FORECASTING HOURLY WATER DEMANDS BY
PATTERN RECOGNITION APPROACH
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and Mordechai Feldman?

ABsTRACT: Hourly water-demand data is forecasted with a model based on a
combination of pattern recognition and time-series analysis. Three repeating seg-
ments are observed in the daily demand pattern: “rising,” “oscillating,” “falling,”
then “rising” again the following day. These are called ‘‘states” of the demand
curve, and are defined as successive states of a Markov process. The transition
probabilities between states are “learned,” and low-order auto-regressive inte-
grated moving average (ARIMA) models fitted to each segment, using a modest
amount of historical data. The model is then used to forecast hourly demands for
a period of one to several days ahead. The forecast can be performed in real time,
on a personal computer, with low computational requirements, at any time the
system state deviates from the planned, or when new data become available. The
process of model development, application, and evaluation is demonstrated on a
water system in Israel.

INTRODUCTION

The task for on-line control of a water distribution system is to prepare
and execute a plan for operating the system. The objective of the plan is
to meet the demands at the lowest cost, and it is therefore referred to as
an optimal operation plan.

Typically, the operating plan is prepared for a period of 24 h ahead. There
are several reasons for this: (1) The demands display a pronounced daily
cycle; (2) energy tariffs are based on time of day; and (3) there is frequently
a time of the day at which a boundary condition on the state of the system
(reservoir levels) can be set in advance with reasonable certainty. While the
normal planning period is therefore 24 h, it is sometimes necessary to look
further ahead, for example to the end of the current week when larger
storage reservoirs have a weekly cycle. There may be cases when the forecast
is needed only to the end of the current day.

The necessary condition for preparation of an operating plan is a forecast
of water demands for the entire planning period. The temporal definition
of the forecast is determined by the needs of the operational planning
process. Here, we deal with a continuous trace over time, from which values
for an hour or even parts thereof may be taken. We shall call this temporal
definition ‘‘hourly demands,” for convenience and also because an hour is
a common time step for planning the operation. The spatial definition of
the forecast, i.e., for which points in the network we need it, depends on
the mathematical model of the network used. In this paper we do not deal
explicitly with this aspect. Suffice it to say that the demand we are forecasting
is for a population that is large enough to smooth out the randomness of
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one individual’s behavior, yet small enough to have a common pattern not
smeared out by the combination of very different demand patterns.

In most water-distribution systems there is storage, which is operated on
a daily cycle to reduce energy charges, by shifting pumping away from times
of high energy tariffs. This operation of the storage smooths the instanta-
neous peak demands; and, from the point of view of optimal pumping
schedules, reduces the importance of short-duration peaks. Therefore, we
adopt as criteria for evaluation of the demand forecasting method, first the
total daily volume and then its temporal distribution.

We have found few reports of forecasting water demands on an hourly
basis and some on daily forecasts. Moss (1978) and Gray (1978) used time
series analysis methods to develop a forecast of demands over the day.
Maidment and Panzer (1984), and Maidment et al. (1985) developed transfer
functions that describe the influence of temperature and rainfall on daily
water consumption. This method seems to require large amounts of data;
20 years were used by Maidment et al. Sterling and Bagrelia (1985) used a
two-stage auto-regressive integrated moving average (ARIMA) procedure:
first an ARIMA with a seven-day integration period to determine the daily
trend, then another ARIMA model with a 24-h integration period on the
data with the daily trend removed, to determine the deviation from the
daily mean. Hartley and Powell (1991) continue this work in an interesting
way. They combine this method with a heuristic approach: The mathematical
algorithm provides the base forecast that is augmented by a knowledge base
containing information pertaining to any abnormal events likely to affect
demand over the prediction period. Jowitt and Xu (1992) analyzed the
influence of meteorological data on water demand, and concluded that they
cannot find a specific correlation. They therefore used the time-series ap-
proach suggested by Sterling and Bagrelia (1985).

At Mekorot, Israel’s national water-supply company, work has been con-
ducted in recent years on methods for on-line operation of water supply
systems. The analysis is conducted by simulation and optimization, which
requires demand forecasting. Initially, we used a fixed daily demand pattern,
and forecasted only its “scale,” i.e., the average daily value. The work
reported in this paper is the second step, which uses methods of pattern
recognition and time-series models. We are presently adding consideration
of explanatory variables—such as temperature, day of week, days since last
rainfall—using cluster analysis methods, and embedding the whole package
in an expert system. This work will be reported in a future paper.

BASIC APPROACH

The variation of water demands over the day depends on many param-
eters—temperature, humidity, time since last rainfall (for irrigation and
lawn watering), day of the week, etc. Yet, we detect a markedly similar
pattern over the day, one which shows a typical “signature” of each con-
sumer type. Fig. 1 is from a study of Boston water system (Boston Water
1966), with the data given as dimensionless demand curves (DDCs) nor-
malized by the mean daily value. Fig. 2 shows data from the Sorek system
in Israel, which supplies a combination of agricultural and domestic de-
mands.

In all cases we can detect a similar pattern: a low demand at night, rising
during the morning, remaining high but with some variability for part of
the day, then decreasing. The transitions between these parts, as well as
the shape of each part, may vary among consumers, yet we can generalize
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FIG. 1. Dimensionless Demand Curves (Boston Water Study 1966)

that the daily pattern is made of a “rising”” segment, an “oscillating” seg-
ment, and a “falling” segment, as depicted schematically in Fig. 3. Our
method is based on assuming this general pattern, then identifying the points
of transition between segments and constructing a time-series model for
each segment.

This paper deals with a statistical model, which is based on the assumption
of stable meteorological and other environmental parameters. In the next
phase of our work we are going to take into consideration the effects of
changing conditions.

We follow the approach proposed by Mottl’ et al. (1983), which is based
on principles of pattern recognition. The daily demand pattern is assumed
to be a stochastic process with segments, where the transition between them
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FIG. 3. Schematic Description of Three-Segment Process: “Rising” (1), “Oscil-
lation” (2), “Falling” (3)

is a Markov chain. Within each segment the demand is described by an
autoregressive process.
The analysis and forecasting contain the following steps:

1. Assuming: Assume the number of segments of the daily demand pat-
tern. We have used three: “rising,” “oscillating,” and “falling,” and have
also tried four segment types, as will be discussed herein. The segment type
at each time is termed the system ‘“‘state.” The demand in each segment
(state) is assumed to be an autoregressive model of low order.

2. Learning: A portion of the demand data is used, and divided by ob-
servation into the segments selected in the ‘“assuming” process just stated.
The initial values of the transition probabilities between states, and the

614



initial values of the parameters in the autoregressive model for each segment
are computed.

3. Recognition: The entire demand data set is used, to determine the
optimal set of parameters—posterior probabilities for being in each state,
transition probabilities between states, and parameters of the autoregressive
models.

4. Forecasting: The posterior probabilities of being in each state, and the
autoregressive models for the segments are used to forecast the demands
for the next day.

The data requirements of the model are modest, as will be shown. It is
unfortunate, but in very few systems are demands monitored, and recorded
continuously (on time scales of less than a day) and especially, kept in some
accessible form. The only data we could get is from Omaha, Nebraska
(Christensen and Macdissi 1989). For the systems in Israel that we analyzed,
demands were computed from a water balance, using continuously moni-
tored pump operations and reservoir level changes.

DEMAND BEHAVIORAL MODEL

Stochastic Process with Segments

The demand is considered a stochastic process with three repeating seg-
ments. Transition from one segment to the next is a Markov chain, and
therefore the length of the segments is random. Within each segment the
demand is described by an autoregressive (AR) model of low order.

Letv,t=...,-1,0,1,2,..., be the state of the demand curve at
time ¢, which may take on m different values, i.e., v, = 1, ..., m. The
transition probabilities from one state to the next are
P=[pip=QW, =jlvee1=0,6,j=1,...,m] .............. 6]
The demand.at time ¢, x,, is a normal autoregressive process of order n:

n
X, = ¢ + -21 CaXoi ¥ DL, o 2
where ¢, = (cgy C1s» *** , C,) = @ vector of time-dependent coefficients; ¢,

= a normal variable with zero expectation and unit variance; and b, = the
standard deviation of the disturbing white noise, which is also time de-

pendent.

The vector of parameters in (2), 8, = (c,, b,), at any time ¢ can assume
one of the m values, such that whenv, = k, k =1, ..., mthen 0, = 6%
= (ck, c%, ..., ck, b¥). The order of the autoregressive model, m, can be

allowed to vary between segment types, to provide more flexibility for model
fit. We have data, which is assumed to be a realization of this process,

XY = (x1, - . ., xy). With this data we have to solve two interrelated
problems:
1. To estimate the parameters P, 0, . . . , ™, and

2. To identify the state of the process, v,, at any point in time {VY =
vy, . .-, vl

Following Yacovlev and Vorob’yov (1986) we use the maximum likelihood
method. The parameters are determined from
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P*, 0V, ..., 0™ = arg max log f(X}|P, 0%, L0 3

P, 01, ..., 6m

where f(x4|P, 0%, . .., @) is the conditional probability density of the
vector X7,

The computation is carried out be an iterative process, to be detailed
herein, which generates at iteration s the values (P, 0}, . . ., 67). The
sequence of iterates has the following properties (Yacovlev and Yorob’yov
1986):

1. The sequence of numbers log f(X}Y|P,, 0%, . . . , %) is monotone non-
decreasing,
2. The estimates P%, 01", . . . , 07 that satisfy
log fXYPyr, 01y, . - ., 07 ) — log fFXYIPE, 0, ...,07)=0..(4)
are arguments of a local maximum of the likelihood function f(X%|P, 0!,
, ).

The iterative equations are:

N . .
0%, , = arg max 2 p(v, = k|IXY, P, 0L, . .., 07)-log f(x|Xi~ 1, 0) .. (5)
ok =1

N
> py =i, v, = jIXN P, 0L ..., 0™
1

=
pp = ... 6)
E z p(vt—l = i’ v, = ullev, Ps’ 0.%7 L) 0;7:)
u=1t=1 .
where
1 -1 n :
f(x,|x’1“, 04 = m exp <%k)_2 (xt - G — ‘Zl C,"‘)Cz—i) > ------ (M
where p(v, = k[x}, P, 0L, . . . , 8™) = the posterior probabilities of process

x, being in state k at time ¢ The algorithm for estimating these is based on
properties of a Markov chain and on (7). For details of the algorithm, see
Mottl’ et al. (1983). At every iteration, (4) is checked, for convergence to
the desired solution. The joint distribution is

pe =i, v, =jXVP,0L ...,0") =p_, =X}, P,0.,...,07
'p(vt = j'vz—l = i? Xﬁ Ps’ 6}7 AR 6;")
= p(v_y = XY, Py, 0L, O P (8)

According to Yacovlev and Vorob’yov (1986)

lOg f(XIIVIPsa 031’ cev s 9;") z log f(x lx 0"'

N N

+ z og pv,_v, — 21 logp(wx, P, 04, ..., 0™ ............... 9
t=1 t=

for each state distribution VY = (v,, . . . , vy), which makes (4) computable.
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[It is a consequence of the presentation of the joint distribution of XY and
V4 in two equivalent ways

FXMP, 0, ..., 07)-p(VYP, 0, ..., 07
= p(VIP)-f(X}[VY, 0", . .., 07)

and properties of model (1) and (2) (by taking logarithms of this equation)].
We thus have the following algorithm for estimating the model parameters
P, e, ..., 0"

Initial Step: Learning

1. Examine the given data, XY of length ¢t = 1, . . . , N, and decide how
many segment types, m, to use. m is a small number, e.g., m = 3. It is
desirable to have N > 200-300 points.

2. Select an initial part of the data, X', fort = 1, ..., Ny, with N; <<
N.

3. By observation, divide the selected set into segments, thus setting for
each time ¢ its state v,. Calculate the initial matrix of transition probabilities
as the sample frequencies. Set

1, ifv, =k

p(v, = kXY, Py, 03, . . ., 05) = {0, ot arwise 1 (10)
fort = 1, ..., N,. Also set p(vo = k|X¥, Py, 04, . . ., 07), arbitrarily.
For example
pvy = k|IXN, Py, 04, . .., 05) = p(v, = kIXY, Py, 05, . ..,07) ...(11)

4. Calculate 0%, k = 1, ..., m according to (5), using (7) for
f(x]XiY, 0%) and postenor probablhtles from (8). All these operatlons use
the data for ¢ = 1, , N; only. Calculate the probabilities pi/, i,j = 1,

,m according to (6).

Iterative Step: Recognition
For this step the entire length of the data set, XN, fort =1, ..., N.

1. Calculate the posterior probabilities
p(v, = kXN, P,0,...,07 t=1,...,Nk=1,...,m..(12)
2. Calculate 0%, ,, p%/ ;, using (5) and (6).

This is repeated until conditions for a (local) optimum of the likelihood
function are satisfied. According to the terms commonly using in pattern
recognition, the initial step is called ““learning,” while the iterative step is
called “‘recognition.”

A “loss function” is defined for the classification actually obtalned vy

(vl, .+ ., Vy) relative to the (unknown) true classification VY = (b,
., Uy). The minimum of this function is sought. The simplest rule to
achieve this is

v(XY) = k* if k* = arg max p(v, = KX}, P*, 0%, ..., 0™) .. (13)
: k
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Mottl’ et al. (1983) have shown that this yields

N
VNXY) = argmin ) AV D) o vveeveeoee e (14)
VT t=1
where
Mk, k)=0, Mk, D=1kl =1,...,mk#1 ..... A (15)

This simple decision rule may cause some ‘““lack of definition” at boundaries
between segments, i.e., the change from one type to the next is sometimes
missed. This can be remedied by more complex minimization criteria. Mottl’
and Muchnik (1984) have suggested such a criterion, which was then min-
imized by dynamic programming. For our application, it seems that the use
of the simple criterion given in (13) produces adequate results.

APPLICATION

The data are two months of hourly water demands in the Sorek water
system, in central Israel, during the summer of 1991. The system serves the
town of Yavne, of about 20,000 inhabitants, which use 20% of the water,
with the remaining 80% for agricultural irrigation. Total daily demand av-
erages 22,000 m3.

The demand data were actually computed, rather than measured directly,
from continuous records of pump station outputs and reservoir level changes,
by a simple water balance. Because there were some unreasonable variations
in this data, it was decided to smooth it, using a three-point moving average.
The resulting series is thus considered to be the demand data. The period
of record is from 1.06.91 to 31.07.91, a total of 61 days, or 1,464 h. A five-
day segment is shown in Fig. 2.

The number of states selected is m = 3: 1 = “rising,” 2 = “oscillations,”
and 3 = “falling.” The first N; = eight days of the data used in the “learn-
ing” step. The order of the autoregressive model was allowed to vary be-
tween the segment types, and the optimal orders (according to standard
errors and subjective observations) were n; = 3, n, = 3, n; = 1; i.e., the
“rising” state will be an autoregressive model of order 3, and so on. The
standard errors of these three models were: §; = 37.7, §, = 33.0, §; =
37.4 as compared with a standard deviation of 265 and a mean of 697 in
the whole data series. The coefficients of the three autoregression models
appear in Table 1.

The “learning” step is seen in Fig. 4. At the bottom is the value of v, =
1, 2, 3, which delineates the corresponding states ‘“‘rising,” “‘oscillations,”
and “falling,” respectively. It demonstrates that the pattern is indeed de-
tected, and the transitions are always “smooth,” i.e., (--- 111222 --- 222333

TABLE 1. Coefficients for Autoregressive Models with Three States

Segment
(state) Cy C, C, C,
(1) (2 3) 4 (5)
1 33.85 1.54 -0.92 0.34
2 45.7 1.79 -1.23 0.43
3 —8.996 0.88 — —
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TABLE 2. Autoregressive Model Coefficients and Standard Error for Four-State
Model

Model Coefficients Standard
State C, C, C, C, error, S
(1) 2) (3) 4) (5) (6)
Rising slowly 21.38 1.9 -1.41 0.53 25.8
Rising rapidly 86.8 1.6 -0.99 0.32 36.9
Oscillations 33.85 1.54 -0.92 0.34 33.3
Falling —8.996 0.88 — — 374

-++ 33111 ---). Thus no difficulties are encountered at the boundaries be-
tween states. The modeled demand shows good fit to the actual demand.

June 29, 1991 is a Saturday, and it has a significantly different demand
pattern than the weekdays. Note that July 6, 1991, which appears in Fig.
2, is also a Saturday, and shows a similar pattern. On Saturday the rate at
which the “rising” (v = 1) segment rises is lower than on the other days.
We therefore tried a model with four states: “‘rising slowly,” “rising rapidly,”
“oscillation,” and “falling.” The coefficients for the four autoregressive
models, and the standard errors of the four types appear in Table 2.

The “falling” model remained unchanged; the “oscillations” model changed
only slightly. The improved fit of the four-state model over the three-state
model can be seen in Fig. 5, for Saturday, July 6, 1991.

FORECASTING

State Prediction

The estimation algorithm produces posterior probabilities of each state
at all times. The sequence of values of these estimations can be viewed as
m time series, as shown for the three-state model in Fig. 6. (We can see
values slightly greater than 1 on the figures of posterior probabilities. It
seems that for the purpose of the actual application, such a precision of the
estimation is sufficient. But in the real-time system, it is necessary to take
care of the data precision for prevention of cumulative errors.) These time

619



600 - —— —
550+ 9
< 5001
k=
Lo4sor 1
=]
g
g 400
o
a
5 350f
= = Actal
1= "N - O A, - === 3-state model
3001 ===A==  4-state model
2501
200 . " s L L i . . \ N . .
0 2 4 6 8 10 12 14 16 18 20 22 24

Hour

FIG. 5. Results of Three-State and Four-State Models for Saturday, July 6, 1991

LI S S S S e B B G S LU A0 SO B B B S S S S

ot —o—— State 1 ("rising") ~~~&--  State 2 (“oscillations") ]
B T o= State 3 (“falling”) Aéﬂ
i
I 1 :
£ o8t » Y
= 3 ] H
E f 8 > f o
£ sl i f = Alle Y
N S SR Y A ERYE 1 I
8 _ a g i 3
2 L H M !
2 04F 3 [} i '
= $ Mpo4 A
A i A A
i & H] i # T
Lk $ £ i g i
af AT WhE W
A e LA R
b-f 5« 0‘1 AEA ; ; Eis.f
0.0 " Sectes
1 12 24 12 24 12 24 12 24 12 24
26.06.91 27.06.91 28.06.91 29.06.91 30.06.91
Hour
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series are seen to have a fixed period of 24 h, and can be modeled by an
ARIMA model (Box and Jenkins 1970), which is stationary and periodic,
with period T (= 24 h), of the form.

where p, = posterior probability, viewed as a stochastic process; {, = normal
variable (0, 1); BT = backshift operator (B,, = x, — x,-,); and ¢,, I';, T,
= polynomials.

The necessary and sufficient condition that this process be stationary is
that all the zeros of its polynomials lie outside the unit circle, i.e., the
absolute values of all its roots are greater than 1. Using the demand data
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for the period of June 1-20, 1991, we obtained the following ARIMA
models for the three time series of posterior probabilities:

State v = 1: ‘“‘Rising”’
(1 - B*(1 — 1.6B' + 0.74B*)p» = (1 — 0.61B*){, .......... (17a)
Standard error = 0.038; and R? = 0.98.

State v = 2: ““Oscillations”’
(1 — B - 1.6B' + 0.69B%)p® = (1 — 0.62B*){, .......... (17b)
Standard error = 0.034; and R? = 0.98.

State v = 3: “Falling”’
(1 - B — 1.3B' + 0.57B*)p® = (1 — 0.69B*){, .......... (17¢)

Standard error = 0.029; and R? = 0.97, where R is the correlation between
data (posterior probabilities from the fitting model) and the forecast [values
according to (17)]. It is easy to check that stationarity is indeed detected,
i.e., that the absolute values of all roots are greater than 1.

The results of these models are demonstrated for state v = 1 (“rising”)
in Fig. 7. The forecast is produced each day at 0:00 for 24 h ahead. With
these forecasted probabilities, the state for each time interval is determined
through application of the decision rule (13), i.e., at each time the state
with highest probability is selected.

To assess the performance of this method for forecasting the states, we
proceeded as follows, using the time period of July 1-31, 1991. First we
determined the state of the process, v,, at every hour ¢, by the process which
ends with (13). Then we forecasted for the same time period the state v,,
as described in this section. The measure of fit is

Estimated Values ~--a-- Forecasted Values

Posterior Probability

5.07.91 6.07.91 7.07.91 8.07.91 9.07.91
Hour

FIG. 7. Forecasting of Posterior Probabilities by ARIMA Model; State 1 (“Rising”);
Forecasting: Each Day at 0:00 O’clock to 24 h Ahead
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1 N
P=N & AV D)) et (18)
My, D) =1, D, =v oo (19a)
A(v, 9) = 0, otherwise ............ ... .. i iiiiiiia. (19b)

The result for the 31 x 24 = 744 h was p = 0.82, i.e., 82% of the
forecasted values match. Note that the ARIMA models (17a)-(17c) were
based on data for the dates of June 1-20, 1991, whereas the performance
of these ARIMA models was examined for a later period.

Futhermore, the sequence of states moved ‘“‘smoothly” from 1 to 2, from
2 to 3, then back to 1. Only six times in the 93 “boundaries” between states
did we get “nonsmooth” sequences like (--- 1112122 ---), and the effect of
this was minimal.

Demand Forecasting
Next we forecast the demands for the period of July 1-31, 1991, using
the forecasted states. Two forecasts were produced:

1. By the three-state model, where all days have the same ““rising” model,
and

2. By the four-state model: first, the states were produced by the three-
state model, then all weekdays were forecasted by the “rising-rapidly” model,
whereas Saturdays were forecasted by the “rising-slowly’’ model.

For estimation (recognition) we used a window of 15 previous days. It
means that for the recognition step, we used the interval XY _ 4.

Results for July 5-9, 1991 can be seen in Fig. 8. The second method is
seen to give somewhat better results, although sometimes the first is better,
as is the case on Friday, July 5, 1991.

Table 3 contains results of several measures of the forecast produced for
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FIG. 8. Three-State and Four-State Models Demand Forecasting: Each Day at 0:00
O’clock for 24 h Ahead
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July 1991. Column 3 gives the actual total daily demand. Columns 4-7 are
for the four-state model, and columns 8—11 for the three-state model. In
each case the four columns are: 24-h totals relative difference between the
two (%), standard error of the hourly values, and maximum error of the
hourly values. The results show that the four-state model performs better,
but its improvement over the three-state model varies over the days of the
week.

Table 4 summarizes the results of Table 3, by days of the week. The
results, by column order, are: averages for each day of the week of the
corresponding columns in Table 3 (columns 5, 6, 7, 9, 10 and 11; column
2 of Table 3—averages of absolute values of column 5, Table 4.). The
results indicate an advantage of four-state model, obviously on Saturday.

EVALUATION OF FORECASTING METHOD

Recall that we are forecasting hourly water demands for the purpose of
determining the optimal operating schedule of a supply system. The forecast
is produced in real time, at any desired time, usually for a period of one
day ahead, sometimes up to a week. The forecast is used to plan the op-
eration, and this plan is then put into action. The actual performance of
the system is monitored, for example water levels in the reservoirs. If the
actual state of the system deviates from the calculated state, we conclude
that actual demands differ from the forecast, and we must update them.

To assess the performance of the proposed method in real time, we
conducted the following experiment:

» Every forecast was based on hourly demand data over the last 15
days only.

« For every hour from July 1, 1991 to July 30, 1991, we produced the
forcast to the end of the current day and for 24 h ahead.

Computation time for each forecast of 24 h ahead, which includes model
“learning” and “recognition,” fitting the ARIMA models, then predicting
the states and forecasting, on a PS/2 model-70 personal computer, is ap-
proximately 60 s.

As a measure of performance we used the deviation of the total volume
for the forecasting period from the actual volume. This selection is based

TABLE 4. Evaluation of Three-State and Four-State Models’ Forecasts: Averages
by Day of Week :

Four-State Model Three-State Model
Deviation | Standard | Maximum | Deviation | Standard { Maximum

Day (%) error error (%) error error

(1) (2) (3) 4) (5) (6) (7)
Sunday 17.1 207.3 2339 22.7 250.2 426.8
Monday 8.7 109.3 250.7 8.5 103.5 198.9
Tuesday 5.4 106.3 277.0 5.9 109.4 209.4
Wednesday 11.4 130.8 209.0 11.4 134.2 270.9
Thursday 12.1 169.0 336.5 12.5 171.5 380.6
Friday 8.2 105.0 280.0 6.4- 105.1 251.5
Saturday 5.9 88.1 240.3 62.1 323.0 461.3
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FIG. 9. Relative Deviation of Total Volume: (a) Forecasting to End of Day; and
(b) Forecasting for 24 h Ahead

on the observation from Tables 3 and 4 that this measure is in good cor-
relation with all other measures. We computed the average of this relative
difference in volumes, for each hour of the day, over all 30 days of July.
The results are seen in Figs. 9(a) and (b). The first is for the period to the
end of the current day, the second for a 24-h period ahead.

The difference ranges from about 6% to 11%, in both cases. The decrease
in error towards the end of Fig. 9(a) is explained by the fact that the
remaining period becomes smaller.

From our experience with optimal operation of the water supply system
we have concluded that this accuracy is quite adequate.

CONCLUSIONS

The method presented in this paper is based on concepts taken from
pattern recognition and time series analysis. The daily water-demand pattern
is observed to be made up of three segments, called “‘states” since they are
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modeled as a Markov process, and in each the demand is described by a
low-order ARIMA model. The posterior probabilities of the Markov chain
and the parameters of the the ARIMA models are determined from a
relatively small sample of data, and a forecast for the coming 24 h can be
produced with this model.

The model is well suited for real-time operation, where the state of the
system is monitored continuously, and as deviations from the planned state
are detected, a new demand forecast can be produced easily, with updated
information. The purpose of the forecast is to provide the input to methods
for optimal operation of water-supply systems, although other purposes may
also be served by the same method.

ACKNOWLEDGMENTS

The work presented herein is part of an extensive project at Mekorot
Water Co. Ltd., in the Command and Control Unit headed by Y. Orenstein.
The objective is to develop the “plant software” for real-time control and
operation of the water-supply system. The software includes: network sim-
ulation for single and multiquality systems, optimal operation by various
optimization methods, and expert systems. In parallel, an advanced Super-
visory Control and Data Acquisition (SCADA) software system has been
developed, and is being implemented.

APPENDIX |. REFERENCES

Boston Water Study. (1966). Maguire Associates, Boston, Mass.

Box, G. E. P., and Jenkins, G. M. (1970). Time series analysis, forecasting and
control. Holden Day, San Francisco, CA.

Christensen, P. E., and Macdassi, T. J. (1989). “Computerized analysis and predic-
tion of hourly demand curves.”” AWWA Speciality Comp. Conf., American Water
Works Association, Denver, Colo.

Gray, D. F. (1978). “Use of consumption predictors.” Tech. Rep. 4/78. Engrg. Dept.,
Cambridge Univ., Cambridge, England.

Hartley, J. A., and Powell, R. S. (1991). “The development of a combined demand
prediction system.” Civil Engrg. Systems, 8(4), 231-236.

Jowitt, P. W., and Xu, C. (1992). “Demand forecasting for water distribution sys-
tems.” Civ. Engrg. Systems, 9, 105-121.

Maidment, D. R., Miaou, S. P., and Crawford, M. M. (1985). “Transfer function
models for daily urban water use.”” Water Resour. Res., 21(4), 425-432.

Maidment, D. R., and Parzen, E. (1984). “Time patterns of water use in six Texas
cities.” J. Water Resour. Plan. Mgmt., ASCE, 110(1), 90-106.

Moss, S. M. (1978). “On line optimal control of a water supply system.”” PhD thesis,
Cambridge, Univ., Cambridge, England.

Mottl’, V. V., and Muchnik, 1. B. (1984). “Segmentation of structural curves using
dynamic programming methods.” Automation and Remote Control, 45(1/Part 2),
88-94 (translated from Russian).

Mottl’, V. V., Muchnik, I. B., and Yacovlev, V. G. (1983). “Optimal segmentation
of expenmental curves.” Automatton and Remote Control, 44(8), 1035-1044
(translated from Russian).

Sterling, M. J. H., and Bagrelia, A. B. (1985). ““Adaptive forecasting of daily water
demands.” Comparative models for electrical load forecasting,” D. W. Bunn and
E. D. Farmers, eds., John Wiley and Sons, New York, N.Y., 213-215.

Yacovlev, V. G., and Vorob’yov, S. A. (1986). “Estimation of model parameters
of random processes with instantly changing properties.” 2nd IFAC Symp. Sto-
chastic Control, International Federation of Automatic Control, 244—-248.

626



APPENDIX Ii.

NOTATION

The following symbols are used in this paper:

B
b,
X4
f(xtl')

n;, =

P
) 20)

pY

p(V4")

] p(v, )

p(i—y = i,v, = k")

q:

I

I

1

]

backshift operator;

standard deviation of disturbing white noise;
conditional probability density of . demand values
vector;

conditional probability density of demand value
at time ¢;

order of the autoregressive model in state i;

the set of transition probabilities;

posterior probability of process x, being in state
(-) at time ¢;

Q(v, = jlv,_, = i)—transition probability from
state i at time ¢ — 1 to state j at time ¢ (independent
of time);

conditional probability of state vector;
conditional probability of state at time ¢;
conditional probability of.the process x, being in
state { at time ¢ — 1 and in state k at time ¢;
(Cors Cies - - - 5 Cury b)—time-dependent autore-
gressive parameters;

correlation coefficient;

standard error of the model in state i;

iterative step index;

..., —1,0,1,2,.. .—time;

(vi, Vi1, . . ., v;)—time series of states from ¢
itot=j;

computed state vector;

unknown true state vector;

(x: Xi41, - . ., x;))—time series of demands from
t=1i,tot =j;

the demand process variable;

polynomials;

normal variable with zero expectation and unit
variance;

autoregressive parameters vector at state k;
diagonal unit matrix;

antidiagonal unit matrix;

state of demand curve at time ¢;

the measure of fit of forecasted state vector to
estimated state vector; and

polynomial.
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