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One of three complementary models for optimal operation of multi-quality water supply
systems is presented. The other two models are the subject of companion papers. The
model, which is known as the Q-C (flow-quality) model, includes mass continuity of
water and constituents. However, the hydraulic constraints do not appear explicitly. To
prevent infeasibilities or unreasonable hydraulic conditions arising from the lack of
hydraulic constraints, limits and a cost are associated with the flow in each pipe. The
constraints in the model include dilution conditions which depend on flow direction.
These dilution conditions are introduced into the model by an exponential function,
resulting in a smooth continuous nonlinear programming problem, which is transformed
into an equivalent problem and solved by a modified projected gradient method. The
method is insensitive to scaling of variables, and the computational complexity depends
only slightly on the number of water quality parameters. The method is demonstrated by
application to two examples: the solution for a small network is presented in detail, and
main results are shown for a larger one. The results of these two applications indicate
the method’s applicability to real networks.

Keywords: Water supply systems; water quality; optimal operation of water systems;
network analysis; hydraulic analysis

*Corresponding author.

549



550 D. COHEN et al.
INTRODUCTION

Multi-quality water supply systems are networks in which water
quality is not uniform in time and/or space. The variable quality may
be due to supply coming from sources of varying qualities, changes in
treatment plant operation, and mixing and/or chemical reactions as
the water flows in the network. While such systems are more common
for irrigation and industrial waters, they sometimes also occur in
urban supply systems. Interest in the design and operation of multi-
quality systems has increased [3, 24] as water of good quality becomes
scarcer and more expensive resulting in the incentive to use water of
different qualities. Interest in the modelling of multi-quality systems
has also arisen from the need to track residual chlorine or other
disinfectants in the network.

Models for simulating water quality throughout the network under
steady and unsteady conditions have emerged in recent years [2-5, 10,
13,15-17, 19, 20, 22— 26]. Following Sinai et al. [25], decomposition is
suggested of the solute flow problem (Q-C-H), associated with water
flow in multi-quality of water supply system, into two subproblems:
the flow-quality (Q-C) problem, and the flow-head (Q-H) problem.
These two subproblems are connected by a mutual flow distribution
(Q), however, they are somewhat independent. Water quality (C) does
not physically affect flow hydraulics, so the flow-head (Q-H) sub-
problem can be dealt with independently of the flow-quality (Q-C)
subproblem. Similarly a flow-quality (Q-C) subproblem can be de-
fined such that it does not depend on the head distribution. This can
be achieved by imposing limits on head distribution in pipes. Use
of this approach enables decomposition of the complicated solute
transport problem (Q-C-H) and the model for optimal operation of
multi-quality water supply systems.

In this and two companion papers, optimal operation of multi-
quality water supply systems under steady-state conditions is
addressed. The three models for optimal operation of multi-quality
water supply systems are:

(a) The Q-C Model deals only with continuity of water and the water
quality parameters at each node, and not the hydraulics of the
system. This model is most applicable when it can be assumed that
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the resulting operation will satisfy the required heads at consumer
nodes and the other hydraulic constraints. It is a building block
for the full (Q-C-H) model.

(b) The Q-H Model deals only with the hydraulics of the network
and disregards the quality aspects. This model can be used for
single quality systems. It is the second building block for the full
(Q-C-H) model.

(c) The Q-C-H Model This model includes the full set of hydraulic
and water quality constraints and objectives.

This first paper examines the Q-C model. Some general tools and
methodologies which are used in all three models are also described
in the appendices. The purpose of the O-C model is to determine the
optimal flows in the network and the treatment at plants.

Mathematical Representation of the Network

A water supply system can be described as a graph consisting of n
nodes connected by n, arcs. There are three sub-groups of nodes: N;
are source nodes: reservoirs which feed the network, wells, and the
connection points of the network to other networks; N, are consumer
nodes and N; are intermediate nodes. The arcs represent the pipes
between two nodes. In this paper, treatment plants are considered
as components located on pipes. The arcs can be categorized into
two sub-groups: E; are regular pipes, and E, are pipes which
have treatment plants. Each arc is assigned an arbitrary positive
direction.

The topology of the network can be represented by the connectivity
matrix, D, with components defined by: D; = £ 1 if there is an arc
between node i and j, +1 when the arc is directed from i to j, —1 when
from j to i. Dy = 0 if there is no arc between nodes i and j. The
adjacency between the nodes and the arcs is represented by the ad-
jacency matrix, 4, with components defined by: 4, = 1 if arc j is con-
nected to node i and its positive direction is out of node i. 4; = —1
if arc j is connected to node i and its positive direction is to node i.
Ay = 0if arc j is not connected to node i.

The cyclic structure of the network is defined by loops and pseudo-
loops, each with a defined positive direction. Pseudo-loops are paths
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between nodes at which the heads are fixed and do not depend on the
flows in the network; for example the path between two reservoirs or
wells. Henceforth “loops” will mean loops plus pseudo-loops. Loops
are represented by a cyclic matrix, L, with components defined by:
L; = <1 if loop i includes arc j; +1 if the positive directions of both
coincide; —1 if their positive directions are opposite. L; = 0 if loop
i does not include arc j. The connectivity of the treatment plants to
the pipes is represented by a matrix B, of order n, x n, (n, = number
of treatment plants, n, = number of pipes), whose components are:
(By)y = 1, if treatment plant i is on pipe j; (B,); = 0, otherwise.

Decision Variables

The decision variables are therefore: water flow and water quality
distribution, and the removal ratios in the treatment plants. Note that
the flow distribution is to be determined as part of the solution
process, as follows. An initial flow distribution, which satisfies water
continuity at all nodes, is specified. This initial solution is then
modified in the solution process, in a way in which continuity is
retained. The maintenance of continuity is achieved by considering the
circular flows, q, in loops and pseudo-loops as decision variables, since
when these flows are modified, continuity at nodes is maintained. As
a consequence of this definition, the water flow continuity equations
can be omitted, thus reducing the size of the optimization model.

The vector q is of order n;, the number of loops, with the ith
component of the vector being the flow in the positive direction of
loop i. Since the number of loops is considerably smaller than the
number of pipes, using the circular flows in the loops rather than the
flows in the pipes as the decision variables in this manner, results in an
even smaller model.

The relationships between pipe discharges, q,, and circular discharge
vector, q, is given by:

0 .=q¢+Lq (1)

where q) are the initial pipe discharges, which satisfy the water
flow continuity equations, and (-)” denotes the transpose. The
relationship between the discharges from the sources, q,, and the
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pipes discharges is:

q; = Aqa (2)

where A is a submatrix of 4, obtained from the rows of A which are
related to source nodes. From Egs. (1) and (2) g, is defined by:

q, =Alg] +L'q] (3)

The relationship between the treatment-plant discharges, q,, and cyclic
discharges is obtained from Eq. (1) and the definition of B, i.e.,

q = Bt[qg +L'q] (4)

Equations (2)—(4) show that the flow values in all network com-
ponents are related to the circular flows.

Water quality may be described by primary and dependent quality
parameters. The distribution of the primary water quality parameters
is defined by matrix C. This matrix is three dimensional. One di-
mension is n3, which is the number of the primary quality parameters
with the other two dimensions both being equal to the number of
nodes and therefore symmetric. Cell {jm contains the concentration of
quality parameter m in the arc between nodes i and j. The diagonal
cells contain the concentration at nodes. The distribution of the de-
pendent quality parameters is denoted by matrix C% which has the
same structure as C, with its primary dimension being equal to the
number of dependent quality parameters.

The removal ratios in the treatment plants are given by the matrix
R. Once again, one dimension of the matrix is equal to the number of
the primary quality parameters with the other two dimensions being
equal to the number of nodes adjacent to the treatment plants; cell
ijm contains the removal ratio of quality parameter m in the treat-
ment plant which is located on the arc between the nodes i and j.

Objective Function

The objective of the optimization is to minimize the total cost of
operation over the planning horizon f. This total cost is made of
several components.
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Water Supply Cost

This is the cost of water supplied from the sources. At wells this cost
represents the cost of pumping. At other types of sources, such as a
transfer from another network, this cost represents the cost of pur-
chasing water from that source. In general, the specific cost (per unit
volume) of such water is a function of discharge rather than a con-
stant. Thus, the specific cost of water at sources will be given by a vec-
tor of functions, denoted by wy(q,), the dimension of which is equal
the number of sources. Where the unit cost at a source is fixed, the
corresponding value in the vector is a constant. The total supply cost
from the sources, ¢, for the entire period ¢, can be described by

os = tws(qs)qu (5)

Treatment Cost

The specific cost (cost per unit discharge) of treatment is a function of
the removal ratio. Because many types of treatment processes can be
chosen it is impossible to describe this cost by a single function. It can,
however, be assumed that all removal cost functions can be described
by a quadratic or at most cubic polynomial, the coefficients of which
can be determined through regression analysis of cost data. These
functions are included in a cost function vector, denoted by w(r),
whose dimension is equal to the number of treatment plants.
The total treatment cost, ¢,, is described by

¢ =tw(r)'q, (6)

Transportation Cost

The transportation cost in a pipe is related to its hydraulic properties.
Schwartz et al. [21] and Sinai et al. [25] expressed the transportation
cost by a linear function of the discharge. The model described in this
paper allows a non-linear relationship between transportation cost and
pipe flow. Since the flow direction is not known in advance and is
included among the decision variables, the cost must be expressed as a
function of the absolute value of the discharge. The transportation
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cost function is therefore not smooth, and its derivative is not defined
at zero flow. To overcome this difficulty, an exponential smoothing
procedure which is described in detail in the Appendix is used to de-
fine the absolute value of the discharge:

i aexp{w(as) } — ghexp{ —=(¢l)}

: - 7N
© exp{w(qa)} +exp{ - w(qa)}
where
w(.) is the normalized direction function defined by
x
x) =kp———— 8
(x) = kp S ®

k, is a gain coefficient, and ¢ is a small arbitrary number to prevent
division by zero.

The specific transportation cost in a pipe is wy(g,)g, Wwhich is
continuous and smooth. The total transportation cost over all pipes
¢, is therefore given by

b = W,(2,)"q, 9)

As mentioned in the introduction, it is important to note at this time
that the Q-C problem is assumed to have a wide hydraulic feasibility
domain. However, in order to prevent infeasibilities or unreasonable
hydraulic conditions, limits and costs are associated with the flow in
each pipe.

Yield Reduction Cost
Consumers are categorized into 3 types:

1. Agricultural consumers, who have a relative yield function which
depends on water quality. Mass and Hoffman [12] and Finerman
and Yaron [6] examined the salt tolerance of a wide range of crops
and proposed either a bi-linear or quadratic function to describe
crop yield reduction due to increased salinity. The quadratic form,
is used as follows: denote the relative yield function vector by vy,
the yield achieved under ideal conditions by y, and the income
matrix by By. The B, matrix is diagonal. The total loss due to



556 D. COHEN et al.

yield reduction, ¢,, is:

¢y = ygBO[ly -] (10)

2. Domestic and industrial consumers, who require treatment of their
water, the cost of which is defined at their supply connection. This
can be introduced into the model, using functions similar to the
above.

3. Consumers with concentration limits, who require that the water
quality be within specified limits, with no cost or benefit function
for quality being specified. These quality limits are incorporated
into the constraints.

Combining all the components yields the total objective function:

minf = tw(q,)q, + 1w (r)"q, + tWy(q,) q, + yeBo[ly —y] (11

Constraints

Mass Conservation Law for Conservative
Quality Parameters

This law can be expressed by n; (number of primary quality
parameters) sets of equations. Each set of equations includes equa-
tions for all nodes, except the source nodes.

D 450iCim+ D, 3j0Qy(1 = Rym)Cijm — diCiim = 0

(H)eE; (EeEy
Vj¢N and VmeM, (12)
where
a; — element ij of the adjacency matrix 4.
d; — consumption at node j.
M, - primary quality parameters group.
0; - flow from node i to j.
Cym — concentration of primary quality parameter m at the arc
between node i and ;.
Cjim — concentration of primary quality parameter m at node j.

Ryn — removal ratio of primary quality parameter m, at the
treatment plant located between node i and j.
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Dilution Condition

The model assumes that total mixing occurs at all nodes resulting in
the concentration in all pipes leaving a node being equal. However,
since the flow direction in pipes is not known in advance the dilution
condition is written as:

Co = Cim exp{w(a;Qy) } + Cymexp{ — w(a;Qy) }
ijm exp{w(a;Q0y)} +exp{ — w(aijQij)}
V(ij) and Vme M;  (13)

which uses the exponential smoothing procedure described in the
Appendix. This formulation overcomes the difficulty encountered by
Sinai et al. [25] and Shah and Sinai [22, 23] in specifying the dilu-
tion conditions, by allowing the flows to reverse during the solution
process.

Quality Parameter Function

According to the definition of dependent quality parameters, each
dependent water quality parameter has a function which defines its
relationship with primary parameters. An example is SAR, which
depends on the concentrations of Ca, Na and Mg. These functions
are incorporated as constraints in the following manner:

Chn =E&m(Ci1,Ca, ..., Cjn) VjEN, and Vme M,  (14)

where

M, - dependent parameter group.
&m(.) — the relation function between dependent parameter m at
node j and the primary parameter at node j.

Pipe Discharge Limits

As indicated earlier, this problem considers a wide feasibility domain
from the hydraulic point of view. However, in order to prevent
infeasibilities and unreasonable hydraulic conditions, limits are
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imposed on the flow in each pipe through:

6 <9 <q (15)

where q; and ¢, are upper and lower discharge limits, respectively. If

the flow direction in pipe i is restricted then (q;)t. = 0, otherwise

(4,), = —(q7),- Equation (15) can be translated using Eq. (1) into
constraints on q:

Q-0 <LTq<q;-q (16)
The velocity in each pipe may also be limited. This limitation has to
be expressed as a limit on the discharge, since the diameters of the
pipes are given.
Supply Discharge Limits

The discharge supplied from each source may be restricted by an upper
limit ¢” and an inability to reverse the flow, i.e.,

0<gq,<gq (17)
Using Eq. (3). Equation (17) translates into constraints on q:

~Aq) <ALTq < ¢ - Aq] (18)

Quality Limits

These constraints are introduced for consumers who require that
quality be supplied within specified limits, and for whom no cost or
benefit function for quality is specified. With respect to the primary
parameters, the constraints are:

le'jm < Cym < C]f]’.m Vj € N and Vm € M, (19)

where Cj,, and Cj, are upper and lower limits on the quality
parameter m at node j, respectively. Similarly for the dependent
parameters:

CdlSCd SCd" V]ENz andeGMz (20)



WATER SUPPLY SYSTEMS I 559

Treatment Limits

Treatment limits are required:
Rijm' < R,]m S Rijm” V(l_]) € E2 and Vm € M] (21)

where Ry and R,y are upper and lower limits on the removal ratio
with respect to primary water quality parameter m of treatment plant
located between node i and j. Note that according to the definition of
the removal ratio Ry < 1.

Problem Properties

The objective function and mass conservation constraints are non-
linear. Avriel [1] (p. 95) has defined sufficient conditions for convexity
of constrained optimization. One of these conditions requires equality
constraints to be linear. Since the equality constraints in Eq. (12) are
nonlinear, the formulation is neither convex nor concave.

A smooth model can be developed from this basic formulation if
the dilution equations and the transportation cost are smoothed by
the exponential procedure as described in the Appendix. The smooth-
ing also allows the flows to reverse during the solution process,
thus permitting the network to be undirected. The ability to han-
dle undirected networks is a substantial expansion of the model
capabilities, since until now models for multi-quality systems have
only been able to address directed networks, in which the flow
directions are selected in advance, and cannot be reversed by the
solution algorithm.

Methods of nonlinear optimization are in general sensitive to
scaling, which means that difficulties may arise when decision vari-
ables and/or their coefficients are on different scales. Transfor-
mation of variables has been used for overcoming these difficulties
[8 (pp. 273-275)].

Optimization Strategy

The steps discussed in the previous section result in a general non-
linear optimization model, which can be solved directly by using one
of the general existing nonlinear programming packages, such as
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MINOS {14}, SQP [7], or SLP [9]. However, for a network of practical
size the optimization model becomes very large, particularly if there
are several water quality parameters, in which case it would have
hundreds or even thousands of decision variables and constraints,
and the solution time would be impracticably large.

It is therefore necessary to exploit special properties of the problem
to develop an optimization method which is efficient and practical.
First, it should be noted that if the flows and removal ratios are fixed
the remaining optimization problem, in which the decision variables
are the water quality values throughout the network, called “the
internal problem”, is quite easy to solve. Now denote the optimiza-
tion problem of finding the flow distribution and the removal ratios
as “the external problem”. Recall that the flow distribution in the
entire network is defined by the cyclic discharges, q. The decision
variables in the reduced problem are therefore q and r, and it is an
optimization problem of much lower dimension than the full prob-
lem originally defined.

The decision variables can be divided into two groups. The first are
the control variables u, which consist of the vectors q and r. The
variables in the second group are the water quality values throughout
the network. The variables in this second group are called the state
variables (or resultant variables), and are denoted by x. Under this
definition, the overall optimization problem has the following general
form:

(Problem P,)

min fy(x, u) (22)
subject to: g(x,u) =0 (23a)
b <h(u) <h' (23b)

X <x<x" (23c)

where

Jfo(x,u) — objective function given by Eq. (11).

g(x,u) — mass conservation equations for the primary water qual-
ity parameters, including the dilution conditions for the
quality parameters at nodes given by Eqs. (12) and (13).
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h(u) — functions of the cyclic flows and of the removal ratios, which
are constrained between bounds i and h”. Equations (16) and
(18) are related to the cyclic discharges (q), and the functions
(21) are related to the removal ratios (r).
x', x” — lower and upper bounds, respectively, on water quality at
some or all consumer nodes (constraints (19— 20)).

Each of the constraints (23c) is expressed as a penalty term:
P(x;) = z;exp{w(z;)} (24)

where w(z;) is the normalized function of Eq. (8) with respect to z;,
where z; is defined by:

zi = (%] — x1)(x; — x}) (25)
Denote the penalty cost by ¢(x) where:
¢L(X) = EiP(x,-) = 2,‘2,’ CXp{W(Z,')} (26)

Problem Py can be transformed into an equivalent problem, by
introducing the constraints on the water quality values x into the
objective function as a penalty term:

(Problem P))
minf(x,u) = fo(x, ) + ¢(x) (27)
s.t.
g(x,u) =0 (28a)
h <h(u) <k (28b)

Problem P; can be further transformed into:
(Problem P5)

min ¥ (u) = fo[x(u), u] + ¢ [x(u)] (29)

subject to: b’ < h(u) < h” (30)

¥(u) is a function of u and of x, where x is obtained by solving
the equations g(x, u) = 0, when u is given. The gradient of ¥(u) with
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respect to the control variables u, V, ¥, is:

V.=V, f+ Vg8 (31)

where [V, g] is the Jacobian of Eq. (23a) with respect to u, and the
vector 3 is computed from:

[V.g"B=—V.f (32)

In this problem the constraints h(u) are linear. Consequently, Problem
P, has linear constraints and a nonlinear objective function. The
complexity of Problem P, is considerably lower than that of the
original problem, and therefore is more attractive to solve.

Principles of the Solution Method

The solution of Problem P, is based on the projected gradient method.
The main steps of the solution are:

1. Computation of ¥(u).

2. Computation of V¥, and the projected gradient direction.

3. Computation of the projected gradient if, at the current u, there
are active constraints.

4. Computation of the modified direction.

5. Updating u if optimality conditions are not satisfied.

Computation of ¥ (u)

For a given u = (q,r) the flows in all network arcs are known, and
the costs of supply, treatment and transportation can be computed
from Egs. (5), (6) and (9), respectively. The cost of the yield losses ¢,
and the penalty cost ¢; depend on the water quality values which are
found by solving the mass conservation equations g(x, u) = 0. When
q and r are given, these equations are linear. Furthermore, these
equations can be decomposed into a single set of equations for each
water quality parameter. In other words, for each water quality param-
eter, there is a separate linear system of equations, all with the same
matrix, and different right hand vectors. As a result, when q and r
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are given, the equation system g(x,u) = 0 has the following form:
Ec" =b" (33)
where

¢™ — the values of the water quality parameter m at nodes.
E - quality discharge matrix whose components are computed by:

Ej=d;Q; if djQ; >0 and i#j

. 34
= —[ZxduQu + d;] if dyQy <0 (34)

b™ is a vector of inputs from the sources of primary parameter m.
The components of b™ are computed by:

(b7),= > QyCoom (35)

SEN;
where

Cssm — concentration of quality parameter m at source s.
Qs ~ flow from source s to node ;.

Since each system of the equations has the same matrix, solution
by LU decomposition is desirable. That is, the matrix E is first
decomposed into Ey (upper triangular matrix) and E; (lower tri-
angular matrix) such that:

E=EEy (36)

and the values of the primary water quality parameter m is obtained
by solving

E,w" = b" (37)

for w” and
Eyc” = w" (38)

for ¢™. Recall that the matrices E; and Ey are both triangular thus
w™ and ¢” can be obtained by forward and back substitution,
respectively. The distribution of the dependent quality parameters
is computed by Eq. (14). The yield loss cost ¢,, and the penalty cost

¢, are computed by Eqgs. (10) and (26), respectively.



564 D. COHEN et al.

Computation of V,¥

The gradient V,¥ of the objective function in Problem P,, depends
on V, fand V, f. V, fis derived from the gradient of the yield loss
cost and from the penalty cost. The gradient V7'¢, of ¢, with respect
to primary quality parameter m, is:

ns X
Vg, =F + S o (39)
j=1

where

F, — Jacobian of the relative yield function with respect to the values
of the primary water quality parameters at the consumer nodes. Cell
im of F, contains the derivative of the relative yield function at node
i with respect to primary parameters m, i.e.,

i dyi
(Fy)im = “bo)’oaa (40)

It should be noted that F}" is the column of the matrix F) related
to primary parameter m. The matrix Fp is related to the dependent
quality parameters, and is defined in a similar fashion to the matrix
F,, namely:

.. dyi
Fp),, = —byyo—— 41
(Fp)im 0Yo dcd. (41)
F, — the Jacobian matrix of the dependent parameters with respect to
the primary parameters. The F, matrix consists of n; submatrices.
Submatrix i is defined with respect to primary parameter m whose

cell ij is:

(P, =L (42)

¢ dc]'-"

The gradient of the penalty cost, ¢, with respect to primary quality
parameter m is:

n4 :
VigL=Fr+ > FF} (43)
j=1
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where

F, — the Jacobian of the penalty function ¢; with respect to the
distribution of primary water quality parameters. Cell ij contains the
derivative of ¢y with respect to primary water quality parameter m:

(72, = 22250
= —exp{m(z)} |1 - 222 | [(chy ) + (e )] (4

The matrix Fy is related to the dependent parameters and is defined
in a similar fashion to the matrix F,:

(FL)y = dqi;c(dxt)
ij
_ ; _ kpZié' d’ d ' d
= —exp{w(z;)}|1 2te [(clj cy) + (cij cq)] (45)

The variables x appear in the objective function f only in the yield
loss cost and in the penalty cost. Thus, the gradient of f with respect
to the distribution of primary quality parameter m is the summation
of Eqs. (39) and (43):

N4

VI = VT + Vigy = FI' + F7' + Z (F),+ F,)F" (46)

Jj=1

Computation of §

The vector 3 is computed by solving Eq. (32). The matrix [V,g] is
block diagonal, where the sub-matrix m, [V;”g], is related to prim-
ary parameter m. Furthermore, the sub-matrix is the quality input
discharge matrix, F, and therefore the vector 8 can be computed
separately: \

ETﬁm = —v;nf Vme M (47)

where 87 is sub-vector of 3 related to primary quality parameter m.
Since E has been decomposed into Ey and E;, the vector 3 can be
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computed simply by solving:
Eyw" = —Vif (48)
for w™ and then
EIf" =w" (49)

for 8™, by backward and forward substitution, respectively.

Computation of V. f

The gradient of f with respect to u consists of two sub-vectors: V,f,
which relates to the cyclic discharges, and V,f which relates to the
removal ratio in the treatment plants.

V,f is derived from the gradients of the supply cost (¢y), trans-
portation cost(¢,) and treatment cost(¢,). Using the chain rule for
the derivative of ¢, with respect to q yields:

Vb = LA" [F,A(QQ + L7q) +w,] (50)

where F; is the Jacobian of the cost of water at sources, wy(q,), with
respect to the source flows g,. The matrix F; is square and diagonal,
where element i is:

(Fs)y = dwi/dqf; (51)

note that F, = 0 if w, has constant values, and the first term in the
square bracket of Eq. (50) is zero. Similarly,

Vybp = tLIFpq, + Wy (52)

where F, is the Jacobian of the transportation costs in pipes, W,(q,),
with respect to the pipe flows q,. The matrix is square and diagonal,
where element ii is:

(Fp)i = dW;/dqz (53)

Note that F, = 0 if w, has constant values, and the first term in the
square brackets of Eq. (52) is zero. Similarly,

vq¢t = tLBlth (54)
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V,fis thus:
vqf = Vq¢s + Vq¢t + Vq¢p
= A" [FA(q + Lq) + W] + tL[F,q, + W,] + tLBTw,  (55)

The gradient V,f depends on the treatment costs. Using the chain
rule for the derivative of ¢, with respect to r yields:

V,¢; = tF,B,[q} + L"q] (56)

where F, is the Jacobian of the treatment costs, w4(r), with respect to
the removal ratios, r. The matrix is diagonal, where element i is:

(Fr)y = dw,/dr’ (57)
Since the gradient V,f depends only on the treatment cost:
V.f =V,¢, = tF,B,[q} + Lq] (58)

The expressions for V, f and V, f include many matrix multipli-
cations. However, since most of them are diagonal they are simple.

Computation of the Projected Gradient

Assume that, at the current, u, there are a; active constraints related to

the cyclic discharges, and e active constraints related to the removal

ratios. Denote by A4, the coefficient matrix of the active set related to q,

and by J, the coefficient matrix of the active constraints related to r.
The projected gradient, s, is derived [18]:

Sy = —[Vu¥ + N 2] (59)

where N, is the coefficient matrix of the active constraints, and the
multiplier vector A is obtained by solving:

NINA = -NIv,¥ (60)

In our problem N, has the form:

['3 JO] (©1)
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and V,¥ = [V, ¥;V,¥], thus the system described by Eq. (60) is
decomposable into the following two sub-systems:

AAIN = -A,V, ¥ (62)
LI = —J,V,¥ (63)

where A; and ), are sub-vectors of A. A; is related to the cyclic
discharge active constraints and ), to the removal ratio active
constraints. Substituting the solution of Egs. (62) and (63) into (59)
and arranging yields the projected gradient with respect to cyclic
discharges, s,:

sq = —[1 — (AaA]) AV, ¥ (64)
and the projected gradient with respect to the removal ratios, s,:
s, = —[I — (JJT) IV, ¥ (65)
Since the constraints on the removal ratios are simple bounds:
J Il =1 (66)
substituting into Eq. (65) yields:
s, =—(I-JI1,)V,¥ (67)
The relations described in Eqs. (63) and (67) imply the following:

(a) The computations of s, and of s, are independent.

(b) J1J. is a diagonal matrix of 1 or 0. Element i is 1 if r; is at one
of its bounds (r/ or r/) and is included in the active set. It is
zero either when r; is between its bounds or r; is equal to one of
its bounds but it has been omitted from the active set. Therefore
Eq. (67) can be reduced to:

r

r

si=0 ifiel,
,. (68)

where J, is the active set with respect to r.
(c) Equations (63) and (66) imply that )\, = —V, .
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Now return to Eq. (64), which may be solved in a number of ways.
The basic method uses Eq. (64) where the multiplier of V,¥ is the
projection matrix, which projects the gradient V, ¥ on to the mani-
fold of the active constraints. The computation of the projection
matrix requires considerable computation effort, since it has to be
done every time the contents of the active set are changed. However,
since the change in the active set always involves either adding or
omitting only one constraint, it is preferable to update the matrix
instead of recomputing. Avriel [1] (pp. 427-428) describes a meth-
od for updating the matrix (4,AT )™! in such cases. Jacoby et al.
[11] (p. 217) state that numerical difficulties may arise in this updat-
ing process when the matrix is ill-conditioned. Jacoby er al. [11]
claim that the method of Bartles et al. (cited in [11]) which uses
the QR decomposition of Householder and then updates the ma-
trices Q and R, is stable numerically.

These methods focus on computation of the projection matrix. How-
ever, Eq. (64) can be derived from the solution of Eq. (62), using the
LU-decomposition method. First the matrix (A,A7) is decomposed
into A; (lower triangular) and 4 (upper triangular) such that:

AlAy = AAT (69)

Ap is then obtained by the following steps.
Compute w from:

ALW = —Aqu\Il (70)
then compute A; from:
Al =w (71)

by backward and forward substitution, respectively. Substituting A,
into Eq. (59) with respect to q yields s,.

As long as the active set does not change, the decomposition
matrices remain constant, and are computed from Eqgs. (70) and (71).
When a constraint is added to the active set, 4; and Ay are updated
as follows. The matrix (A,+1A] ;) remains symmetric and is given by:

a+1
A AT as
(Aa1A) = [ a:T “ ao] (72)
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where as is
as = Agay (73)

a, 1s a vector whose elements are the coefficients of the active
constraint being added. ay is a scalar obtained from:

ag = a4Ta4 (74)

The new decomposition matrices 4, are also triangular, of the form:

AL = [:;;—2_1‘} (74a)
Ay = [f:)” :’; ] (74b)
where ay, a7, ap and o, are obtained from:
Ajay = as (75)
Aypa;, = ag (76)
ar=alay — (77)

ay and a; are obtained by forward and backward substitutions,
respectively.

The decomposition is performed only when the active set is
changed, which is only when the current ||s,|| equals zero, and then
by updating A, and Ay directly. This approach reduces the computa-
tional burden substantially.

Computation of the Modified Projected Gradient

Recall that the removal ratios at the treatment plants are in the range
[0, 1], whereas the cyclic discharge can be of the order of tens, hun-
dreds and even thousands. Furthermore, the effect of a unit change
in a removal ratio is much greater than the effect of a unit change in
the cyclic discharge. As a result, there is a scaling problem between r
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and q. Methods for nonlinear optimization are in general sensitive to
scaling, and especially the projected gradient which is an extension of
steepest decent. Transformation of the variables is the method sug-
gested by Gill et al. [8] (pp. 273-275) to overcome these difficulties.
In the problem described in this paper, transformation of the varia-
bles leads to defining r in percent (%) when the circular discharge is
in the order of hundreds, or in parts per thousand (%) when the
circular discharge is in the order of thousands. However attempts to
apply this approach to our problem were not successful, and the com-
putational difficulties remained.

An alternative method which overcomes the scaling problem is
described in Algorithm TF below. This uses the fact that, for a
separable quadratic problem, the optimal solution can be reached in
one iteration, independent of the initial point and the order of the
scaling. As seen above, s, and s, are orthogonal. The problem is
therefore separable with respect to q and r and the modified projected
gradient direction is derived as follows:

Algorithm TF (Two Phases)

Step a Assume an initial search direction for g, d; =s,, and forr,
d/ =s,.

Step b Compute o, the maximum step along d; and ¢/, the maximum
step along d;, such that (q+ojd;) and (r+ o/d;) meet a
constraint which is not included in the active set.

Step ¢  Compute ag, the optimal step length along d;:

V(g +opd,,r) = min{¥(q+ aud;, 1) [0 < oy < o)}

Step d Compute, using a method to be discussed below, o, the
optimal step length along d;:

‘I’(qu + ar*dr,) = min{\Il(q,r + ardrl) | 0<,< a,{l}

It is important to note that one dimensional search along q
and r separately remains on the manifold of the active set.
Step ¢ Compute the norm of the updated direction, s:

* * 1/2
sl = [ag(@)7d] + o (@) )]
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Step f Compute d,, the normalized modified projected gradient
direction related to q:

sq := ay dg/|s|

Step g Compute d,, the normalized modified projected gradient
direction related to r:

s =y d/|s]

(Note that d, =d, if s, =0 and d, = d_ if s, = 0)

It should be recognized that the optimal step size could be determined
by one of the exact methods for one dimensional search, such as
the Powell or Davidson methods in Ref. [1] (pp. 221 -240). However,
the computation of ¥ and V¥ can be expensive and therefore a
nonexact search method is preferable. As a result, the efficiency of the
scaling method is probably reduced, since its efficiency is actually
based upon an exact one dimensional search. The efficiency reduction
resulting from the nonexact one dimensional search was examined by
Cohen [4] and Cohen et al. [5] in a wide range of examples, and it
was found that the reduction is negligible.

Termination Criteria

When the relative change of the objective function at two successive
points is less than an arbitrary small parameter . and/or the relative
change in the decision variables at two successive iterations is less than
an arbitrary small parameter ¢,, then the Kuhn-Tucker optimality
condition is satisfied if the multipliers with respect to the active
constraints at their upper bounds are nonnegative, and nonpositive
for the active constraints at their lower bounds. Otherwise, the ac-
tive constraint having the multiplier with maximal absolute value is
dropped from the set, and the solution process continues with respect
to the updated active set.

Algorithm Q-C

The entire set of steps detailed above is summarized as follows:
Initialize Assume initial value u®:= {q°,r°. Initialize the iteration
counter k = 0.



Step 1

Step 2

Step 3

Step 4
Step 5

Step 6
Step 7

Step 8

Step 9

Step 10

Step 11
Step 12

Step 13
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Compute the distribution of the primary quality parameters
by solving

Ec"=b" m=12,....M
Compute the distribution of the dependent quality param-
eter by using the relation functions:

N o

Compute the value of the objective function at the current
u”, T@E").
Compute V., f from Eq. (46).
Compute 8™ by solving:

ET"=-V,m; m=12,....M
Compute V,fand V, ffrom Egs. (55) and (58), respectively.
Compute V,¥ and V,¥ from:
V¥ =V, f + (Ve B
VU= Vof + (Vi) B
Compute A; by solving:

ALAph = —A V¥
Compute A, from:
A =-V,¥
Compute the projected gradient with respect to q from:

sg=—[Vq¥ +AIN]
and with respect to r from

s/=0 ifjel,

s/ =-V, ¥ ifj¢J,

Compute the modified projected gradient as described in
steps a to g of Algorithm TF.

Compute the optimal step length along the modified
projected gradient, o™,

Check the optimality conditions. If they are satisfied, the
current u” is the optimal solution, otherwise, update q and r
from: ¢**'=q"+ a’d, r**1.=rF 4 a*d,, update the
iteration counter: k:=k + 1, and return to Step 2.
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EXAMPLE

Use of the method described in the previous section is demonstrated
by application to the example network shown in Figure 1. These data
are taken from a water supply system in the Arava Valley in Southern
Israel. The system is located in a region which lies 200-250 m below
sea level. It is fed from two constant head reservoirs at nodes 8 and 9,
and delivers to consumers at nodes 4, 5, 6 and 7. It consists of 9 pipes
and 9 nodes. The system is operated 2000 hours per year and the cost

140

180 4

300 120
Legend :
ﬂ - source node @ - treatment plant
pipe no.
- a - consumption node
300‘\
70

. ~3/h
initial discharge (m3 M) consumer demand (m"3/h)

FIGURE 1 Schematic description of the network.
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per unit energy is 0.22 NIS/kWh (18 = ~ 3.6 NIS (NIS = New Israeli
Shekel)).

The water quality parameters of importance to this system are
salinity, magnesium and sulphur. The relevant water quality data for
the sources are given in Table I.

At the consumption nodes 4,5 and 6 a quadratic yield function of
the form y = ag+ a;¢ + axc” is defined to model the impact of salinity
on yield, where y is the relative yield, c is the salinity in mgcl/l, and
ay, a; and a, are constants given in Table II. Upper limits are defined
for the other parameters. At node 7 all the quality parameters are
limited by the upper limits given in Table II. by * yq is defined as the
entire income at the node when there is no yield loss due to water
quality.

Treatment plants for salinity and magnesium are located on pipe 2,
and a treatment plant for sulphur is located on pipe 1. The specific
treatment costs with respect to reducing salinity are

w,=2.151 % 10742 r<0.75

and with respect to magnesium and sulphur is:

we=132%10"*7 r<0.75

TABLE 1 Data for sources

Maximum Water quality
Node Specific cost Elevation discharge  Salinity  Magnesium  Sulphur
- NIS/m® m m3/h mgclfl mg/l mg/l
8 0.638 25 325 450 140 500
9 0.256 0 700 860 250 300

TABLE II Data for consumption nodes with respect to quality

Upper limits for water quality

boxyy Coefficients of the yield function  Salinity Magnesium  Sulphur

Node NIS*10® g a *10°  @x10°  mgeljl mg/l mg/l
4 0.700 1 1250  -2.707 - 250 500
5 0.448 1 —3.06 —3.890 - 200 500
6 1.200 1 1250  —2.707 - 200 450
7 - - - - 600 170 450
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where w, is the specific cost in NIS/m> and r is the removal ratio
in %. All the removal ratios are limited to 75%. Recall that the
transportation cost in each pipe is related to the energy losses. Thus,
w,f, the transportation specific cost function of pipe i, is:
i 11.852
wh = mila)

where wlﬁ is in (NIS *h/m?), g! (in m?>/h) is defined from Eq. (7), and
i is computed from:

pi = 2.726 %1073 k, Chw; 1852 (g1)~487 /!

where k, is the cost per unit energy (NIS/kWh), Chw; is the Hazen
Williams coefficient for pipe i, d} is the diameter (mm) and /! is the
length (m), respectively for pipe i.

The relevant pipe data for the system are given in Table III.

All pipes have Chw = 120. The network consists of 2 loops: one
closed loop of pipes 3, 7, 8, 9 and 4 and one pseudo-loop between
the nodes 8 and 9 which includes pipes 1, 2 and 3. The initial flows,
the positive directions of the pipe flows and of the circular flows are
shown in Figure 1.

The optimal solution is f* = 4162303.2 NIS, and the optimal
circular flows are g; = 25, g5 = 40.33m3/h (flows relative to those
in Fig. 1). The optimal removal ratios of salinity and magnesium in
the treatment plants placed on pipe 2 are zero and 11%, respectively.
The optimal removal ratio of sulphur in the treatment plant placed
on pipe 1 is zero. The optimal distributions of flows and quality
parameters are given in Figure 2.

This solution was obtained after 10 iterations in 1.49 sec on an
IBM-3081 computer. The values of the objective function during
the solution process are shown in Figure 3.

TABLE III Pipe data for the example problem

Pipe 1 2 3 4 5 6 7 8 9
Length (m) 400 1300 3700 1000 4300 2600 800 5000 3500
Diameter (mm) 250 250 300 250 300 250 250 250 250
Initial flow (m®/h) 300 120 180 120 140 70 300 140 20
pi (%1074 022 0.71 0.83 054 096 141 043 271 190

Maximum flow (m®h) 530 530 763 530 763 530 530 530 530
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125.91

35436 500.00
\
7 2
160 <—ﬂ= [7] ] TH?®
600.00 ] 285.91 208.19 55509
169.99 Legend : 181.19
354.36 500.00
E - source node - consumption node at upperbound
- consumption node 0 - dilution junction
@ - treatment plant
70 - consumer demand
salinity salinity
magnesium| - concentration magnesium |. concentration at treatment exitof ..
in consumption sulphur
sulphur node of... P
pipe no.

30()\

discharge (m3 /M)

FIGURE 2 Optimal distribution of flows and quality parameters.
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The value at zero iteration is omitted because it contains a large
penalty value.

The utility of the method for a more realistically sized network
was examined by application to the water distribution system of
Central Arava Region, which supplies an area in the southern region
of Israel. This system has 38 nodes, 39 pipes, 11 wells, 14 aggregated
consumers and 7 treatment plants located at the sources, where the
product water is pumped into the distribution system. Four nodes
supply domestic consumers while the others supply agriculture. Water
quality in the system is expressed in terms of 3 parameters: salinity,
magnesium and sulphur, all of which are assumed to be conservative,
i.e., they do not decompose or interact, only dilute by flow and
mixing. For the domestic consumers the quality parameters are re-
stricted by upper limits, determined by water quality standards. At
the agricultural nodes, net income and reduction yield with respect
to salinity are defined. These functions reflect the sensitivity of crops.
The other water quality parameters at these nodes are restricted by
upper limits. The solution for this larger network was obtained after
42 iterations in 18.95 sec on an IBM-3081 computer.

SUMMARY

A new model for the optimal operation of a multi-quality water

distribution network is proposed. The model determines optimal oper-

ating decisions for what is termed the Q-C (flow-quality) problem,

for a single loading condition. Continuity of flows and solute trans-

port are satisfied explicitly in the model, while the hydraulics of the

system are addressed implicitly by transportation limits and costs.
The characteristics of the Q-C model are:

x The objective is minimization of total operating cost, which includes
cost of water at the sources -+ treatment, cost of transportation,
loss of income due to low water quality.

*x The optimization problem is solved by decomposing the problem
into inner—outer problems when the outer problem is solved by
the projected gradient method combined with special consideration
of scaling problems of the decision variables. The decomposition
enables problems with many water quality parameters to be solved.
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* The non-smooth functions are smoothed by an approach developed
specifically for this application.

*x The flow directions in the pipes do not have to be specified in
advance, and are determined as part of the solution. This property is
enabled by the smoothed functions.

* Transportation cost can be defined as nonlinear with flow. The
capacities of the pipes in the system are introduced as limits
to assist in defining the feasible region with respect to hydraulic
conditions.

The Q-C model is applicable in its current form to systems where
the hydraulics of the operation are not a significant determinant,
and it can be assumed that the operation of the system is feasible
within a wide range of hydraulic conditions. The model is, however,
one of two components of a more complete full flow-quality-head
(Q-C-H) model (which is the subject of a companion paper), in
which the solute transport and the hydraulic constraints are com-
bined, using the Q-C based approach of this paper and a Q-H model
described in a second companion paper in this series.
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APPENDIX SMOOTHING

Mathematical models of multi-quality networks generally contain
discontinuous functions arising from dilution conditions which depend
on flow direction, and from discrete pump operating functions. Such
discontinuities can be introduced into the optimization model by use
of integer variables. However, this process would result in non-linear
integer models, which are notoriously difficult to solve. A smoothing
technique, which makes it possible to formulate a non-linear model
with continuous variables only is proposed here. The technique is
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demonstrated for a discontinuous function of the form:

a fx>0
glx)= {b ifx<0} (1-1)
05(a+b) ifx=0

This form is typical of issues relating to the concentration of water
quality parameters in a pipe. The value of the function depends on the
direction of flow: it is equal to the value of the concentration at the
upstream end when there is flow, and to the average of the two when
there is no flow. The following smooth approximation of g(x) is used:

_ aexp{w(x)} + bexp{-w(x)}

flx) = exp{w(x)} + exp{—=(x)} "
in which:
w(x) = kp ﬁ (-3)

k, is a “gain factor”, and ¢ is an arbitrary small number, used to
prevent division by zero.

When x>0 the second terms in the numerator and dominator are
negligible compared to the first terms, and then f(x) = a. When x <0
the first terms are negligible compared to the second terms, and then
f(x)=b. When x =0, exp{w(x)} = exp{—w(x)} =1, and f(x)=
(a+b)/2.

Now consider how Egs. (I-2) and (I-3) can be used to model dilution
conditions. Consider the concentration in a pipe connecting nodes i
and j, at which the concentrations of some constituent are c; and ¢,
respectively. The concentration in the pipe itself, ¢;, will be that of the
upstream node. If the direction of flow is not known in advance, and
the model is to have the ability to reverse the direction in the process
of the solution, it is necessary to use an expression of the form (I-2)
namely:

__ aexp{@(0y) + g exp{-w(0y)}
7 exp{w(Qy)} + exp{~w(Qy)}

(1-4)

in which Qj; is the flow in the pipe, defined as positive when the flow
is from i to j. w(Qj) is defined by (I-3) with x = @,
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Figure I-1 shows the results of Eq. (I-4) for c¢; = 600mg/l,
¢; = 1200mg/l, k, = 2, 4, 8, 10 and ¢ = 0.001.

The results show that the approximation is good, and can be made
as accurate as desired by changing k,. Experimentation with the
optimization technique showed that it is not sensitive to the value of
k, in that range.



