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A model for optimal multi-period operation of a multi-reservoir system with uncertain inflows and water
demands is formulated and solved by the Finite Generation Algorithm. Uncertainties are considered in
chance constraints and in penalties due to deviations from meeting demand and reservoir level targets.
The penalty functions are linear-quadratic, can be imposed on deviations in one or both directions from
the target, and are easily fitted to data by selection of parameters. The stochastic variables are assigned
discrete probability distributions. The primal (optimal operation) problem is solved by formulating the
dual and then finding its optimum (which is proven to be global for the conditions specified) via a
sequence of linear-quadratic deterministic optimization problems of controlled size. The method is
demonstrated for a three-reservoir two-period problem. Sensitivity analysis with respect to parameter
values is presented. Stochastic simulation is used, to augment the information given by the optimal solution.
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INTRODUCTION
The reservoir management problem addressed in this paper is defined as follows:

—There exists a system of interconnected reservoirs, such as that shown in Figure 1.

—The system is to be operated over a number of time periods (e.g., years, seasons,
months).

—We wish to determine releases from all reservoirs and withdrawals from the
rivers for all time periods, in advance.

—Constraints exist on maximum and minimum reservoir levels and on maximum
admissible flows in the rivers.

—The inflows are stochastic, with known probability distributions. The inflows
may be dependent or independent random variables. In this paper we assume the
latter. Joint distributions cause added computational effort.

—Target values may be set for some or all of the reservoir levels at selected points
in time over the planning horizon. For example, a minimum low level target may be
desired for the end of the dry season, and/or a maximum high level target for the
wet season. Maximum admissible exceedence probabilities may also be specified for
these levels and are converted into chance constraints.

—Penalties can be imposed on deviations (in either one or both directions) from
these target levels.
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—The demands which are to be supplied by withdrawals from the rivers are also
stochastic, with known probability distributions. As with inflows, only the case of
independent distributions is presented in this paper. Allowing joint distributions is
possible, at increased computational cost.

—Target values can be set for the stochastic demands, and maximum allowed
probabilities for dropping below them imposed. In addition, a penalty may be
associated with shortages.

—A benefit is associated with the flows (the decision variables), for example releases
from a reservoir through a hydropower plant or supply to customers. The benefit
for each decision variable is quadratic and concave (diminishing returns to scale).

—The objective function is the sum of all benefits over the planning horizon minus
the expected value of all losses (penalties).

—The optimization model is cast as a stochastic program with recourse. The
decisions for all time periods are selected (“here-and-now™) such that the stated
constraints for all time periods are satisfied (with probability, where appropriate) and
such that for any possible outcome of the stochastic variables of the first period there
exists a feasible recourse (“wait-and-see™) action. The nature of this recourse action
is not considered explicitly; its consequences are represented in the model by the
penalty function. This function can be viewed as the optimal value of the recourse
for each possible deviation from the target (Yeh!® p. 1800).

—Only the decisions for the first period are executed. Then one waits for the
random variables of the first period to materialize, takes recourse actions for the first
period, and again formulates and solves the management problem for the new
planning horizon, with the actual initial conditions observed.

Similar reservoir management problems have been addressed in the past. In his
state-of-the-art paper Yeh'® discusses these. We shall discuss here only previous work
which deals with reservoir operation problems close to the one we solve. Dupacova’s
work? is probably closest. The problem she formulates is quite similar to ours, with
two main differences: (1) the objective function is linear, while ours is linear-
quadratic, and (2) the penalty functions are piece-wise linear, while ours are linear-
quadratic. Dupacova develops a network representation of the problem, but does
not provide a solution method for the stochastic problem. There is reference to some
earlier methodological work by Rockafellar and Wets on stochastic programming
with simple recourse but the paper does not contain its application.

Hicks er al.* use a non-linear programming technique to solve a reservoir operation
problem in which “soft” constraints are converted into penalties on stochastic
deviations from targets. Hogan et al.’ survey approaches to formulation and solution
of decision problems under risk, in particular chance constrained programming and
stochastic programming with recourse. They conclude that chance-constrained pro-
gramming limits the way in which the decision maker must state his attitude to risk,
and therefore the usefulness of the technique is restricted. As for models using
stochastic programming with recourse, Hogan et al.®> state that their solution is
difficult and costly.
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Yeh'® provides a comprehensive review of the field. Since that time there have
been several publications which deserve mention. Wang and Adams'’ describe the
hydrological inflows as a Markov process and find the steady state and the immediate
real-time operating policies by a method they call generalized policy iteration. Their
formulation and approach are quite different from ours. Takeuchi!* uses chance
constrained programming for management of a single reservoir, with particular
emphasis on drought conditions. Strycharczyk and Stedinger!® provide added
criticism of chance constrained programming models for reservoir management. They
state that the method is limited, and that it overestimates required reservoir volumes,
ie., it is wasteful. Trezos and Yeh'> use a stochastic dynamic programming method
to solve a problem quite similar to the one we address in this paper. The system
dynamics of their problem are linear, the objective is quadratic, and penalties may
be added for deviations from stated targets.

Yeh!® states:

“Extensive literature review of the subject of optimization of reservoir operations
reveals that no general algorithm exists. The choice of methods depends on the
characteristics of the reservoir system being considered, on the availability of data,
and on the objective and constraints specified.”

Publications since 1985 do not change this conclusion. We now propose to add
another approach to formulation and solution of a reservoir management problem,
based on a stochastic optimization method developed recently by Rockafellar and
Wets®''%. We believe that this method allows the decision maker to introduce his
attitude to risk in a more satisfactory way than was hitherto possible, while the model
can still be solved for reasonably sized problems. Somlyody and Wets'? have already
demonstrated the application of this method to the management of lake eutrophica-
tion.

PROBLEM FORMULATION

Notations

E Mathematical expectation

~ Indicates a stochastic quantity

X; Quantity per period at segment j in the network

¢;,r;  Benefit function parameters

A Deviation from target at point k

Pi»qdy Penalty function parameters

s; Upper bound on x;

a;; Entries of the matrix A of flow continuity constraints
0;; Entries of the matrix O for the “hard” deterministic constraints
b, Right hand side vector of the “hard” constraints block
tyj Entries of the matrix T of stochastic “soft” constraints

h, Target quantity at point k
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Consider the three reservoir system in Figure 1. The natural inflow into each reservoir
is stochastic. A power house is installed on each reservoir, and the flow through it
can be conirolied. When the reservoir overfiows and spills otcor tney by-pass the
power station and enter the stream. Water is withdrawn from the stream for
consumption. The remaining flows from the two upstream reservoirs enter the
downstream one. The remaining flow in the lowest branch of the system is used to
meet another demand.

Figure 1 The reservoir system.
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For clarity of presentation we begin with an annual operation model, which will
later be expanded into a multiperiod model. The annual inflows into the reservoirs,
g; and the demands, Dj, are random variables with known probability distributions.
The initial water storages in the reservoirs, LI;, are known. A target final volume,
LF;, may also be given. This final storage will not necessarily be met, because it will
depend on random inflows as well as on our decisions. The decision variables are
the flows (actually volumes of water) in all river branches.

The optimal operation problem is defined as follows. Given: initial storages, target
final storages, probability functions for inflows and for demands, benefit and/or cost
functions for the decision variables, penalties for not meeting demands and final
target storages; find values of the decision variables which maximize the expected
value of the objective function. These decisions are to be executed “here-and-now”,
1.e. before the random variables are realized.

The objective function is:

n K
Max f(x) = [ijj - 1/2rjx12] - E|: Z Tlves Paxs Paxs ais QZk):| 0]
=1

j k=1

The first part is deterministic, quadratic and separable. By requiring r; > 0 we have
a concave function, showing diminishing returns with scale compatible with economic
theory. The second part is the expected value of penalties which will be incurred if
prescribed targets of demands and future reservoir levels are not met. Denoting by
TR, the kth target, the deviation from it will be:

o= ) % — b @
j=1

where b, is the random component in the equation which defines TR,. The deviation
v, incurs a penalty whose functional form is:

— GOk — 3Pk if Uy < —quPa
FUR/Pax if —gupu<u<0
Ffwd =<1 if &)
3Vic/P1x 1 0<p <qupu
d1xlx — %Pu“ﬁk if 9191k < Uk

Wlth plk’ p2k’ qlk’ q2k > 0, fOl‘ k = 1, ceey K

This function is shown in Figure 2. It is quadratic for small deviations and linear for
larger ones. Its four parameters allow considerable flexibility in fitting it to data. The
quadratic part may be extended for the entire range of probable deviations, by
selecting p to fit the data and then making (pg) large. The function can be made
essentially linear by selecting ¢ to fit the data and then making (pq) small. The
quadratic term at the origin must be maintained, however small, since this is required
for the development of the solution method. A one-sided penalty function may be
specified by setting to zero the parameter g of the side which is to be removed.

As an example of such deviations, consider that LF; is a specified target volume
in reservoir 3 at the end of the year, while the known initial volume in that reservoir
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Figure 2 The penalty function.

is LI;. Then the deviation from this target is
v=LF3 —(LI3 + x5 4+ X0 + g3 — X131 — X12) 4
This is written in the form of (2) as:
v=LF; + (—x5 — X190 + Xy1 + X12) — (95 + L13) (%)

where the random part is h = g, + LI;.
The penalties caused by deviations from LF, may be due to flooding when the
level is too high and/or to loss of recreational benefits when the level is too low.
As another example, the deviation from meeting the target demand D,, which is
stochastic, is:

v=2X;4— D4 (6)

Here the penalty is incurred only when x,, < D,, and supplemental water has to
be brought from an outside source.
The decision variables are subject to several types of constraints:

a) Bounds, representing capacities of river branches:

0<x;<s; j=1,...,n )
b) Continuity equations:

Sap =0 i=1...m ®

i=1

These are “hard” constraints which are physical laws. For example x; + x, + x5 = 0.
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c) Deterministic equivalents of chance constraints:
n
ZO,-jijbi i=1,...,m2 (9)
j=1
For example, if LF; is a desired target volume in reservoir 3 at the end of the
year, it is required to reach at least this volume with probability of « (say 0.95), and
the (known) initial volume in this reservoir is LI, then we require:

Prob[LI3 + x5 + X190 + g3 — X;; — X2 2 LF;] =« (10)
This is converted into
LI; + x5 + X0 + 95 — X1, — X1, 2 LF; (11)
where g5 is selected such that
Problg; =2 ¢g5]1 = o (12)
Finally the constraint takes the form
—Xs— X10+ X1y + %1, <LI; + g5 — LF; (13)

This concludes the presentation of the mathematical formulation for a single-
period model. It is a stochastic programming problem with recourse. We decide on
the x;, which determine the deterministic part of the benefit. The random variables
then materialize and deviations, y,, from targets occur. Recourse actions are taken
at this stage, for example purchase of water from an outside source to fulfill demands
which have not been met by the x’s, or payment of penalties for reservoir levels higher
or lower than targeted for recreation or wildlife habitat. These actions result in a
cost I'y(v,). For each possible realization of the random variables g; and D, the random
deviations y, take on different values and result in certain penalties. We seek those
decisions x; which maximise the expected benefit given by (1).

The penalty function I'(y,) shown in Figure 2 may itself be the optimal solution of
a decision problem, namely the recourse problem, which we need not consider
explicitly here. That decision problem is: what are the optimal decisions for a given
set of deviations from the targets, deviations which are known once the random
variables have materialized.

The multiperiod management problem is an extension of the single-period problem
presented above. Consider Figure 3, where reservoir 1 is shown for two time periods
denoted by the superscripts 1 and 2. For the second period the constraints on flows,
continuity at nodes, and meeting demands are the same as for the first period (with
superscript changed). Any hard or soft constraint on storage at the end of the second
period is formulated with the sum over the two periods. For example:

0 <[LI} + (g} + g9 — (x} + x1) — (x? + x2)] < LMAX (14)

and
v = LF? — [LI} + (g1 + ¢3) — (x] + x}) — (x} + x3)] (15)

For a multi-period model we must have constraints like (14) for each reservoir
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Period | Period 2

Figure 3 Reservoir 1. Two time periods.

for the end of each time period. Deviations defined like (15) are required only for
those points in time (and locations) where target storages are specified. The structure
of the constraint matrices for a multi-period model is presented in Appendix A.

In these constraints the random variable is the cumulative inflow from the initial
time to the end of the time period in question. The probability distributions of these
variables are obtained by direct analysis of the data for these summed flows, or by
appropriate combination (considering dependence) of single period inflow probability
distributions.

A multi-period model should be used in practice as follows:

1) Select the time horizon for planning the operation. For example this may be
one year ahead, or a longer or shorter period such that its end is at a time when
reservoir levels can reasonably be forecast, e.g., full at the end of winter.

2) Divide the planning horizon into periods. For example, the year may be divided
into 12 months. Alternatively, the first period or two may be short, for example two
weeks each, and the remainder of the horizon grouped into a few longer periods
which coincide with hydrologic and water demand seasons.
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3) Specify “soft” reservoir target constraints only at those reservoirs and times
where they are important. For example, in a 12 month model only low level targets
for end of summer (reliability of supply) and/or high level targets for winter (safety
against floods) may be important. Set similar “soft” constraints for meeting demands,
if appropriate.

4) Solve the model.

5) Execute the decisions for the first time period.

6) Observe events in the first period, update the data, formulate the model for a
new planning horizon, solve, and so on.

METHOD OF SOLUTION

The stochastic program (P) defined by the ojective function (1) and the constraints
(7)H9), the deviations defined by (2), and the penalty function given in (3), is solved
by the Finite Generation Algorithm (FGA) of Rockafellar and Wets®'°. Their
algorithm was developed for a one-sided penalty function; the extension to a
two-sided penalty was carried as part of our study?.

The steps of the FGA are:

a) Formulate the dual (D), which is stochastic.

b) The dual is replaced by a sequence of deterministic quadratic programming
sub-problems, whose feasible regions are polytopes contained in the feasible region
of (D). The dimension of these problems is controlled and can be kept small (this is
the “finite generation™). Under the conditions stated above for the primal (P) this
sequence converges to the global optimum of (D), from which the optimal solution
of (P) is obtained directly.

We shall present here only a concise formulation of the dual, without proofs. Readers
interested in the theory are referred to Rockafellar and Wets®'1©,
For (P) we define the Lagrangian:

LX, Y, Y,,2) = Y [c;x;—3rx3]1+ Y yliI:— Y aijxj]
i=1 i=1 j=1

m n K n
+ .21 yZi[bi - Oijxj:] + kZIE{gk[bk - ‘21 tijj:| + %Pkgl%}
= = }=

=1
(16)
with
X ={xp,...,x)|0 < x; <5}
le{y1=(y11a-'-’y1m1)} (17)

Y, ={y2=21 -5 Yam)|¥2; 2 0}

Z={z=1zy ..., 2| —qu < 2. < qu}
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By general duality theory we obtain the dual

K n
minimize g(Y;, Y,, Z) = by + E{ Z [hezi + %Pk(gk)Z:l} + Z r1(Wj; Tjs Sj)
=1 k =1

i =1 j=

(18)
s.t..
y2i20 i=1,...,m2
—du<z<qy k=1...K (19)
mi my K
w;=c;— Y Vit — Y V2i0; — E{ Y %ktk,}
i=1 i=1 K=1
where:
0 if w;<0
Ty(w) = <3wi/r; if 0<w;<r;s; 20)
s;w; —3rs;if wy >y

Note that z, are the only random variables in (D), and that they appear only in
bound constraints.

The dual can be solved directly as a linear-quadratic problem, if we require each
z, to have a discrete probability distribution, ie., it has finitely many possible
outcomes in the range (—q,; < z; < ¢4,;)- Indeed, for small problems it is possible to
solve the dual directly with each random variable “spread out” over the entire set
of its possible values with their corresponding probabilities (Wagner'). For problems
of more realistic size this is no longer feasible computationally and the solution must
be obtained by the FGA method.

In order to study the nature of the solution obtained by the FGA we used a
stochastic simulation model. Its structure, and the analysis performed on its results
are discussed in the following section.

THE SIMULATION MODEL

The stochastic simulation model was written with SLAM II (Allan and Pritsker?). It
was used for two purposes:

a) To study the results of the optimization, and perform sensitivity analyses with
respect to values of the parameters, and

b) To augment the results of the optimization by providing (approximate) distribu-
tions of various resultant random variables, which may be useful to the decision
maker.

Given values of all the decision variables, the simulation program generates a large
number of sets of realizations for the random variables. For each set, all outcomes
are computed: flows, overflows, supplies, shortages, final reservoir volumes for all
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time periods, as well as the value of the objective function and the penalties incurred.
The sample of values for each such variable is then plotted as a histogram and
analyzed to obtain statistics, such as the mean, variance, and probabilities of not
meeting the stated targets. These values can be compared with the results of the
optimization model.

The histograms and statistics of the outcomes can provide useful information. In
particular, decision makers may be interested in the following:

a) Distribution of the objective function values. The optimization gives only the
expected value, and the distribution may have some significance,

b) Distributions of the penalty values, in particular the extent of large penalties
and their corresponding probabilities,

¢) Distribution of the violation of “soft” constraints.

The example presented below will demonstrate the use of simulation as a complement
to the stochastic optimization.

IMPLEMENTATION

The three reservoir problem presented above was solved for two seasons in a year.
The model was formulated with GAMS (Kendrick and Meeraus®. GAMS (General
Algebraic Model System) provides a concise and convenient tool for generating the
optimization model as input to the optimization package. Solutions were computed
with MINOS 5.0 (Mathematical In-core Non-linear Optimization System) (Murtagh
and Saunders®), a general purpose non-linear optimization package.

All computations were carried out on a PC/AT with 640KB memory and an 8087
math co-processor. For a problem with 30 decision variables, 14 stochastic variables
with 5 to 25 values on each distribution, running time was about 90 minutes. This
is from a cold start, with no initial values prescribed. In a sequence of runs, as is the
case in the sensitivity analysis presented below, and as would also occur in making
runs for a real application, a better starting point is easily provided, and this greatly
reduces running time. Our model is strictly quadratic (r; > 0 for all j). The theory
of the FGA guarantees convergence for this case at a linear rate. In our computations
we indeed found very rapid convergence. For details see Eiger?.

RESULTS

Table 1 includes data for the Base Run of the three-reservoir two-period model. There
are 30 decision variables: 15 flows (quantities per period) for each period. Fourteen
targets are specified: four demands (D, D,,D,, Ds,) and three final levels
(LF,,...,LF;)in each period. Probability distributions for the demands are given in
Table 2. Probability distributions for the inflows are given in Table 3. For the second
period the inflows (denoted by the superscript 2) are the summed flows for the two
periods, their probabilities are computed by the appropriate combination of probabi-
lities of the single period flows.
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Table 1 Data for the Base Run.

Variable Parameter name Value (*)
Bounds on decision variables s;  j=1,...,30 20
Initial storage in reservoirs LI, 10
LI, 8
LI, 6
Target storage levels, at the LF} = LF? 10
end of both periods LF% =LF g 8
LF{ = LF? 6
Objective function coefficients < j=1,...,30 8
(equal for all x;) r; j=1,...,30 2
Penalty function coefficients Pk 0.2
P2k 0.2
qu  k=1,...,14 1
b1 1
Prob. of violating chance o (see Eq. (14)) 0.05
constraints
* All volumes are in 10° m?
Table 2 Probability distributions of demands.

D! D3 D} D? D} D2 D! D2
val. pr. val. pr. val. pr. val. pr. val. pr. val. pr. val. pr. val. pr.
05 002 10 002 10 005 20 005 20 005 1.0 005 40 010 40 0.10
07 006 12 006 13 010 28 010 25 010 15 010 45 015 45 0.15
09 030 14 030 16 040 36 040 30 040 20 040 50 025 50 025
10 050 16 050 19 025 42 025 35 025 25 025 52 030 52 030
12 012 18 012 22 020 58 020 40 020 30 020 54 020 54 020

In the Base Run we have used the same cost and penalty coefficients for all variables
and targets, for simplicity of presentation and interpretation of the results. Below we
shall discuss results of sensitivity analyses in which we examined the effects of
changing various parameters. The changes are shown in Table 4. Six series of
sensitivity runs were made. In each run, the changes in data indicated in Table 4
were made, while all other data remained the same as in the Base Run.

Results of the Base Run and the sensitivity runs are presented in Table 5. The
variables and results which are shown include:

a) The value of the objective function, Eq. (1), denoted by f.

b) The expected value of deviations from target reservoir levels at the end of the
first period, o(LF}),j =1, 2, 3.
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Table 4 Parameter changes for sensitivity series 1 to 5 (for changes in Series 6 see text).

Series, S 1 2 3 4 5
Parameter  py, 'm r S; LF} =LF?

for k=1,..,14 k=1,..,14 j=1,...,30 j=1,...,30 j=1 j=2 j=3
Base Run 0.2 10 20 20 10 8 6
Run S.1 1.0 0.5 0.8 3 9 7 5
Run S.2 30 0.1 0.3 2 8 6 4
Run 8.3 50 0.05 0.08 1 7 5 3

¢) Releases from reservoir 1 in the first period xi, (x} = x! because they have the
same cost coefficient in all runs), diversion for supply, x}, and the expected value of
deviation from meeting the demand, #(D}).

d) Same as (c), for reservoir 2.
e) Same as (c) for reservoir 3 and for the downstream demand D

Note that the expected values of the deviations are not zero, which means that the
optimal operation does not necessarily aim to meet all targets, not even on the
average. Some average deviations are positive while others are negative. Their sign
and magnitude depend on all the data of the problem, and in particular the relative
magnitudes of the coefficients in the objective function and the penalties. An analysis
and explanation of the results follows.

Series 1: Increasing py;

As p,, increases the penalties for positive deviations from targets decrease. This
results in an increase in the expected values of most deviations from targets. At the
same time the value of the objective function decreases.

Series 2: Decreasing g,

As g,, decreases the penalties for positive deviations from targets decrease. The results
show the same trend as in Series 1.

Series 3: Decreasing r;

As r; decreases the concavity of the objective function decreases (it is closer to linear)
and it becomes more attractive to increase x;. All flows indeed increase, except x,
and x, which take water out of the system before it can generate more benefit and
these are therefore decreased. The average deviations become larger, because the
larger benefits from the x;'s make it attractive to derive greater immediate benefits
at the risk of higher penalties later. The value of the objective function increases too.
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Series 4. Decreasing s;

As §; decreases there is less operational storage in the reservoir and we must therefore
expect a loss in benefit, smaller values of the decision variables and in general a
tighter operation. The results indeed show this tendency.

Series 5: Decreasing LF;

As the target storages in all reservoirs for both periods are reduced more water
becomes available and the decision variables increase. The deviations from LF
become more negative, which means that the actual volumes in storage at the end
of the period deviate more in the positive direction (more water) from the target than
in the Base Run.

Series 6. Increasing the permissible probability for constraint violation

In this series we sought to examine the effect of relaxing the probabilities in the
chance constraints (in Eq. (11), for example). For the Base Run the chance constraints
are not active, so we modified some of the data, as follows:

LI! =LF! =LF?=5; LI} =LF, = LF2=4; LI} = LF} = LF2 = 3;

Pix = P2x = S (lower penalties for both positive and negative deviations than in the
Base Run). Other data for Series 6 are:

Run Cost coefficient, c; Prob. in chance const., «
6.1 8 0.05
6.2 20 0.50
6.3 20 0.90

As the probability increases, larger deviations are tolerated. As a result most average
deviations increase in absolute value and the objective function increases. The
increase from Run 6.1 to 6.2 is due primarily to the increase in the cost coeflicients
c;from 8 to 20. The further increase in Run 6.3 is due to the larger deviations allowed.

Table 6 summarizes the output of 500 simulation runs for the optimal solution of
the Base Run for period 1. Comparison of the means with the results of the
optimization (last column) show good agreement. The standard deviation, minimum
and maximum values generated in the simulation, and possibly the entire histograms
(which are produced by SLAM) can be used to study outcomes of any selected
operating policy (the optimal or any other), leading possibly to changes in prescribed
input parameters, such as target reservoir levels, penalty coefficients, and probabilities
for violation of chance constraints.
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Table 6 Statistics of 500 Simulation Runs with the Optimal Policy of the Base Run, and
Comparison with the Analytic Solution, for Period 1.

Variable Target Mean Std. Min. Max. Optimal
Dev. value
Objectives value 413 1.77 407 417 412929
Penalties 15.8 1.77 11.3 21.2
Final level, Res. 1 10 8.97 0.53 7.73 9.73 —
Deviation from LF} — 1.03 0.53 0.27 227 1.048
Final level, Res. 2 8 8.30 0.53 7.05 9.05 —
Deviation from LF} — —0.30 0.53 —1.05 0.95 -0.276
Final level, Res. 3 6 7.25 0.26 6.47 7.67
Deviation from LF} — —1.25 0.26 - 1.67 -0.47 —1.265
Deviation from D} 1.92 0.12 1.69 2.39 1.920
Deviation from D} — 1.49 0.31 1.02 222 1.490
Deviation from D} — —0.13 0.53 —0.90 1.10 —0.129
Deviation from Dj — —1.44 0.42 —1.86 —0.46 —1.423

CONCLUSIONS

The method presented in this paper allows consideration of uncertainties in reservoir
operation studies in a more general and flexible way than hitherto possible. We
believe that this makes the approach attractive.

The solution algorithm is implemented on a PC/AT, using software packages which
are readily available. The solution is obtained in reasonable computer time, and it
always converges under the conditions stated, which are expected to hold under most
cases in practice. The solutions show a reasonable and interesting response to changes
in parameters introduced by the decision maker, as demonstrated in the example
above.

In addition to the optimal values of the decision variables, the solution provides
much useful information regarding expected future states of the system under the
optimal policy. Stochastic simulation, with this policy, further enriches the informa-
tion available to the decision makers for study, evaluation and modification of
parameter values as he sees fit.

The FGA method by Rockafellar and Wets®!° is for linear constraints and a
linear-quadratic objective function. Eiger® extended it to allow two-sided penalty
functions. Wagner!® has extended it to the case of non-linear convex constraints
(global optimum guaranteed) and to the non-convex case (using a proximal point
method, which leads to a local optimum).
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APPENDIX A: CONSTRAINT MATRICES FOR MULTIPERIOD MODEL

Denote by T = {t,;} the matrix of coefficients in the “soft” constraints for one period,
and by T" the same matrix after we set to zero all rows belonging to constraints which
do not depend on the history (e.g. those on meeting demands). Then for the two
period model the matrix of the “soft” constraints is

TV 0
™ T

2 _

(A1)
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For period N the corresponding matrix is composed of (N x N) blocks

TN

For the constraints which do not
constraints for all periods, i.e.

AN =

T 0 O 0
™ 1T 0 0

™ T T 0 (A2)
P
depend on storage we simply duplicate the same

Al
Al 0
At (A.3)

Al

The random variables in the constraints (A.2) are the sums of the inflows over
periods 1 to N. The probability distributions of these variables can be obtained in

either of two ways:

a) Analyzing the recorded inflows summed over periods 1 to N and fitting a

distribution, or

b) Using the probability distributions of the inflows in each period and the
dependence/independence of flows in different periods to calculate the probability
distribution of their sum. For independent flows this means convolution.



