liq] (4)

where A is a submatrix of A4, obtained from the rows of 4 which are
related to source nodes. The discharges through the valves, boosters,
and pump stations are:

qsziqa=B£{q2+LZq] k=p,b,v (5)

Objective Function

The objective of the optimization is to minimize the total cost over a
time period ¢. This total cost is made of the following components.

Water Supply Cost

This cost represents the cost of water supplied from the sources. In
general, the specific cost (per unit volume) varies with discharge.
Thus, the specific cost of water at the sources will be given by a vec-
tor of functions, denoted by w«q,), the dimension of which is the
number of sources. When the unit cost at a source is fixed, the value
in this vector is a constant. The total supply cost from the sources,
¢,, for the entire period ¢, is given by:

¢ = tws(q,)"q, (6)

Pumping Cost at Boosters

The hydraulic characteristic of every booster includes the relationship
between input power and the discharge. This relationship can be
expressed by a polynomial function whose coefficients are obtained
from regression analysis. Usually, this relationship is expressed by a
linear, or at most a quadratic, function.

For generality, denote the power-discharge relationship at booster
i by Ni(q}). The total pumping cost at boosters, ¢,, for the time



WATER SUPPLY SYSTEMS 11 691

period is then described by:

db = thooN3(g,) 15 (7)

where k, is the cost per unit energy, o is a constant which depends
on the units used (for SI units a;=104), and 1, is a vector of order
n, whose elements are all 1.

Pumping Cost at Pump Stations

The power used at a pump station in a particular situation depends
on the discharge, the head and the efficiency of the operating con-
figuration. The relationships among these parameters are addressed
in the model in the constraint set. The total pumping cost at the
pump station, ¢,, is:

¢p = theopl) HE'Q,1, (8)

where a, is a constant whose value depends on the units (for SI units
a,=104). H, is the matrix of pumping heads at the n, pump stations;
it is square and diagonal with components h,. Q, is the matrix of
discharges of the n, pump stations; it is square and diagonal with
components q,. E is the efficiency matrix of the n, pump stations; it
is square and diagonal with components w, (the pumping efficiency
vector of the n, pump stations).

Constraints

The constraints within the model include the physical laws, which
define the system, the hydraulic characteristics of the various hydrau-
lic components of the network, limits on the heads at consumer
nodes, and limits on the discharges in various components of the
network. The mathematical representation of these constraints is de-
scribed below.

Physical Laws

Continuity of mass is maintained by the flow decision variables, as
explained previously. Continuity of the energy grade line is achieved
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by specifying Kirchoff’s second law in the following form.
Lyh, + Lphy, — L,h, — Lh, = b, C)]

for each of the paths in the network. b, is the head difference between
the ends of the path: ,=0 when the path is a loop, and has some
known value when the path is between two nodes (e.g., reservoirs) at
which the heads are fixed.

Hydraulic Characteristics
Pipes ’

The head loss in a pipe is given by the Hazen-Williams equation:
ha - 0laqtlz.852ChW—1.852da—4.87la (10)

where o, is a constant whose value depends on the units (for the SI
units used a,=10.708), ¢, is the discharge (m%/s), d, is the diameter
(m), Chw is the Hazen-Williams friction factor, and [, is the pipe
length (m).

Combining all the constants in Eq. (10) through:

ka — aaChw—l.SSZd;4.87la (1 1)
results in:
ha — kaqlll.852

with the head losses in the all pipes, including those with negative
flows being given by:

h, = aQalanO.852 (12)

where K, is square diagonal matrix whose components are k,, and
Q, is a square diagonal matrix whose components are q,.

Valves

The head loss through a valve depends on the discharge through the
valve and the opening ratio, m, of the valve. This relationship is
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generally specified in a table or diagram. However, the data can be
fitted to the general formula:

hy = kyg®m; P (13)

where k,, a, and 3, are obtained by regression of given data. For a
linear valve 8,=2. o, is approximately 2 and k, = ¢,* where ¢, is
the value coefficient.

The head losses in all valves, again also considering negative flows,
are given by:

h, = Kvaleqvlan (14)

where K, is square diagonal matrix, whose components are k,, Q,
is a square diagonal matrix, whose components are q,, and M, is a
square diagonal matrix, whose components are the opening ratios of
the valves raised to the power —3,.

Booster Pumps

The relationship between the head and the discharge through the
pump, can be approximated by a quadratic or cubic polynomial of
the form:

hy = ag + cuqy + doqh + 0343 (15)

where the constants o, a;, o, and a; are obtained by regression.
The relationships at all boosters of the network are given by:

by = a9 + A1, + Arq> + Asq} (16)

where a9 is a vector whose components are the coefficients, o and
A; (i=1,2,3) are square diagonal matrices whose components are
the coefficients a;, a, and az, respectively.

Pump Stations

The relationship between the head and the discharge at a pump sta-
tion depends on the particular pump configuration which is in opera-
tion at the time. The head-discharge curve for a given configuration
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is obtained by using the serial and parallel connection rules of
pumps, and is described by the general expression:

h, = Gi(T'q,) (17)

The efficiency-discharge curve is obtained in a similar fashion and is
expressed in the general form:

M, = (I q,) (18)

where {, and ¢, are functions, from those of the individual pumps
constructed for each of the pump configurations, T', to reflect the way
in which they are interconnected to form the configuration.

Limits on Discharges
Boosters

The discharges through the boosters are limited through the following
equation:

0<gq,<gq, (19)

where q; are the maximum discharges through the boosters.

Valves

Limits on the discharges through the valves are imposed to prevent
cavitation, and if the valve is a one directional valve, to prevent
reversal of flow.

q,<q<gq/ (20)

For a one directional valve g/ =0, and for a bi-directional valve
14
q\i =—qy.

Pump Stations

The maximum discharge through each pump-station depends on the
configuration in operation. The value of the maximum discharge is
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obtained from the head-discharge relationship where the head equals
Zero.

0<gq,<q,(T) (21)
Sources

The upper limit on a source is either the supply capability of the
source or some other restriction. A lower limit is used to prevent
reverse flow or to prevent overflow if reverse flow into a reservoir
occurs. The constraints over the all sources are:

q,<q,<dq] (22)

where ¢/, and ¢? are the minimum and maximum discharge of the
sources, respectively.

Head Constraints

The heads at consumer nodes must be within bounds. The head at
each consumer node is expressed by the energy equation along a
path between a node with known head and the consumer node. The
resulting head constraints for all consumers are:

h! —z, < P;h, + Pyh, — Ph, — P,h, <h” — 3z, (23)

where h! and h! are the minimum and maximum head vectors,
respectively, and z, is a vector whose components are the heads at
the origin nodes of the paths.

Operating Constraints
Valves

Restrictions on the opening ratio of each valve are expressed by:
m <m, <m (24)

Usually m, = 0 (closed) and m = 1 (fully open).
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Pump Stations

Each pump station has a finite number of discrete configurations (D;)
which can be operated. The actual configuration at work (I") should
be selected from these given configurations (D).

PE{D17D27D3""7DII} (25)

Alternative Formulation of the Optimization Problem

The optimization problem presented above has a non-linear objective
function and non-linear constraints. If the selection of operating con-
figurations is performed through logical variables, the result is a
non-linear integer programming problem, which is difficult to solve.
A formulation which avoids the use of integer variables is developed
by using continuous smooth functions for the head-discharge and
efficiency-discharge relations of the pumping stations (Cohen [4]).

The Operating Surface (Function) of Pump Stations

Consider a system which has a pump, a control valve and a by-pass,
as depicted schematically in Figure 1a. Consider also the hydraulic
curves of the pump and of the system as described schematically in
Figure 1b.

If the valve is fully open and the by-pass is closed, the pump will
deliver a discharge of point A (in Fig. 1b) which is determined by the
intersection of the pump curve with the system curve. By closing the
control valve partially, it is possible to modify the system curve and
move to a point such as B. If the flow through the by-pass is increased,

C N\
r"@ » X @
N

FIGURE 1a A schematic description of a system consisting of a pump, control valve
and a by-pass.
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FIGURE 1b Operating point of a system cousisting of a pump, control valve and a
by-pass.

a point C can be reached: q, is the net flow delivered to the system,
g> flows through the pump and g¢,—gq; is recirculated through the
by-pass. The control valve and by-pass therefore enable the operating
range of the pump to be expanded from a single point to an entire
range.

It may seem at first that choking the control valve and recirculating
flow is an inefficient way to operate. However, because the efficiency
of the water supply system itself changes with flow, the overall oper-
ating cost may be reduced by such controls. The optimization pro-
cedure described below is able to handle this feature automatically.

Consider a pump station with n, discrete configurations. Denote the
curves of configuration i by yi(g) (head-discharge), yj,(q) (efficiency-
discharge) and y;,(q) (power-discharge). The h-q space of the pump
station consists of n. curves of y,(g) {where i=1, 2,...,n}. The
space is discrete, with each of the discrete points being associated
with one of the n. configurations. Points at which two or more
curves intersect are assigned to the configuration which uses the
least power. A point (g;, h;) is also omitted if there exists another
point, (g;, 4;), which uses less power, and either A;=h; and ¢; > g; or
gi=gq; and h; > h;. After all such points have been omitted, the h-q
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space contains points which best generate the range of available
head discharge combinations at greatest efficiency. Next, a continuous
function is fitted between the discrete points identified as described
above, with the thorough use of a control valve, in the following
manner. Consider a point (¢*, #*) which does not belong to the set
of discrete points. Find the point which has the same discharge
and the next highest head, (¢", ;). Denote the configuration associat-
ed with this point by j. The point (¢*,4*) is obtained by operat-
ing configuration j, and dissipating the head difference (h;— 4*) by
the control valve. Hence, the power required for point (¢*,4%) is
yf’;(q = ¢*), the power used when configuration j is operated at the
discharge ¢*. The efficiency associated with the point (¢*,4") is
n=mn;h*[h;, where 17, is the efficiency of configuration j at the dis-
charge ¢*.

The same process can be applied for every other point which is not
on one of the discrete A-g curves. The result is a continuous function
bounded by an envelope curve, hl’,(q), which limits the head that can
be supplied by the pump station as a function of the discharge.
Each point below this envelope can be defined with its efficiency,
the configuration which provides it most efficiently, and the head
difference which the control valve has to dissipate.

Pump stations usually consist of different pumps. Consequently, the
envelope curve for a pump station generally includes several non-
smooth points. This situation is illustrated in Figure 2 which describes
a pump station consisting of 3 pumps; two of type a and one of b,
where all the pumps are in parallel. The envelope curve for the pump
station is obtained from the parallel connections of the 3 pumps.
Due to existence of the two types of pumps, the envelope curve
contains the non-smooth point A. This envelope curve can be smooth-
ed as follows.

Assume a pump station with n; non-smooth points ¢’ {i=
1,2,...,n;} with each interval between two such points being de-
rived from a different envelope function. Denote the function for
the interval (g%, ¢’*") by g(g). The smoothed envelope function is
given:

i1 8ilg) exp(w{&i}) (26)

B0 = =5 e le))
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FIGURE 2 Non-smooth point in the head-flow envelope of a pump station.
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where
&=(g-9¢)4¢"" -9 (27)

x
Vxi+e,

k, is a gain coefficient, and ¢, is a small number to prevent division
by zero.

The (¢=0, A=0) point also has to be included. Inclusion of this
point is achieved by bringing the envelope curve down to a point for
which ¢ <1 (an arbitrary value, considered small enough). Thus, the
smoothed envelope curve, including the operating condition at zero
flow, is:

w{x} =k, (28)

exp(w{q _ 1}) + qa exp(—w{q - 1}) (29)
exp(w{g — 1}) + exp(—w{g — 1})

hy(g) = Hy(gp)

where o is a coefficient which determines how steeply the curve is
brought down to zero.
For a given q the efficiency as a function of the head is defined by:

1= mlexp{w( — D} +exp{w(6 05} (30
i=1 i

in which A; is the head obtained by configuration i when the discharge
is ¢, and (; is defined by:

- exp{eo(h — )}
= X Erh-miron—=ti—hy OV

In this manner the discrete optimization problem initially formulated
is transformed into a continuous and smooth model, which can be
used to formulate a continuous non-linear optimization.

Qo¢-H PROBLEM

The Qu-H problem is defined as follows: for a given water flow
distribution, find the optimal operation of the pumps, boosters, and
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control valves such that this flow distribution is realized at minimal
cost.

When the flow distribution is specified, the supply cost and the
pumping cost of boosters are given directly by Egs. (6)—(8). h, and A,
are also known and computed from Eqgs. (12) and (16). Denote these
known values of k, and h by K, k. The maximum head added by
each pump station, denoted by 4], can be computed from Egs. (29)
and (30) with the known flow. In accordance with the formulation
of the operating surfaces of the pumping stations, the pumping head
of each pump station is continuous, and lies in the range [0, 4;].

Each valve causes a head loss, denoted by (h})°, for the fully open
position. The value of (42)° is computed from Eq. (14) where m,=1
and ¢} =discharge through the valve corresponding to the given flow
distribution.

Decision Variables
The decision variables of the Qg-H problem are:

h, — pumping heads at the n, pump stations.
h), — the additional head losses in the n, control valves.

The total head loss in the valves are determined from:
h, =k, + (h})° where h'v >0 (32)

As there is a possibility that no feasible solution exists for the initial
flow distribution, in order to assure a mathematical solution, a pair of
artificial variables each of which is penalized in the objective function
by 8" and 8-, respectively, are added to the constraints described by
Egs. (9) and (23). Denote the artificial variables added to the second
Kirchoff’s law constraints (Eq. (9)) by x{ and x;, and denote, the
artificial variables added to the head constraints specified in Eq. (23)
by x;" and

Introduction of the known values, h}, h; and h;, Eq. (32) for the
valve head losses, and the artificial variables, and rearranging the
constraints yields the following model for the Qo-H problem:

minf, = tka,17QH,E™'1, + 6 (x; X)) +07(xp +x;)  (33)
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subject to
Lyh, — LW, + x{ + x; = b, + L;h} + L,(h})° — Lyhj, (34)
h —z, + Poh}, + Py (h})° — Pohy < Pohy — P, + X7 + %,
< h! =z, + Poh;, + P,(1})° — Py

(35)
hy < I (36)
hp,h'v,xz,xz,x;,x; >0 (37)

This formulation has a nonlinear objective function and linear
constraints. The nonlinearity in the objective function is caused by
the dependency of the efficiency on h,. Usually, this nonlinearity is
mild over a wide range of h,. For given 7, all the multipliers of h,
in the first term of Eq. (33) are therefore combined into a constant,
resulting in an LP problem with the following objective function:

minfy = p"h, + 0*(x] +x7) + 67 (x; +x;) (38)

where p” = tk.0,Q;'E~'1,. The solution of Q-Ho can be obtained by
the following algorithm:

Algorithm Qy-H
Initialize the iteration counter: k=0.

Step a Assume an initial pumping efficiency 775 (say 171’; = 0.75).

Step b Compute vector p from pf = ptE~.

Step ¢ Solve the LP problem, and obtain f*, h}’,f, (h{,)k.

Step d Compute m, from Eqs. (29) and (30) where q, =q; and
h, =hf.

Stepe 1If |, — "l;” < &, or/and |f* —f*7!| <. Stop otherwise set
Mit! :=m,. Set k:=k+1 and go back to Step b.

The repeated computation of the LP can be time consuming.
However, since the changes between successive iterations occur only
in the objective function coefficients, the optimal solution of the last



WATER SUPPLY SYSTEMS II 703

iteration is ar least feasible. Therefore, computation time is reduced
substantially if each iteration starts with the basis of the previous
optimal solution. Using this approach, the new iteration needed no
more than three inner LP iterations and in many cases it needed only
one iteration [3,4]. The convergence of the above algorithm has not
been proven mathematically. However, the algorithm has been ap-
plied over a wide range of cases and is found to always converge in
at most 3 iterations [3, 4)].

The optimal operation of the pump-stations and the control valves
are then determined, respectively, by the OPV and OPP algorithms
described below:

OPYV Algorithm

Step a Compute h, from b, =l + h°, where k! is obtained from the
optimal solution of the Q-H, problem.

Step b Substituting ¢/ and Ai, for i=1,2,...,n,, into Eq. (13) yields
the optimal opening ratio for all control valves through:

i kiq35 g .
m, = —717— l=1,2,...,nv (39)

OPP Algorithm

Step a Denote the configuration in pump station i which has the
closest heqd-discharge discrete curve to the point (q;,,h;,) by
J, where q,, is the discharge and h;, is obtained from the so-
lution of the Qy-H problem.

Step b From the head-discharge curve h;(g,) of configuration j at
pump station i, compute the head /; where g,= ql",.

Step ¢ Define the by-pass discharge range [gq ;',, (q2),} where (¢7); is
the discharge of the configuration j when the head equals hl",.

Step d Cqmpute the minimal power of configuration j in the range
[9},(g7)] for all pumping stations. This value is determined
as follows: The power-discharge curve of a pump is either
linear or concave-quadratic. If the curve is linear the mini-
mum is achieved by operating configuration j with the control
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valve dissipating [h/ — k1], where A/ is the head obtained
from configuration j when the discharge is ¢ ;. If the power-
discharge curve of configuration j is quadratic, then the mini-
mal power is obtained by operating either the control valve
dissipating [h; — K], or with a by-pass flow [(¢7), — ¢})-
Therefore the minimal power is determined by comparing
the power used by configuration j when the discharge is ¢ ;,
and q7.

Q-H PROBLEM IN THE SUBSPACE ¢

It was shown in the previous section that, for a given flow distribution
(q), all the decision variables are determined uniquely. Consequently,
the Q-H problem can be considered as an inside—outside optimiza-
tion problem, where the inside problem is defined for a given ¢, and
the outside problem determines the optimal flow distribution.

The objective function for the outside problem of determining the
optimal q consists of the supply cost, the pumping cost of boosters,
and the optimal solution of the Q-Hg problem for given q, denoted
for brevity by ¢,(q). According to Eqs. (4) and (5), the constraints
imposed on q are derived from the discharge limits defined in con-
straints (19)—(22).

The resulting model for the Q-H problem is:

minf = twy(q,)"q, + keasNs (@) 15 + ¢,(Q) (40)
subject to:
q; —Aq) <AL'q < q — Aq (41)
q, - Ll <Llq<q,-Llq) (42)
q;—Lja} <Ljq < q; — Liq) (43)

0, - L <Ljq<q) - Liq) (44)

v
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Solution Method

The problem formulated above in subspace q has a nonlinear objective
function and linear constraints and can be solved by the projected
gradient method [13] using an analytical formulation for the gradient,
based on the LPG method [1]. The algorithm contains the following
steps: (1) computation of the objective function f, defined by Eq. (40)
for a given q; (2) computation of the gradient of f with respect to g;
(3) computation of the projected gradient; (4) movement along the
projected gradient direction to achieve an improved point; and (5)
use of the Complex method, (Box, 1969 cited in Ref. [8]), when the
algorithm gets “stuck” in a non-smooth point which is not optimal.

Computation of the Gradient

The gradient of the objective function, f, is the summation of the
gradient components with respect to supply cost, pumping cost at
boosters and pump-stations. The gradient with respect to supply cost,
V¢, is derived from Eq. (8):

AT
Vs = t LA [Fsq, + W (45)

where F; is the Jacobian matrix of w, with respect to q,. This matrix
is square diagonal, with components given by:

(Fs); = dw,/dy (46)
If w, is constant F,=0 and Eq. (45) is reduced to Vet = tLaATwS.
Similarly, the gradient with respect to pumping cost at boosters,
VP, is derived from Eq. (7):
Vq¢b = aptk.LpFpl, (47)

where Fj, is the Jacobian matrix of N, with respect to q;. This matrix
is square diagonal, with components given by:

(Fp);=d NZ/ dq}; (48)
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The Gradient of ¢,(q)

Recall the definition given earlier in this paper wherein the optimal
solution of the Qq-H problem, in which the objective function, the co-
efficient matrix and the right hand side are all functions of the flow
distribution, q is designated by min fo= ¢,(q). Computation of V¢,
follows the approach first proposed by Alperovits and Shamir [1],
and subsequently developed in a matrix formulation by Kessler and
Shamir [10). Eiger et al. [7} showed that the outer problem, i.e., mini-
mization of ¢,(q) in the space of q, is non-smooth, and developed
a method for global optimization of a single quality network.

The objective function of a linear program at a feasible basis is
given by:

fo=cIB b+ (ch — B 'R)xy
B N

where ¢ and ¢y are the coefficients of the basic and of the nonbasic
variables, respectively. B and R are the basis and nonbasis matrices,
respectively, and b is the right hand side vector. Using the chain rule
with respect to q yields:

Vofo = Vg(cIB7b) + V,(xn)" (cf — c5B7'R)
+ VI(ch — cgB™'R)xy

At the optimal solution xy=0, hence the third term vanishes. This
means that V,(xy)=0, unless the optimal solution is nonunique and
there is a nonbasic variable which can enter the basis set without
changing the objective function value. But, this is the case only if the
alternate variable has a zero value in the vector ¢, — cJB~!R. So even
if V,(xn) includes a non-zero element the multiplication is zero.
Thus the second term of the chain rule equation as above, can also
be omitted, and the gradient can be computed by:

Voo = Vq(c;B7'b) (49)
Using the chain rule on Eq. (49) yields:
V,fo = [Vses]B b+ [V b]Bcs + [V,B !]cb (50)

where [V,b], [V,c5] and [V,B'] are the Jacobian matrices with
respect to ¢, of b, ¢z and B!, respectively. In this paper, B is
independent of q, and the third term in Eq. (50) can be dropped.
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Computation of the remaining two terms proceeds as follows. In
accordance with the relationships between the dual and primal LP
problem, the dual vector = is:

7=BTcp (51)

Using the chain rule, Eq. (5), and the special structure of the con-
straints (34—37) yields:

[V b)B 'cg = [LSaLT — LySpLy + LyS,Ly |me +
+ [LoSaPT — LySyPY + L,S,PT]my + LpSmtm (52)

where 77, m, and 7, are the dual variables of the constraints (34),
(35) and (36), respectively, and:

Li=B'L, i=bp,v (53)
P;=B;"P, i=b,p,v (54)

Sa Si, S, and S, are square diagonal matrices of order n,, n, n,
and n,, respectively, with components as defined by:

(Sa)s = 1.852k (¢ 1)"* (55)
(1) = aiki(g)™ ™" form=1 (56)
(Ss)y = dh}/dd} (57)

(Sm)a = (dhy),/dd] (58)

Vsl B~ 'b is computed as follows. In the objective function fy, the
coefficients of valves are zero, and the coefficients of the artificial
variables are independent of the flow. Therefore, [V 5] is merely af-
fected by the coefficients of the vector h,. For simplicity, assume that
all the components of h, are included in the basis of the optimal
§olution of Qp-H (later it will be shown that the computation is
identical when only part are in the basis). B~'b represents the values
of the basic variables including the h,’s value in the basis. Using the
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chain rule, the relationship between q, and ¢ defined in Eq. (5),
and in Eq. (38) which defines the vector cp, yields:

[Vees]B~'b = apketll, — QE ™ (St + SmS2)lE"'h,  (59)

in which 1, is a unit matrix of order n, and S,; and S, are the
Jacobian matrices of the pumping efficiency with respect to g, and
h,, respectively. Both are square diagonal matrices of order n, with
components defined by:

(Sm)y = d"];/ dq; (60)

(Sp)ii = dn;;/dh; (61)

h; =0 if it is not included in the basis. Hence Eq. (59) also covers the
cases in which part of the vector h,, is included in the basic solution.

The gradient of f with respect to q is the summation of Egs. (45),
(47) and (49) which is given in the summation of Egs. (52) and (59):

Vof = [LoSaLl — LySsLY + LS, LT |7y, + [LaSaPL — LoSyPy + L,S, P! |,
+ LypSmtm + apketll, — QE™ (Sp1 + SmSr2)|E™'h,
+ apt kLyFplp + tLaAT[qus + Ws] (62)

Equation (62) includes many matrix multiplications. However, most
of the matrices are diagonal and thus the multiplication is simple.

Computation of the Projected Gradient

The computation of the projected gradient at a current point ¢* is
based upon the method of Rosen [13] using the modification de-
scribed by Cohen et al. [4], [5]. For the current problem the projected
gradient is computed by:

s = ~[Vaf + Hg (63)

where H, is the coefficient matrix whose rows are the active
constraints of the formulation described by Eqs. (41)—(44) at the
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current point. The vector X is computed by the following steps:

Step a Compute w from:
Hyw = ~HIV,f (64)

Step b Compute X from:
Hyl=w (65)

where H; and Hy are the LU decomposition matrices of H,HT . Since
H; and Hy are triangular matrices, w and A can be obtained by
forward and back substitution, respectively. As long as the active set
does not change, no recomputation of H; and Hy is needed, and the
vector X is computed for each new V,f by Steps a and b. If a con-
straint is added to the active set, the matrices H; and Hy are up-
dated as described by Cohen ez al. [4], [5]).

At this point, it has been shown that the Q-H problem can be
formulated as a optimization problem in the subspace q with a non-
linear objective function and linear constraints. For a given q the
optimal operation of the pump stations and of the control valves are
determined in what is known as an inner optimization by solving the
Qo-H problem. The gradient of the objective function of the Q-H
problem can be computed analytically as detailed above. Eiger et al.
[7] showed that the objective function of this outer optimization
problem may include non-smooth points. In the present problem non-
smooth points occur as a result of the inclusion of ¢,. The objective
function of the outer optimization, which determines the optimal flow
distribution q, is neither convex nor concave, with linear constraints.
Therefore, even the application of a non-smooth optimization method
cannot guarantee a solution.

The Complex Method was developed by Nelder and Mead [11]
for unconstrained problems. Box (cited in Jacoby et al. [8]) extended
the techniques to constrained problems with inequality constraints.
The method does not use gradients, so it is applicable to non-smooth
problems. The efficiency of the method is improved when the fea-
sible region is convex, since the search process is guaranteed to re-
main in the feasible domain. Convexity occurs in this problem since
the constraints are linear. The efficiency of the Complex Method is
reduced substantially as the number of decision variables increases.
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The projected gradient and the complex methods are therefore
combined in the technique. The process is performed by the modified
projected gradient when the projected gradient is effective (ie., it
provides the descent direction). When the process approaches a non-
smooth (kink) point the gradient may indicate an inappropriate
descent direction, since the gradient is only one of the members of the
subdifferential set. In this situation the one dimensional process ter-
minates with a null step where the Kuhn-Tucker conditions are not
satisfied. At this point the Complex Method using a search based
only on function values is used to reach a better point.

Algorithm

Step 0 (Initialize): Assume an initial water flow distribution, g2,

which satisfies continuity at all nodes.
Initialize the iteration counter, k=0. Initialize the active
constraints counter, 7,=0.
Define initial circular discharges, q°=0.

Step 1  Compute the supply cost and the pumping cost at boosters
from Eqgs. (6) and (7).

Step 2 Solve the Q-Hy problem for the given water flow dis-
tribution.

Step 3 Compute the gradient V,f from Eq. (62).

Step 4 Compute the projected gradient.
If the active set is empty then s,=—V,f: goto Step 5,
otherwise: compute the vector A from:
H, LW = —Hquf
H\=w
and the projected gradient is obtained from s, =
—{V4f + HI )], and goto Step 5.

Step 5 If ||s,|| <& goto Step 10, otherwise compute the direction
dq= -sq/”sq”'

Step 6  Compute optimal step length, o, along d, from:

f(‘lk +a'dy) = min{f(qk +ady)|0 < o < omax}

using a nonexact search method described by Jacoby er al.
[8]. oumax is the maximal step length along d, which does
not violate the nonactive constraints of Eqs. (41)—(44).
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Step 7 Updating.

Ifo*<eggorjand | f*~f *=1| <& then goto Step 8, otherwise:
q**'=q*+a’d, ki=k+1, if 0" =0m,, add to the active
set the constraint which becomes active, and update the
matrices H; and Hy. Go back to Step 1.

Step 8 If the Kuhn-Tucker conditions are not satisfied, omit
constraint j from the active set according to: A=
max;{\;", ~)\; } if constraint j is active at its upper bound,
N = min;{—X}, +Al} if constraint j is active at its lower
bound, in which A}, A; is the component vector of A which
is associated with constraint i with respect to its upper
bound and lower bound, respectively. Go to Step 1.

If the Kuhn-Tucker conditions are satisfied go to Step 9.

Step 9  Complex search.

Use the Complex Method. If an improved point is found,
go back to Step 0 with the improved point as the initial flow
distribution, otherwise, go to Step 10.

Step 10 Compute the optimal operation of the valves using the
OPV algorithm and the optimal operation of the pump
station using the OPP algorithm.

EXAMPLE

The network to which the approach is applied is located in Arava
Valley in Southern Israel and is shown schematically in Figure 3. The
network consists of 9 pipes, 9 nodes, 2 pump stations, one booster,
and 2 control valves, and is fed from two constant head reservoirs
at nodes 8 and 9. It delivers to consumers at nodes 4, 5, 6 and 7
and is located in a region 200 to 250 m below sea level. The network
is operated for 2000 hours and the cost energy is 0.22 NIS/kWh
(1US$=3.6 NIS (New Israeli Shekels)). There are two loops: one
closed loop of pipes 3, 7, 8 and 9, and one pseudo-loop between the
nodes 8 and 9 which includes pipes 1, 2 and 3. The initial flows, the
positive directions the pipe flows and of the circular flows are shown
in Figure 3.

The data for the sources, consumption, and pipes are given in
Tables 1, 11 and I11, respectively. All pipes have Chw = 120.
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120

160

E - source node pipe no.

5 ) - consumption node
30\

70 - consumer demand valve booster pump-statlon discharge (m /)

FIGURE 3 Schematic description of the network.

TABLE 1 Data for sources

Node Specific cost Elevation Maximum discharge
- NIS/m? m m3/h
8 0.638 -252.5 325
9 0.256 —255 700
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TABLE II Data for consumption nodes

Node Consumption Elevation* Minimum pressure head Maximum pressure head

- mih m m m
4 70 —258 40 80
5 70 217 40 80
6 120 —242 35 80
7 160 —246 40 80

* Elevations are negative because the system is in the Jordan Valley, below sea level.

TABLE III Data for pipes

Pipe 1 2 3 4 5 6 7 8 9

length (m) 400 1300 3700 1000 4300 2600 800 5000 3500
diameter (mm) 250 250 300 250 300 250 250 250 250
initiaf flow (m’/h) 300 120 180 120 140 70 300 140 20

The booster on pipe 6, has the following head-discharge function:
hy = 34.738 — 0.02426g;, + 2.237 + 107%¢ — 1.603 + 107%¢
and power-discharge function:
Ny = 16.29+ 0.011g,

in which g, is the discharge in m*/h, 4, is the head in m, and N, is the
power in kW. The two control valves on pipes 3 and 8 are identical
with a head loss-discharge — opening ratio function of:

hy = 1075 2m; 1S

in which &, is the head loss in m, g, is the discharge in m*/h and m,
is the opening ratio. The pump station on pipe 1 {pump station A)
consists of 3 pumps of type a and one pump of type b. The pump
station on pipe 2 (pump station B) consists of 2 pumps of type ¢
and one pump of type d. The head-discharge and efficiency-discharge
functions for these pumps are given in Figures 4 and 5. Only parallel
connections between the pumps are possible.

The optimal solution is S7=1355467.12NIS, and the optimal circu-
lar flows are ¢} = ~190.39, ¢ = —79.83 m3/h (these are the changes
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FIGURE 5 Efficiency-discharge functions for the pumps in the pump stations.
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relative to the initial flow distribution in Fig. 3). The optimal flow,
head and power at the booster are 70m3/h, 33.59m and 17kW,
respectively. The optimal opening ratio of the valves placed on pipes
3 and 8 are 100% and 30.1%, respectively.

The optimal operating conditions of the pump station and the
pressure heads at the consumer nodes are summarized in Tables IV
and V, respectively.

The solution was obtained after 17 iterations in 2.17sec on the
IBM-3081computer.

The values of the objective function during the solution process
are shown in Figure 6.

The values for iterations 0 and 1 are omitted, because their large
values are due to penalties. The solution at Iteration 2 is already fea-
sible with an objective value of 414000 NIS. The optimal solution is
only 14% better than this first feasible solution. In fact it can be seen
in Figure 6 that the process converges rapidly to the optimal region
such that from the fifth iteration on improvements in the value of
the solution are negligible. The process does not terminate earlier
than iteration 17 due to a very strict convergence criterion.

The method was also applied to the water distribution system of
Central Arava Region, which supplies an area in the southern re-
gion of Israel. This system has 38 nodes, 39 pipes, 11 sources (welis),
9 pumping stations consist of 28 pumps, 14 control valves, 14

TABLE IV  Optimal operation of pump stations

pump station configuration  head (m)  flow (m/k)  head loss* (m) by-pass (m>[k)

A ajja 56.68 109.61 5.69 0.390
B c//d 79.26 31039 0.88 2.003

*The head loss is due the control valve.

TABLE V  Pressure heads at the consumer nodes

Pressure head (m)

Node Elevation (m)  Demand (m’/h) min. max. opt.
4 —258 70 40 80 49.68
5 -217 70 40 80 40.0
6 —242 120 35 80 36.98
7 —246 160 40 80 46.48
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aggregated consumers each with a prescribed range of pressure. Four
nodes are supply to domestic consumers and the others to agriculture.
The solution for this larger system was obtained after 19 iterations in
23.61sec on an IBM-3081computer.

SUMMARY

This paper presents a new approach for the optimal operation of
water distribution systems under hydraulic constraints. The model is
useful in itself, and also as a component in the full Q-C-H model,
which is the topic of a companion paper [6].

This new approach has the following characteristics:

e The “performance surface” (Q-H) of each pumping station is re-
presented by a smoothed two dimensional function.

e The objective is minimization of the total operating cost, which in-
cludes the cost of water from the sources and the cost of pumping.

e The demands at nodes are to be met with pressures which lie in a
prescribed range.

o The problem decomposed into an inner—outer structure where
the inner problem is solved by SLP and the outer is solved by the
projected gradient combined with the Complex method.

An example network was used to demonstrate the technique. The
optimal solution was achieved practically in 5 iterations and for-
mally in 17 iterations, when the operating cost is reduced during the
iterations from 414000 to 355476 NIS.
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