OrTIMAL OPERATION OF WATER
DISTRIBUTION SYSTEMS

By U. Zessler' and U. Shamir,” Member, ASCE

ABSTRACT: Optimal operation of a water supply system is solved by progressive
optimality (PO), an iterative dynamic programming (DP) method. Given the fore-
casted demands for the coming 24 hr, the initial and final conditions in the res-
ervoirs, the hydraulic properties of all system components, and the variable energy
cost over the day, an optimal schedule of pump operation is found. The algorithm
cycles iteratively over the time steps (hours of the day) and network subsystems,
and converges to the optimum from any (feasible or infeasible) initial solution.
The global optimum is guaranteed only under certain conditions; otherwise a local
optimum may be reached. The method is developed and demonstrated on a regional
water supply system with eight reservoirs and seven pumping stations.

INTRODUCTION

A survey conducted in 1984 (Computer assisted design of water systems
committee 1984; Velon et al. 1984) among water utilities in the United States
showed that many are considering installation of computer control systems.
The motivation is due to one or more of the following factors (Shamir 1985).

1. Operation of water supply systems is in many cases becoming more com-
plex, with rising demands, incorporation of waters from a variety of sources,
and aging systems.

2. Retirement of experienced personnel, often not replaced by people of sim-
ilar capabilities.

3. High operating costs, which justify investments to improve efficiency.

4. Control and computer hardware is rapidly becoming cheaper, more avail-
able, and more reliable.

5. As more computer control systems are installed, there is more experience
from which to learn.

6. Operators, engineers, and managers feel less threatened by computers and
control systems.

To use control systems effectively, one must use software for analysis,
simulation, and optimal operation of the water supply network. Programs
for analysis and simulation are readily available and used quite widely (Com-
puter-assisted design of water systems committee 1984; Velon et al. 1984).
Methods and computer programs for optimal control are less common.

A survey paper in 1985 (Shamir 1985) summarized the state of the art of
optimal control of water systems to that time. We know of no new devel-
opments since then. The work reported herein was already mentioned and
explained without technical detail in that survey. This paper awaited more
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practical experience and refinements of the method.

The optimal control problem is to find the decisions for operating pumps
and valves over a prescribed time period (here 24 hr) such that demands are
met, pressure conditions are satisfied, and total cost is minimized. This will
be formulated precisely and discussed in later sections of this paper.

Dynamic programming (DP) is an obvious solution procedure for such
problems, but its practicality is limited by the size (number of reservoirs,
whose volumes are the state variables in the DP) of the network. Dreizin et
al. (1971) developed and used such models for off-line analysis of the op-
eration in the late 1960s. This has been a standard approach in Israel since
then.

Sterling and Coulbeck (1985a, 1985b) tried to extend the applicability of
the basic DP approach that was used by Coulbeck in his thesis (1977) to
larger systems. When this proved impractical, they also tried a method
(Coulbeck 1980; Coulbeck and Sterling 1978) based on linearization of the
system functions and simultaneous solution of the optimization problem for
all time periods.

Cohen and his coworkers (Carpentier and Cohen 1984; Cohen 1982; Joal-
land and Cohen 1980) developed a procedure of decomposition-coordination
for coping with the “curse of dimensionality” of the DP method. The system
is divided into subsystems, each small enough to be solved by DP. At the
“cuts” between adjacent subsystems, the vectors of 24-hr values of flows
and heads are used for the coordination process. One subsystem sends its
neighbor the vector of flows and “prices of heads,” the other subsystem uses
these vectors to optimize its own operation and returns to the first subsystem
vectors of heads and “prices of flows.” The first then optimizes its own
operation, and so on. The “prices” are duals (shadow prices) of the pre-
scribed boundary values given by the neighboring subsystem. The procedure
converges to the global optimum (under certain conditions on the functions)
when optimal values do not change from one iteration to the next. The soft-
ware developed by Cohen and his coworkers is being tested at the water
supply system of Le Pecq, about 40 km west of Paris, France.

Fallside and his coworkers (Fallside and Perry 1975; Gray 1978; Marlow
and Fallside 1980; Moss 1979; Perry 1975) developed an approach (not based
on DP) and it has been applied for the East Worcestershire Water Co. (EWWC)
in England since the mid-1970s. The system is divided into subsystems, and
a linear continuity equation is written for each. The transfers between sub-
systems must be assumed in advance, and this is the major deficiency of
this approach.

The work reported herein started with the thesis of Zessler (1984) in 1984.
The method of progressive optimality (PO) proposed by Howson and Sancho
(1975), which is an iterative DP, formed the basis of the procedure. Turgeon
(1981) used the same approach for optimal operation of a multi-reservoir
hydropower system. PO proceeds by moving along the stage axis (time, in
our case), optimizing the decision for two adjacent stages (two time steps
in our case) with the remainder of the state trajectory (reservoir volumes)
fixed. The overall procedure is guaranteed to converge only if the objective
function components are convex in the decisions. In the problem we solve,
this condition is not always satisfied. When it is not, the solution method
may end at a local optimum. Our approach must thus be considered heuristic
for those cases where the objective function is not convex.

736



Our algorithm (Zessler 1984) was first implemented on a very small home
computer (a Sinclair Spectrum), for the same water system used here as the
example. Subsequently the program was generalized and rewritten in Pascal
on an IBM PC/XT. This paper has been written after we gained considerable
experience with the program on a few water systems.

WATER SupPPLY SYSTEM AND TS MODEL

Consider the water supply system in Fig. 1. Shown is a schematic model
of the Ein Ziv system, which serves an area of about 180 km’. It supplies
annually about 5.5 X 10° m’ of water, of which 68% is for agriculture and
32% for domestic use. Energy consumption is about 13 X 10° kWh/yr,
which averages 2.4 kWh per m® supplied. This high energy consumption is
due to the very pronounced topography in the northern part of Israel. The
main sources are at elevations around +95 m, while the extremities of the
system reach elevations of close to +900 m.

Fig. 2 shows in detail one part of the system, that which contains reser-
voirs V5 (Shomera) and V7 (Shtula) of Fig. 1. The rather complex piping
system in this area has been simplified in the model of Fig. 1 to a single
line between the Ein Ziv pumping station (P5) and the first reservoir (V5),
and similarly from there on to the final reservoir on this line (V7). Con-
sumers have also been aggregated. Each pressure zone—a part of the system
between an intake and a discharge reservoir—now has a single pumping
station, and a single aggregate consumer located close to the discharge res-
ervoir. Some pressure zones of this system have an even more complex
structure than that shown in Fig. 2.

The model of Fig. 1 now contains 7 pumping stations. In each there are
several pumps that can be operated in a number of configurations. A con-
figuration is a certain set of pumps operating in series and/or parallel. Each
configuration produces a discharge and incurs an energy cost. The discharge
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and energy consumption of a configuration depend on the water levels in
the two reservoirs between which it operates, and on the discharges drawn
by the consumers within its pressure zone.

A network simulator was used to investigate the behavior of the system.
The simulator is a program that computes the performance of the system
over a specified period of time, usually 24 hr. It receives as data the con-
figuration of the network, physical characteristics of all its elements, the
demand pattern over time at each consumer node, and the control routine
according to which the system is operated (automatically or manually, as
the case may be). The program computes a sequence of solutions, and a new
one whenever a demand or a control changes, or when the change in any
reservoir level is greater than a prespecified value (to maintain accuracy of
the hydraulic solutions).

The level of detail in the network simulator was that of Fig. 2; i.e., a
fully detailed representation of the system. Based on this investigation, the
schematic model shown in Fig. 1 was developed and the properties of its
elements were computed. The full simulation model was used to generate
the cost-versus-discharge functions of each pumping station, which are needed
for the optimization model to be described later.

Comparing Fig. 2 to pressure zones 5 and 7 in Fig. 1, we observe the
following. Four consumers between the Ein Ziv pumping station and the
Shomera reservoir have been aggregated into the single consumer D5. Sim-
ilarly, those between the Even Menachem pumping station and the Shtula
reservoir together with pumping to the Zarit reservoir appear as D7 in the
model. This means that the Zarit pressure zone is not included explicitly in
the model, and its withdrawals from pressure zone 7 are included in D7.
This is done to simplify the model, and is justified because, for practical
reasons, operation of pump EM2 and the Zarit reservoir are fixed in advance
and need not be considered as decision variables in the optimization. Had
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this not been the case, we would have to include this pressure zone explicitly
in the model of Fig. 1.

Returning to Fig. 1, which is the model of the water supply system to be
used in the optimization, the following are known.

1. Lengths, diameters, and friction coefficients of the pipes (which have been
obtained by matching the performance of the schematic model with that of the
full system).

2. Properties of the pumps in each pumping station: head-versus-discharge
and efficiency-versus-discharge curves for each pump, and their possible series
and/or parallel arrangements into configurations.

3. Geometry of the reservoirs, and their minimum and maximum admissible
water levels. These limits may vary over the day.

4. Demand pattern of each (aggregate) consumer over the day.

5. Elevations of all points in the system.

6. Minimum and/or maximum admissible pressures at certain points (for ex-
ample, at demand points).

7. Variable energy costs over the day.

The time horizon is divided into periods. We usually consider 1 day, di-
vided into 1-hr periods. A longer time period can be handled, and the periods
need not be of equal length. The time horizon is selected so that initial and
final boundary conditions can be conveniently set. The time periods must
be small enough to allow the computed operating policy to follow changes
in demands, reservoir levels, and energy tariff. Henceforth we shall deal
with operation over 1 day, divided into 24 1-hr intervals. This is done for
clarity of the presentation, and we keep in mind that the period could be
longer or shorter, and divided into unequal intervals.

Water supply systems of the type considered here often have a 24-hr op-
erating cycle. It can be assumed with a reasonable degree of assurance that
all reservoirs will be full at the end of the low-energy-cost period, usually
the night, and will again return to the same condition at the same time the
following day. This creates a logical 24-hr period for the analysis.

The optimization algorithm uses the following boundary conditions.

1. Known water volumes in all reservoirs at the beginning of the time period.
In on-line control systems these are measured in the field and relayed to the
control center.

2. Assumed water volumes in all reservoirs at the end of the time period. For
example: equal to the initial levels at the beginning of 24 hr; or, full at the end
of the next low-energy-cost period, which is then taken as the end of the planning
period.

An alternative to 2 would be a monetary value given to the volume in each
reservoir at the end of the planning period. This “salvage value” would then
allow analysis over a period of noncyclic operation.

Before moving on to the optimization algorithm, it is worth noting that
some real systems have the simple structure shown in Fig. 1 and there is
then no need to schematize as was done here. This is particularly true for
regional supply systems, whose consumers are whole communities.
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OpPTIMAL OPERATION PROBLEM

For a system with J pumping stations, operating over a time horizon di-
vided into T intervals, the optimal operation is obtained by solving the fol-
lowing cost minimization problem:

T J
min F = > > AGIX0, VO, DOT} - o))
=1 j=1 ;
subject to
0 = X/ < X s o 70 2 2)
Vi) = V() = V(@ e 7 2 3)
Vi) = fIVi(t — 1); X(©); D]  Zr J “4)
V(1) known initial voOIumes .. ....... ...ttt (5)
V(T + 1) assumed known final volumes ............. ... ... ... ... (6)
where j = 1, ..., J = index of the pumping stations; i = 1, ..., I = index
of the reservoirs; t = 1, ..., T = index of the time intervals, taken here to

be 1 hr each (¢ = 1 is the initial condition, and ¢ = T the final time); X(f)
= discharge; V,(f) = volume, at beginning of interval r; D(f) = vector of
demands; G; = cost in pumping station j, for delivery X;, which also depends
on demands and reservoir volumes; and _, ~ = minimum and maximum val-
ues, respectively. Eq. 2 sets the limits on the discharge, and Eq. 3 on res-
ervoir volumes. Eq. 4 is a set of continuity equations for the change in
reservoir volumes over time.

For low dimensionality of V—say up to three or possibly even four res-
ervoirs—it should be possible to solve the problem by standard discrete dy-
namic programming. For higher dimensionality this is no longer feasible.
An iterative scheme of successive approximations was therefore developed.

PREPARING FOR OPTIMIZATION

The steps in setting up a model of the system and preparing the data for
the optimization are the following:

1. Identify subsystems, each being a portion of the system that operates be-
tween two reservoirs, throughout which the presures are governed primarily by
the operation of one pumping station and the level in the discharge reservoir.

2. A hydraulic simulator is used to study each subsystem: flows, pressures,
and changes in reservoir volumes for each possible pump configuration. This
analysis is carried out on a detailed model of the system, as shown, for example,
in Fig. 2. The hydraulic analysis is used to construct a schematic model of each
subsystem——a pumping station located between two reservoirs, and a single ag-
gregate consumer—and to determine the most economical order of bringing pumps
into operation, as will be explained later.

3. Forecasting the demands of the aggregate consumers for the 24 hr ahead.
These include transfers of water to secondary pressure zones, whose operation
is considered fixed in advance.

4. For each hour, with the forecasted demands, the network simulator is used
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FIG. 3. Hydraulic Analysis of Hardalit Pumping Station (P1)

to construct the energy-cost-versus-discharge function for each pumping station.
This function is convex, for any demand level and reservoir volume, because
the pumps are introduced in the order of decreasing efficiency. A quadratic is
fitted

Gi(1) = ADXHE) + BOXAD) + Ci8) + oo )

where A(?), B(1), and C(r) = coefficients obtained from fitting the data com-
puted by the simulator. If energy-versus-discharge figures are available from
actual measurements, these can obviously be used directly to construct the curves

Fig. 3 shows the results of the hydraulic investigation of the pressure zone
between VO and V1 of Fig. 1. The system resistance increases with flow, due
to friction losses. Two curves are shown, corresponding to the cases when P2
is idle or operating. The intersecting pumping curves are for the various pump
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configurations in this pressure zone: three parallel pumps at P1 and two wells
that pump into the pipeline between P1 and V1, and have been incorporated into
Pl in Fig. 1. The order in which the pump configurations are brought in
[K,A,1,2,3, (1 + 3),...1 +2 + 3 + K + A) in Fig. 3] corresponds to
decreasing efficiency, established from field data and/or from simulation.
Energy-cost-versus-pumping discharge is obtained for data for the intersection
points of pumping curves and system resistance: head discharge, pump efficien-
cies, and (time-dependent) energy cost. The two resulting curves, for P2 oper-
ating and idle, and the fitted quadratic, are shown in Fig. 4. The quadratic

G1 (kWh) = 0.0002857X1% + 0.3943X1 + 205.7 .. ..0ouviirinnninn.. (8)

with X1 in m®/h is seen to fit the data quite well.

5. For each reservoir, the following are given: the range of admissible vol-
umes (Eq. 3), which can vary over the day or be the same for all times, the
continuity equation (Eq. 4), which is a simple mass balance, and the initial and
final volumes (Egs. 5 and 6).

This completes the preparation of data for the optimization.

OPTIMIZATION OF OPERATION

The optimal solution we seek is a set of discharges, X(¢), for all pumping
stations (j = 1,...,J) and times (¢ = 1,...,T). The demands D(?) are known,
and therefore the reservoir volumes V(¢) are uniquely determined by the dis-
charges X(7). The volumes are the state variables of the DP optimization
model, whose solution may be given by either the values of the pumping
station discharges or equivalently by the trajectories of reservoir volumes
over time. We use the trajectories of reservoir volumes as a main tool in
the optimization.

The optimization is cast as a dynamic programming model. For the ex-
ample of Fig. 1, this model has seven state variables—too many to solve
by conventional DP. We resort to the method of progressive optimality
(Howson and Sancho 1975), combined with a spatial decomposition and “local”
optimization by an analytic technique. The objective function may be non-
convex for certain values of the coefficients in its components (Eq. 7). In
such cases, a global optimum cannot be guaranteed, and the method is con-
sidered heuristic.

The system is divided into subsystems; each has two pressure zones in
series. For the model of Fig. 1 there are seven subsystems:

S1: VO—Pl—VI—P2V2 ...ttt ©)
S2: VO—PI—VI—P3—V3 ... ittt (10)
S4: VO—Pl—VI—PA— V4 .00t (11)
85: VO—Pl—VI—P5—V5 . ettt (12)
S6: VIPAe VA PO6—V6. ..o (13)
ST VI P VS DT VT et (14)

A subsystem may also be made of two pressure zones operating in parallel—
from two separate intake reservoirs, through two pumping stations, into a
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common discharge reservoir. The distribution system we use for demon-

stration here does not have such a configuration, but others may. For clarity

of presentation we shall explain the method for the series arrangement only.
Assume that a feasible trajectory of reservoir volumes is given: the vol-

umes satisfy Eqgs. 3, 5, and 6, and the corresponding pumping discharges

satisfy Eq. 2. How an initial feasible trajectory can be obtained will be ex-

plained later. The optimization method adjusts the trajectory iteratively.
The iterative procedure contains two nested loops.

1. Over time, from (t = 2) to (r = T).
2. For each time, over the subsystems.

In iterating over time, the trajectories are kept fixed, except for a pair of
adjacent time steps, as shown for one reservoir, in Fig. 5. For this pair of
time periods, the inner iterative loop ranges over all subsystems, in order.
When dealing with one subsystem for time ¢, the only thing which is allowed
to vary is the volume of its reservoirs at this time. There are four decision
variables associated with allowing this volume to change: the discharges of
the two pumping stations in the subsystem, one on either side of the central
reservoir in which the volume is allowed to change, for the two adjacent
time periods (¢t — 1) and (¢).

A “local” optimization problem is solved for each subsystem for the two
subsequent time steps. Fig. 6 shows a subsystem and the indices used: C
for the central reservoir, I for the pressure zone that provides its inflow, and
O for the pressure zone on its outflow side. There are four decision vari-
ables—two flows at two time periods—X/ (¢ — 1), XI (), XO (¢ — 1), and
X0 ().

DI Do

. X1 . o X0 .

FIG. 6. Notation for Local Optimization
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The objective is to minimize the total cost of delivering these four flows,
keeping the volumes VI and VO at their fixed values at times (+ — 1) and
(¢t + 1), and three volumes VI, VC and VO within their ranges at time ¢.

The local optimization problem is

min {f = GI[XI¢ — 1)] + GI[XI(r)] + GO[XO@ — )] + GO[XOW]1} . ... (15)

subject to

VIG+ D) =VIG = 1) = XIt— 1) = XI@) ... (16)
VIOSVIE— 1) ~XIE = D) SVIQW) oo a7
VO@t + 1) = VO — 1) + X0 — 1) — DO(t — 1) + XO@) — DO() . ... (18)
VOO = VOt — 1)+ X0t —1)—DOGt ~1)SVO®) ............... (19)
VCr) =VC@E— 1)+ XIt— 1) = DIt — 1) = XO@¢ — )= VC@) ...... (20)
O=XK)<XK K=10;n=0 =11 0uueuiiiiiuininiii.. (21)

VIt — 1), VI@ + 1), VO(t — 1), VO + 1) are known, fixed at the value
they were given last.

Constraints in Eqs. 16 and 18 make VI and VO return to their known
values at (+ + 1). Egs. 17, 19, and 20 restrict VI, VO, and VC to their
admissible range at (¢). Eq. 21 limits the flows to their feasible range (Eq.
2).

In this presentation it was assumed, for clarity of presentation, that there
are no further inputs or outputs to reservoirs VI and VO. Had there been,
they would have been introduced as given values in the appropriate con-
straints presented. Also, when VC has more than one output (as does, for
example, V1 in Fig. 1) all flows not in the subsystem being now considered
are not changed are therefore known and can be introduced into the afore-
mentioned appropriate constraints.

All these constraints can be combined, to result in bounds on two out of
the four variables, namely X/(¢+ — 1) and XO(t — 1)

LIG = D SXIE— D) SUE = D)oo i 22)
and

LO — 1D=XO0@ -~ D=UOE — 1) oo i 23)
where, for example

LI — 1) = max {A1,A2,A3,A4} .. ... (24)
with

AL=VIE = D) = VIG+ 1) =X oo (25)
A2 = VIt = 1) = VIM) .ot (26)
A3 =VC@) —VCt— 1)+ DIt — 1)+ XO .......ociiiiiinnii.. 27
Ad = 0 o e (28)

These values come from Egs. 16, 17, 20, and 21, with X7 and XO introduced
to establish the widest possible ranges for XI(+ — 1). Similarly
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UIt — 1) = min {B1,B2,B3,BA} .. ..o\t (29)
with

BL=VIt— 1) = VIE+ 1) = XL ... e, (30)
B2 =Vt — 1) = VI(E) ..o e (31)
B3=VC(@) —VCt — 1)+ DIt ~ 1) + XO ..o, (32)
BA =XI ... . (33)

From Egs. 16 and 18, XI(¢) and XO(?) can be expressed as functions of XI(z
— 1) and XO(t — 1), respectively

XI)y=VIt — 1) = VIG+ 1) = XI(t — 1) ... (34)
and
XO0@) =Vo@i+1)—VOoit—1)+DO¢— 1) + DO — X0t —1).... (35

We are now left with an optimization problem in two variables: XI(r —
1) and XO(¢t — 1). The objective is an analytic function: Eq. 15, with the
quadratic functions (Eq. 7) used for the G’s. XI(f) and XO(¢) are given by
Eqgs. 34 and 35, respectively. There are only upper and lower bounds on
both decision variables, Eqs. 22 and 23, and no other constraints.

Solution of the local problem is achieved as follows. Substitute XI(#) and
XO(») from Eqgs. 34 and 35 into Eq. 15, using the quadratic expressions (Eq.
7) for the G’s, multiplied by the energy cost coefficients for each time pe-
riod. We shall continue to use the notation AO, BO, CO, Al, BI, CI for the
coefficients with the understanding that they are original values in Eq. 15
multiplied by the appropriate energy cost. Eq. 15 is differentiated with re-
spect to the two decision variables, XI(z — 1) and XO(¢t — 1). The derivatives
are set equal to zero and solved. The results are

2AI(H-S1 — BI(t — 1
Xi(t - 1) = »-S 2(1 ) + BI(®)

X0( - 1y = 2A0(1)- S2 — Bz(t - 1) + BO®®

where Al, BI, AO and BO = the coefficients in Eq. 7 for pumping stations
PI and PO, respectively. S1 is calculated from Eq. 35

[AI(t — 1) + AI(D] ......... (36)

[AO(t — 1) + AO(D] .. ... 37

SUSVIE+ 1) = VIE = 1) oo e (38)
and S2 from Eq. 34
S2=VO@t—1)— VOt +1) + DO@) + DOt — 1) ..o, (39)

When the cost-versus-discharge curves of Eq. 15 are the same in PI and PO
for () and (¢ + 1), Egs. 36 and 37 reduce to

X — 1) = — 40)
and
X Ot = 1) = e e e 41)



The values of XI(t — 1) and XO(¢ — 1) from Egs. 36 and 37, are checked
against the bounds of Eqs. 22 and 23. If all are satisfied, this is the optimum
of the “local” problem. If one or both of the variables violate one of their
bounds, they are set to the bound.

Once XI(t — 1) and XO(z — 1) have been determined, XI(¢) and XO(r) are
computed from Eqs. 34 and 35. They are guaranteed to be within their bounds
given by Eq. 2, because these were incorporated into setting the bounds of
Eqs. 22 and 23. The local optimization problem can also be solved by a
simple search over all (discretized) possible values of XI(+ — 1) and XO(¢
— 1). There will only be a small number of configurations in PI and PO
that satisfy the constraints of Eqs. 22 and 23, so the search is easy.

ITERATIVE PROCESS

The steps are the following.

1. Given an initial trajectory of feasible reservoir volumes (Eq. 3).

2. Go over the time period, covering two sequential time steps at each iter-
ation, with a one-step overlap over the previous iteration; i.e., = 1 and 2, 2
and 3, 3 and 4, etc.

3. At each time, go over each subsystem sequentially, holding the reservoirs
at its two ends fixed at (¢ — 1) and (r + 1). Use the “local” optimization to
determine the four flows in and out of the reservoir for the two time steps. The
flows for time (f) will again be changed the next time the same subsystem is
reached, because of the overlap in the iterations over time.

4. The subsystems also have overlap: the central reservoir of one is the intake
reservoir for the next subsystem downstream. As the levels are changed in the
central reservoir of the first, they become fixed boundary conditions when the
next one is treated.

5. The iterations over time are repeated, say from ¢ = 1 to¢t =T — 1, until
all reservoir volumes, over all times, do not change between iterations by more
than some small specified tolerance. The iterative process is guaranteed to con-
verge because the components of the objective function are convex (Howson and
Sancho 1975).

FINDING INITIAL FEASIBLE TRAJECTORY

The same procedure is used to find an initial feasible trajectory; i.e. a set
of reservoir volumes and discharges that satisfies the constraints of Eqgs. 2—
6. This is done as follows.

1. Specify any feasible set of reservoir volumes according to Egs. 3, 5,
and 6.

2. Compute the corresponding discharges of all pumping stations for all times.
They may not satisfy Eq. 2, and some may even be negative.

3. During the iterative process, impose the bounds of Eq. 2 on every flow
which is within its feasible range, so that progressively, over the iterations, all
flows end up feasible.

We have found this method to be very effective. If, however, the hydraulic
system is such that infeasibilities could arise during such a process, we would
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have allowed violation of constraints and added a penalty term to the ob-
jective function (Eq. 15) of each local optimization where a flow is not

feasible.

EXAMPLE

The system shown in Fig. 1 was optimized, for a 24-hr period, with hourly
time steps starting at 12 noon and ending the following day at the same time.
For simplicity we shall show results for the case where the energy-versus-
discharge functions remain constant over time. In reality they are affected
by the demand level. There are three energy tariff periods in the day.

TABLE 1. Energy (kWh) versus Discharge (m®/h) Function Coefficients and
Maximum Discharge for Pumping Stations

Pumping Energy versus Discharge Coefficients Maximum discharge
station A B c (m®/h)

(1) ) () 4 (5)

P1 10.4406 x 10~° 0.512 12.5 2,500

P2 1 x10°° 0.125 86 300

P3 1 x 107 1.08 0 950

P4 4.679 x 107 0.86 0 700

P5 1 X 107° 0.378 —132 700

P6 1.707 X 107° 0.148 0 300

P7 1 x 107 0.125 —40 200

TABLE 2. Relative Energy Cost for Three Time Periods During Day

Period
Name From hour To hour Relative energy cost
(1) ) 3) (4)
El 08 15 2.0
E2 16 22 1.5
E3 23 07 1.0

TABLE 3. Minimum, Maximum, and Initial (Final Equal to Initial) Volumes of Res-

ervoirs
Minimum volume | Maximum volume Initial and final volumes V
Reservoir vV (m®) VvV (md [Marlow and Fallside (1980)]

(1) (2 (3) 4)

\"2! 100 1,200 600
V2 100 1,000 . 500
V3 100 6,000 3,000
V4 100 3,000 1,500
\'Al 100 1,000 500
V6 100 1,000 500
V7 100 1,000 500
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TABLE 4. Demand Data

Demand (m3/h) for Period
Consumer t=1-12 t=13-24
(1) (2) (3)
D1 300 400
D2 100 100
D3 400 490
D4 150 250
D5 200 300
D6 100 150
D7 100 100

Table 1 contains the coefficients of the energy (kWh)-versus-discharge
(m*/hr) function (Eq. 15) for the seven pumping stations and the maximum
discharge. As explained previously, these curves were generated by use of
a detailed simulator, introducing pump configurations in descending order
of efficiency. Table 2 contains the energy cost variation over the day, given
in relative terms. The absolute values have no effect on the optimal operating
policy, only the relative values. Reservoir data are given in Table 3: mini-

TABLE 5. Reservoir Volumes (m®)—Optimal Solution

T V1 V2 V3 V4 V5 V6 V7
(1) (2) (3) 4) (5) (6) (7) (8)
12 600 500 3,000 1,500 500 500 500
13 475 400 2,510 1,350 400 400 440
14 350 300 2,020 1,200 300 300 300
15 225 200 1,530 1,050 200 200 200
16 100 100 1,040 900 100 100 100
17 179 100 906 786 100 100 100
18 258 100 771 671 100 100 100
19 336 100 637 557 100 100 100
20 415 100 503 443 100 100 100
21 494 100 369 329 100 100 100
22 573 100 234 214 100 100 100
23 651 100 100 100 100 100 100
0 712 189 600 322 200 189 189
1 773 278 1,100 544 300 278 278
2 834 367 1,600 767 400 367 367
3 895 456 2,100 989 500 456 456
4 956 544 2,600 1,211 600 544 544
5 1,017 633 3,100 1,433 700 633 633
6 1,078 722 3,600 1,656 800 722 722
7 1,139 811 4,100 1,878 900 811 811
8 1,200 900 4,600 2,100 1,000 900 900
9 1,050 800 4,200 1,950 875 800 800
10 900 700 3,800 1,800 750 700 700
11 750 600 3,400 1,650 625 600 600
12 600 500 3,000 1,500 500 500 500
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TABLE 6. Pumping Station Discharges (m®/h)—Optimal Solution

T X1 X2 X3 X4 X5 X6 X7
M 2) @) (4) () (6) 7) (®)
12 625 0 0 0 100 50 0
13 625 0 0 0 100 50 0
14 625 0 0 0 100 50 0
15 625 0 0 0 100 50 0
16 1,620 100 356 136 300 150 100
17 1,620 100 356 136 300 150 100
18 1,620 100 356 136 300 150 100
19 1,620 100 356 136 300 150 100
20 1,620 100 356 136 300 150 100
21 1,620 100 356 136 300 150 100
22 1,620 100 356 136 300 150 100
23 2,500 189 900 561 489 189 189
0 2,500 189 900 561 489 189 189
1 2,500 189 900 561 489 189 189
2 2,500 189 900 561 489 189 189
3 2,500 189 900 561 489 189 189
4 2,500 189 900 561 489 189 189
5 2,500 189 900 561 489 189 189
6 2,500 189 900 561 489 189 189
7 2,500 189 900 561 489 189 189
8 225 0 0 0 75 0 0
9 225 0 0 0 75 0 0
10 225 0 0 0 75 0 0
11 225 0 0 0 75 0 0

mum and maximum volumes (equal for all times, for simplicity of the pre-
sentation, but they could easily be varied over time). VO is taken as an
infinite reservoir. Table 4 contains the demand data. Again, for clarity of
the presentation, a simple two-period pattern (whose break point does not
coincide with a change in tariff) is used.

The optimal operating policy is given in terms of reservoir levels (Table
5) and pumping station discharges (Table 6). The pump schedule of each
station is obtained by “filling” the required flow with pumps in decreasing
order of efficiency and arranging the “on” and “off” periods on the time

V1(m3)1_1‘l[![1}x:\[!{r[lrﬁlrlr
1200 —

1

1000
800 -
600 N
400

llLl‘/lll'

200
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3
~

FIG. 7. Ein Ziv Reservoir (V1) Volume Change with Time—Optimal Solution
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FIG. 8. Hardalit Pumping Station (P1) Operation Over Time—Optimal Solution

axis so as to minimize the number of on/off’s.

Figs. 7 and 8 demonstrate graphically the variation of volume in V1 and
pump operation in P1 (including two wells adjacent to the station, which
has three pumps). All pumps operate during the low-cost period (23-7).
During the high-cost period (8—15) only pump 1 operates, and not all of the
time. This is necessary to prevent the reservoir V1 from dropping below
V, = 100 m®. During the intermediate-cost period (16-22), the pumps are
introduced in decreasing order of efficiency. This is necessary to replenish
the volume so it is full at the beginning of the high-cost period (8 o’clock).
A high level at the beginning of the high-cost data and a low level at its
end are to be expected. The precise trajectory of reservoir levels depends on
the demands and pump discharges, and cannot be calculated without the
optimization.

CONCLUSIONS

The optimization algorithm described in this paper uses the following.

1. Given demand forecasts.

2. An aggregated system model, based on a detailed hydraulic analysis.

3. Given initial states (levels or volumes) and desired final states in all res-
ervoirs.

4. Variable (or fixed) energy costs over the day.

5. Pumping energy curves for each pumping station, also based on a detailed
hydraulic analysis. These are converted into cost functions, which must be con-
vex for the iterative process to converge to the global optimum.

The network is divided into subsystems, each being a pumping station
between two reservoirs. The time horizon (usually 1 day) is divided into
time steps (for example, 1 hr each). The iterative optimization algorithm
goes over the time horizon, dealing with two adjacent time steps, with the
other decisions fixed. For each pair of time steps, the algorithm ranges over
all subsystems, one at a time. The global optimum is reached (under the
convexity assumption, which is practically guaranteed in all real systems)
from any initial trajectory of reservoir volumes.

The method has been programmed on an IBM PC/XT in Pascal. A full
run for a 24-hr operation takes 10—15 minutes. The problem can therefore
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be run again during the day if the observed conditions (for example, the
demands, pump availability due to failures) deviate markedly from those
assumed when the initial run was made.

The program was written modularly so it can be applied to water supply
systems in which the subsystems appear in any configuration. This ease of
implementation was proven in a few applications.
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