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Analysis of the Linear Programming Gradient Method
for Optimal Design of Water Supply Networks

AVNER KESSLER! AND URI SHAMIR

Faculty of Civil Engineering, Technion-Israel Institute of Technology, Haifa, Israel

A theoretical analysis of the linear programming (LP) gradient method for optimal design of water
distribution networks is presented. The method was first proposed by A. Alperovits and U. Shamir
(1977) and has received much attention in the last 10 years. It consists of two stages that are solved in
alteration: (1) a LP problem is solved for a given feasible flow distribution and (2) a search is conducted
in the space of flow variables, based on the gradient of the objective function (GOF). In this paper a
matrix formulation is given for both stages using well-known graph theory matrices. It is proven that
the mathematical expression of the GOF is independent of the choice of the sets of loops and paths
along which the head constraints are formulated. This is contrary to the claim made by 1. C. Goulter
et al. (1986). The original GOF expression is shown to have been an approximation of the steepest
direction, but still gives good results. Finally, the search procedure is improved by using the projected

gradient method.

INTRODUCTION

Optimal design of water supply networks must consider
various aspects such as hydraulics, standards of service,
reliability, water quality, and consumption patterns. At
present, the major optimization techniques handle the fol-
lowing basic problem: given the network layout and a few
loading (consumption) patterns, what is the network capac-
ity (pipe diameters) under which the cost is minimal. The
reliability and quality of service considerations are incorpo-
rated by the requirement that the network be looped. Even
for this basic problem the solution is quite complicated due
to the nonlinear flow-head loss relationships and the pres-
ence of discrete variables, such as commercial pipe diame-
ters. Recently, some attempts have been made to expand the
basic problem by considering optimal extension of an exist-
ing network, different locations of fires or pipe breaks, and
large-scale networks. These extensions are generally based
on the previous techniques used to solve the basic problem.

A prominent group of such techniques is one that decom-
poses the problem into two stages. In the first stage part of
the variables are kept constant while the others are solved by
linear programming. In the second stage a search technique
is employed, which changes the rest of the variables. The
stages are solved iteratively until some convergence crite-
rion is met. Decomposition is found attractive because with
part of the variables kept constant, the design problem
becomes linear and so LP technique may be applied. Works
belonging to this procedure are Alperovits and Shamir
[1977], Quindry et al. [1981}, Saphir [1983], and Fujiwara et
al. [1987]. Corrections were suggested by Quindry et al.
[1979] and Goulter et al. [1986]. )

The present work considers the particular method, called
linear programming gradient (LPG), originally presented by
Alperovits and Shamir [1977]. In the first stage a set of flows
throughout the network is given and the corresponding
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optimal set of heads is obtained by LP. In the second stage
flows are modified according to the gradient of the objective
function (GOF) with respect to the flows. An improvement
to the basic LPG method was suggested by Saphir [1983] and
Fujiwara et al. [1987]: following the evaluation of the GOF
the flow distribution is changed by a quasi-Newton method
instead of a simple gradient search method. Quindry et al.

[1981] presented an analogous approach in which the first

stage is solved by LP for a given set of hydraulic heads. The
GOF is determined with respect to these hydraulic heads. In
the second stage the set of heads is changed in the direction
of the GOF and a new iteration begins.

The most ambiguous part of the LPG methods is the GOF
evaluation. The expression for the GOF consists of several
terms; each of them is a summation over a group of arcs. In
addition, the signs in front of each term depend on the
relative direction of the flow with regard to a selected
positive sense assumed in each circuit. Since the original
publication of the LPG method [Alperovits and Shamir,
1977] two comments concerning the gradient expression
have been published. The first, by Quindry et al. [1979],
corrects the original expression by taking into account the
interaction between loops and paths included in the head
constraints. The second comment by Goulter et al. {1986]
claims that the solution depends on the choice of paths and
loops describing the head constraints. According to this
claim, the final discharge in each arc increases with the
number of times each arc appears in the set of head con-
straints, probably due to greater ‘‘weight’’ in the solution.

Following the attempts to use the LPG method for ex-
tended design problems it was decided to examine in detail
the method and to clarify its theoretical basis. This paper
includes the following sections: (1) review of the basic LPG
method, (2) derivation of matrix formulation of the problem,
(3) refutation of the claim of Goulter et al. [1986], (4)
reformulation of the constraint set independent of the sets of
paths and loops which define the head loss constraints, (5)
analysis of the gradient of the objective function (GOF), (6)
an illustrative example, and (7) presentation and demonstra-
tion of the projected gradient method.

Hereafter, we shall adopt the convention of capital bold
letters for matrices and a column, or a row of the matrix.
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Also, we shall use the vector derivation rule, by which the
derivative of a scalar by a vector is the transpose of the
derivative vector.

REVIEW OF THE BAsic LPG METHOD

The LPG method [Alperovits and Shamir, 1977] is an
iterative procedure consisting of two stages. The first (lower)
stage optimally solves a looped network with a known flow
distribution. The solution is obtained by means of LP, since
with a known flow distribution the optimization model
becomes linear (except for some minor nonlinearities, which
can be linearized). The second (upper) stage improves the
flow distribution based on a local GOF. The GOF is calcu-
lated using the dual values of the first stage linear model. The
process continues iteratively until it converges to a (possibly
local) optimum.

For a gravity fed network, designed for a single loading
(set of node demands), the first stage of the LPG model is

Pl

costzmin{ > > ce’dxe,d} )

¢e€EdED,
subject to
Z 2 T dXeq =10 Vie L Q)
eelde D,
> FHedXea< Ah, VperPr 3)
ec€ PdeD,
> Xeq=a, Ve €E )
de D,
Xod = 0
where

a, length of arc e; .

cost per unit length of a pipe segment with diameter
d in arc e;

hydraulic gradient on the segment with diameter d in
arc e, with the given flow;

x,4 length of a pipe segment with diameter d in arc e;
Ah, head difference allowed between the ends of path p.

The various sets are d € D,, set of possible commercial pipe
diameters in arc e; ¢ € E, set of all arcs in the network; / €
L, set of basic loops (an arbitrary positive direction is
selected for each loop); and p € P, set of paths included in
the head constraints.

Equation (1) is the objective function, namely, the mini-
mum cost of the pipeline network. In the more general case
the cost of pumps, pumping energy, valves, and other
equipment is also included. Equation (2) assures that the
summation of head losses around each loop is zero. The set
of loops L is the set of basic loops such that if (2) holds for
L it holds for any other loop. In case of m source nodes the
set of loops is increased by (m — 1) paths connecting pairs of
sources. Equation (3) is imposed to assure adequate pressure
at selected nodes where the paths p € P connect these nodes
with a “‘reference node’’ at which the head is known (usually
a supply node). The plus or minus sign in (2) and (3) is plus
when the flow direction in an arc coincides with the positive
sense selected for the path or loop and minus when they
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oppose. The hydraulic gradient j, , is calculated using the
Hazen-Williams equation:

- l.852d~ 4.87ql4852
e

Jed = achw, 4 VYd € D, (5)

where o is a numerical coefficient whose value depends on
the units used, chw, , is the Hazen-Williams coefficient of
the pipe smoothness, and g is the flow. Hereafter we shall
refer to (2) and (3) as the loop and path constraints, respec-
tively, while (4) represents the length constraints.

The second stage of the LPG method changes the flow
distribution in a way that will reduce the optimal value of the
objective function (1). The change of flow must satisfy
continuity at all nodes; therefore only a change of circular
flows is permitted (or flow along path that connects two
sources). Such a change of flows means a uniform flow
addition (positive or negative) to all arcs included in a basic
loop. According to the original method [Alperovits and
Shamir, 1977], the amount of flow addition around a specific
loop is made proportional to the GOF magnitude with
respect to that particular loop flow.

The GOF expression, considering the correction made by
Quindry et al. [1979, equation} and leaving in the 1.852
coefficient, is

d cost
-1
T = T T 2 1852, X Ahey
41 ¢ € I) d €D,
+ > om > =1.852¢7 " Y Ah.y  (6)
g€CG c¢€G d € D.
e € I(i)
where
g € G set of paths and loops (excluding loop i) with one
or more arcs in common with loop i;
qy;, circular flow in loop i;
Ah, , head loss along pipe segment in arc e with

diameter d (h, ; = j, 4%..4)5

the dual value corresponding to the /(i) loop

constraint;

7, the dual value corresponding to the gth loop/path
constraint.

iy

The plus or minus sign in the second term becomes minus
when the positive direction selected for any path/loop coin-
cides with the positive direction selected for loop i. Notice
that the d cost/dg, > 0 means that a dg; < 0 will reduce the
cost function. The same expression for the GOF was re-
cently derived by Fujiwara et al. [1987] using the sensitivity
theorem.

MATRIX FORMULATION OF THE LPG METHOD

The LPG model (P1) and the GOF expression (equation
(6)) can be simplified by means of circuit and path matrices.
The terms loop and circuit are used here interchangeably,
meaning a sequence of arcs whose starting node is the same
as its terminal node. Given a looped pipeline network with
(ne) arcs and (nn) nodes, the hydraulic head constraints are
represented by (n/) loops and (np) paths; (nd) commercial
diameters are assigned to each arc so that the total number of
pipe segments is ns = nd X ne. Assuming a feasible flow
distribution (one which satisfies continuity at all nodes), the
head loss distribution is given by the vector Ah, which has
(ne) components:
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Ah = 1Jx (7N
where x is a vector (size ns) of the pipe segment length and
J is the gradient matrix (size ns X ns) which attaches a
hydraulic gradient to each pipe segment (/). The gradient
matrix is defined as follows:

~1.852 ;— 4.87_1.852
Jii = a chw; I8 d; q;

J,‘j:()

fori=j
otherwise

®)

I is a matrix (size ne X ns) which represents the internal
arrangement of the pipe segments (j) within the set of arcs
(i). The matrix I is defined as follows:

iij =1 for (i — )nd <j < ()nd
I;=0 otherwise ©)
The matrix form of the loop constraints is given by
LAh=0 (10)

where L is the circuit matrix (size n/ X ne), whose rows and
columns correspond to the basic loops and arcs, respec-
tively. Define a positive direction of circulation for each
basic loop, the terms of L are

L;j=+1 arc j is in loop i, same sense
L= -1 arc j is in loop i, opposite sense an
Lij= 0 arc j is not in loop i
The matrix form of path constraints is given by
PAh < Ah, (12)

where Ah,, is the vector (size np) of the maximum admissible
headlosses along (np) paths connecting reference nodes with
the other nodes. P is the path matrix (size np X ne) whose
rows and columns correspond to the paths and arcs, respec-
tively. Define a positive direction for each path, the terms of
the path matrix are

Pj= +1 arcjis in the path /, same sense
P;= —1 arcjisin the path i, opposite sense (13)
Pi= 0 arcjis not in the path i

Based on the above equations it is now possible to
reformulate the basic LPG model in its matrix form:

P2

cost (q) = min {e’x} (14)
subject to
LIJ(@x =0 (15)
PIJ(q)x < Ah, (16)
Ix=a a7
X=0 (18)

where ¢ is the cost vector (size ns), which is the cost per unit
of length of each pipe segment, and a is the vector of the arc
lengths (size ne). Next we shall develop the expression for
the GOF, starting from the corrected version as suggested by
Quindry et al. [1979, equation 6]. Separating the set G into
the set of loops L and the set of paths P, (6) becomes
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dCOSt/dql(,-): ) Z 1.852q[l E A/’ll)‘d
e € i) de D,
+ > om ) +1.852q, " Y Ahey
(€L, ey d € D,
1#£10) el
+ > om, > 1852, 1 Y Ahey (19)
pEP e € Ii) d e D,
eeEp

To make our notation consistent with that commonly used
in graph theory, a notation which is also more intuitively
appealing, we adopt the following convention: the sign in
(19) is made plus when the direction of the arc coincides with
the positive direction of the path/loop. Combining the first
two right-hand side terms and using the suggested notation,
(19) becomes

d costldgyy = — > m » *1.852q, ' ¥ Ahey
lelL e de D,
e € 1)
- > om > =1.852q, " Y Ah.y  (20)
PEP eccp d €D,
e € I(i)
Based on the Hazen-Williams equation (equation (5)), it
follows that
1.852Ah,
1.852q, " S Ak = S ———d
d € D, d e D, de
dAh dAh
= 2 I ed 007 2n
dep, 9de 9q.
and so (20) becomes
d cost dAh dAh
y :Emziae—Ewaia < Q2
ql‘(l) le L el de pEP e€Ep e
e € 1) e € 1)

Similar to the admittance matrix in electrical network a new
matrix S (size ne X ne) is defined, called the ‘‘resistance
matrix’’ of a pipeline network:

S,'J' = aAhi/aq,-
Si=0

fori=j

S = dAh/aq otherwise

(23)
S is a diagonal matrix whose elements are always nonnega-
tive and are independent on the assumed flow distribution.
Since L and P contain the proper signs for the various terms,
(22) can be rewritten in matrix form

d cost/dqyy = — @ LSL] — @'PSL] (24)

where L is the transpose of the ith row in the circuit matrix
and 77 and @ are the transposes of the dual vectors
corresponding to the loop and path constraints, respectively.
Finally, the GOF expression is obtained by combining the
two right-hand side terms and extending (24) for all circular

flows:

GOF = d cost/dq, = — w'(L/P)SL” (25)

where @’ =(#/|m). The resulting expression can be easily
computed, since the matrices L and P consist of only (+1)
and (0) elements, while matrix S is diagonal.

The GOF is used to make a change in the flow distribution.
Alperovits and Shamir [1977] and Quindry et al. [1981] make
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a simple gradient move. Saphir [1983] and Fujiwara et al.
[1987] use a quasi-Newton method, with the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) update procedure, which
improves considerably the algorithm’s-performance.

THE CHOICE OF LooP AND PATH CONSTRAINTS
FOR THE LPG METHOD

Next we examine the influence of different choices of the
loop and path constraints required for the LPG method. It
was claimed by Goulter et al. [1986] that different choices
may result in different optimal solutions, due to a change in
the GOF values. In order to prove the contrary, namely, the
independence of the GOF on loop or path set, it is first
necessary to express the GOF independently of a particular
set of circular flows. Therefore the GOF (equation (25))
expressed for circular flows, d cost/dq,, is converted into an
equivalent expression, d cost/dq, which is the GOF with
respect to arc flows in the network. The relationship be-
tween the set of flows q and the set of circular flow q, is given
by '

q=qy+Llq (26)

where q, is some arbitrary feasible set of flows (i.e., satis-

fying continuity at all nodes). From (26) it follows that
dg/dq,; = LT 27

Using the chain rule for d cost/dq, and substituting (27)
results in

_dcost dcost dq dcost

GOF = — = L’ 28
dq; dq dq; dq @9

Comparing this result with (25) it is seen that
d cost/dq = — @ (L/P)S 29

We propose to prove that (29) gives the same result for any
chosen set of loop and path constraints.

Consider a looped network with (nn) nodes and (ne)
directed arcs. Based on graph theory considerations it can be
shown that if the loop constraints hold for a set of basic loops
it also holds for any other loop [Deo, 1974, p. 212]. A basic
loop (circuit) is defined by the addition of a single arc (chord)
to a spanning tree of the network. The set of basic loops is
therefore the set of all basic loops with respect to a particular
spanning tree. There are (ne — nn + 1) independent basic
loops in a network. Regarding a basic loop as a row vector of
the loop matrix L, it follows that given a connected looped
network, any loop can be described as a linear combination
of the rows of the loop matrix L. As for the path constraints,
one has to select a set of paths connecting the reference
node, at which the head is known (usually the source node),
with the other nodes at which the head is to be kept above a
specific minimum. For a connected looped network there are
one or more paths between each pair of nodes and it can be
easily shown that a linear combination of given path and a
proper set of loops can define any other path between the
same pair of nodes.

Linear combinations of matrix rows can be performed by
elementary operations, defined as adding (substracting) &
times row i to (from) row j. Given the matrix of the head
constraints (L/P),, the new matrix (L/P),, resulting from
such an elementary operation, is
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(L/P),, = E(L/P), (30)

E =1+ keje] 31

where E is an elementary matrix, size (ne X ne), I is a unit
matrix, size (ne X ne), and e; is a unit vector with (£1) in the
ith entry and (0) elsewhere, size (ne). Note that if the GOF is
proved to be independent for one elementary operation, it is
obviously independent for a series of elementary operations.

The elementary matrix used to convert the circuit and path
matrix may also be used to express the change in the dual
vector 77, due to a change in the circuit and path constraints.
The initial vector is given by

7 = c,A, ! 32)
where A, is the optimal basis of the constraint matrix and ¢,
is the corresponding cost vector. Since the basis does not
change by elementary operations, the dual vector following
an elementary operation is

= cl(EA,) " '=c/A, 'E'=#lE ! (33)

where the indices (o) and (n) come for the new and old dual
vector, respectively.

To complete the proof it is shown that the GOF value
remains unchanged after an elementary operation. Following
an elementary operation the new GOF is

(d cost/dq), = — wL(L/P),S
Substituting (30) and (33) into (34) results in

d cost _ TE”EL g = rf L S
dq n - 770 P (o] - ﬂo P Lo}
_ (dcost 35)
= ) (

that is, the GOF value before and after a change in the
loop/path constraints is unchanged. The theoretical result
has also been demonstrated in our computer runs. We
surmise that Goulter et al. [1986] may have had an error in
their algorithm or in the computations.

(34

REFORMULATION OF THE HEAD CONSTRAINTS

An alternative formulation of the head constraints which
alleviates the need to select paths and loops, is based on the
following consideration: the head loss along any arc is equal
to the hydraulic head difference between its two end nodes.
Such a constraint is mathematically expressed by

R'™h-Ah=0 (36)

where h (size nn) is the vector of the hydraulic heads and Ah
(size ne) is the vector of the head losses. The matrix R (size
nn X ne) is a well-known matrix in graph theory, called the
incidence matrix. The elements of the incidence matrix are
defined as follows:

R;=+1 if arc j is directed away from node i
Rfj = -1 if arc j is directed toward node i (37)
R;=0 otherwise

Each column of R corresponds to an arc and has exactly two
nonzero entries, one being (+1) and the other (—1). Each
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row in R corresponds to a node, and the nonzero entries
indicate the arcs incident to that node. Since the rank of R is
(nn — 1), [Deo, 1974, p. 139] it is possible to eliminate one
row without loss of information. Eliminating the row of the
supply node R,, the reduced incidence matrix R is implicitly
given by

R = (R/R) (38)

Define a new set of variables h™ to be the surplus head at
each demand node with respect to its minimum allowed head
B pins (36) becomes

(RIRD)(h/(h ™ + hyi)) — AR =0 (39)

where &, denotes the constant head at the supply node.

Rearranging the terms in (39) it follows that
R™* — Ah= —~Rh; — RThy, (40)

Since the summation of all rows of R always gives o, it can
be shown that

R'hy= —R'h,  where h,=[hg, hy, ==, )T (41)
and so (40) becomes
R™* — Ah = R7(h; — hy;,) = R"Ah, (42)

where Ah, is the hydraulic head difference between the
supply node and the demand nodes.

Using (42) for the head constraints the LPG first stage can
be reformulated as follows:

P3
cost = min {c'x} (43)
Subject to
R’h* —1Jx = R7An, (44)
ix =a (45)
h™,x=o0 (46)

P3 and P2 are mathematically equivalent and therefore
result in the same optimal solution. A proof of the equiva-
lence is given in Appendix A where P2 is converted into P3
by a series of elementary operations. Comparing the two
formulations it is seen that P3 combines the path and the
loop constraints into a single type of constraint, while the
total number of constraints is not changed. P3 has the
advantage of defining a uniform set of head constraints
independent of the choice of the paths and loops in P2. P3
also simplifies the programming procedure, since it requires
the incidence matrix only, as compared to the path and the
loop matrices of P2.

ANALYSIS OF THE GOF EXPRESSION

The second stage of the LPG method changes the circular
flows g, in a way that reduces the value of objective function.
The change is made according to the gradient of objective
function, named GOF, with respect to the circular flows.
Having the GOF value, the circular flows are modified
according to either (1) The steepest descent direction, in
which the search direction is parallel to that of the GOF
[Alperovits and Shamir, 1977], or (2) A quasi-Newton search
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direction, in which the GOF is used to update a second-order
approximation of the Hessian matrix by the BFGS method
[Saphir, 1983; Fujiwara et al., 1987].

A general model unifing the two stages of the LPG method
may be formulated as follows:

P4

min {cost(q,)} 47)

cost(q,) = min {c'x1A(q)x = b, x = o} (48)

where cost(q,) is the objective function and A(q,) is the
constraint matrix consisting of the loop, path, and length
constraints. The original inequality constraints are con-
verted into equalities by adding slack variables. The ele-
ments of A depend on the circular flow vector q,, due to the
hydraulic gradient which appears in the path and loop
constraints. Denote the optimal value of x, for a particular
value of q,, by x*, P4 becomes

min {cost(q,) = c/x }} 49)

where the subscript & denotes the basis of x*. Since the
optimal basis is uniquely defined by the optimal selection of
the nonbasic variables, x¥, the objective function should be

viewed as a function of q, and x*:

cost(q;) = F(q,, x3) (50)

Applying the chain rule for the gradient of the objective
function, we have
dcost(q) dF(q; x3) F(q x})

GOF =
dq; dqy aq

+ dF (q, x7) dx3;

Xy dq ©b

The terms on the right-hand side of the (27) are analyzed;
term by term as follows:

0% (qy, x7)/0q,

This term is responsible for the change in the optimal value
of the objective function, caused by a small change in the
circular flow, where the set of nonbasic variables is kept
unchanged. As a result of such a change, the basic variables
take on new (optimal) values. The basic variables are the
length of the pipe segments which are included in the optimal
solution, while the nonbasic variables are the pipe segments
rejected by the optimal solution (i.e., lengths equal to zero).
A full evaluation of the above derivative is given in Appen-

dix B. An intermediate result is
oF (@i, x}loq, = — o' abla,, x*)/dq, (52)

and the final result corresponding to the original LPG
formulation (model P2) is
0F (q;, x%)loq; = — = (L/P)SLT (53)

which is identical to the original GOF expression [Alperovits
and Shamir, 1977], given by (25). For the alternative formu-

lation (model P3) the final result is
OF (q;, x5)/aq; = w' SLT (54)

which is simpler compared with the previous expression.
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{0F (q, x7)/ox 7 Hdx/dq,}

This term is responsible for the change in the optimal value
of the objective function caused by a change of the nonbasic
variables. The first derivative is known as the reduced
gradient of the LPG’s first stage [Reklaitis et al., 1983] and is
given by

3F(qp xBloxt=cl —clA; A, =] -

v A =0 (59)

where A, and A, are the submatrices of A corresponding to
the basic and the nonbasic variables, respectively. The
inequality sign expresses the LP necessary condition under
which x becomes optimal. '

The second derivative dx?/dq, cannot be evaluated using
only results of the first stage of the LPG. Still, we can show
that dx}/dq, is not zero under all circumstances. Consider an
optimal solution of P2 for a given flow distribution. Each arc
consists of at most two pipe segments, regardless of the
number of candidate pipe diameters [Orth, 1986, p. 155]. In
order to have dx}/dq, = o, it is necessary that the same
variables remain in the basis and the nonbasic variables x*
remain equal to zero, under the small change of flow dq,. If
we want to guarantee that no new pipe segments will enter
the basis due to the change dq,, then all pipes must have two
segments in the optimal solution (and not one, as many
happen) so that their relative lengths are modified as the
change dq, is imposed. This means that (2 X ne) pipe
segments appear in the basis, whose size is also (2 X ne),
equal to the number of constraints. It follows that all
remaining variables which are the head surpluses h* do not
appear in the basis, i.e., h* = 0. Such a case where all heads
throughout the network are at their minimum is not practi-
cally possible. We therefore conclude that dx¥/dq, is not
always zero.

Summerizing the above analysis, the GOF is given by

GOF =d cost/dq,; = — &' ab(q,, x*)/9q,
+(cf — @A) dxi/dq,  (56)

where the first term equals the original GOF, suggested by
Alperovits and Shamir [1977], but the second term may be
nonzero. As a result, the original GOF is somewhat different
from the exact GOF and should be considered as an approx-
imated gradient. The original GOF gives exact results when-
ever the change in flow does not cause the introduction of
new variables into the basis. Using a steepest descent
direction method [Alperovits and Shamir, 1977] the GOF is
still acceptable, since a new GOF is computed at each
iteration, independent of the previous GOF (an illustration is
given in the next section). The quasi-Newton method used
by Saphir [1983] and Fujiwara et al. [1987] was shown to be
more efficient than the simple steepest descent method,
when the approximate GOF (equation (25)) is used. This
relative advantage must be reexamined if a more accurate
GOF (equation (56)) is to be used.

The resulting GOF holds also for the dual method, pro-
posed by Quindry et al. [1981]. Using the same procedure, it
can be showed that its GOF also does not account for the
optimal change in the nonbasic variables and thus should
also be regarded as an approximated expression.

AN ILLUSTRATIVE EXAMPLE

Following the analysis of the GOF expression, it is shown
that the GOF consists of two components and that only one
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of them is computable. The second component, which
represents the contribution of the change in the nonbasic
variables, can not be evaluated within the framework of the
LPG method. It is the purpose of this section to demonstrate
that the approximation based on the first component only
gives good results. The illustrative example of the LPG
performance is based on a simple network, originally pre-
sented by Alperovits and Shamir [1977].

Consider the network in Figure 1 which is fed by gravity
from a constant head reservoir. The demands are given in
cubic meters per hour and the minimum head at each node is
30 m above the ground level. There are eight arcs, 1000 m
long each, all with Hazen-Williams coefficient equal to 130.
Pipe costs are given in arbitrary units in Table 1. The domain
of feasible flow distributions is fully described by two
circular flows, g;; and g,,, and by the initial flow distribution,
shown in Figure 1. Subject to the assumed flow directions,
q;; and g, are limited to changes within a confined domain of
triangular shape, described in Figure 2. The edges of the
triangle correspond to three arcs in which the flows vanish
(4, 7, 8). The corners of the triangle correspond to the
spanning trees, each obtained by elimination of two arcs.
These spanning trees are drawn at the vertices of the triangle
in Figure 2. The response surface, which gives the value of
the optimal solution of P1 for each flow distribution, is
shown in Figure 2. Here 169 flow distributions on a 10
m>/hour grid in this domain were used to generate this map,
which is shown by lines of constant function value. The
surface of cost(q,) looks concave with a global minimum in
the vicinity of the lower-left corner. This corner corresponds
to the spanning tree obtained after eliminating arcs 4 and 8.

The LPG method was applied using the approximate GOF
given by (25). For each iteration the first stage defines a point
on the surface of the objective function while the second
stage defines a search direction along which the objective
function is improved. The step size in the second stage is
determined as follows: the circular flow for which the
gradient component is maximum is changed by 20 m*/hour.
The other circular flow is changed by 20 m*/hour times the
ratio of its gradient component to the maximum gradient
component.

Two starting points are considered in this example. The
first is the original case given in the works by Alperovits and
Shamir [1977], Quindry et al. [1979], and Fujiwara et al.
[1987]. Its starting point, which corresponds to the circular
flows of g;;, = 150 m*/hour and g,, = 120 m*/hour, appears as
point A in the Figure 2, The second case starts from an
arbitrary point and corresponds to g, = 220 m*hour and
g, = 160 m*/hour, denoted by point D. Since no limitations
are set on the minimum and maximum hydraulic gradients,
the cost found at point A (475 10°) is less than the cost found
by Alperovits and Shamir (494 10%) or Fujiwara et al. (487
10%). The demand for minimum hydraulic gradient is alter-
natively represented by a minimum discharge of 10 m>/hour
in each arc (shown by dashed lines in Figure 2).

Following the two runs of the LPG performance, from
points A and D, respectively, it is seen that the approximate
GOF keeps, in general, the steepest direction although some
‘‘zig-zag’’s appear. The general direction is kept because in
each iteration a new GOF is obtained independent of the
previous ones. The two cases end at points B and E,
respectively. The fact that the two cases do not end at a true
local minimum reveals a major drawback of the original LPG
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method. That is, the GOF is an unconstrained gradient
method, while actually a constrained gradient method is
required. In the next section a correction is suggested based
on the gradient projection method.

THE ProJECTED GOF METHOD

The second stage of the LPG method changes the circular
flows so that continuity at all nodes is always satisfied. An
additional constraint which concerns the flow distribution is
that the flow direction in each arc is assumed and is not
allowed to change (equivalent to the nonnegativity con-
straints). Using an unconstrained gradient, this additional
constraint is not enforced and so the final result is not
necessarily optimal. For example, the line searches in Figure
2 terminate at the edge of the region where arc 8 attains zero

TABLE 1. Basic Cost Data for Pipes
Diameter,

inches Unit Cost

1 2.0

2 5.0

3 8.0

4 11.0

6 16.0

8 23.0

10 32.0

12 50.0

14 60.0

16 90.0

18 130.0

20 170.0

22 300.0

24 550.0

After Alperovits and Shamir [1977]. One inch equals 2.54 cm.

lSSO

x155

7120 Initial flow (m3/hr)
+|50 Ground level (m)
IO‘O\Demund {m3/hr)

1530

Simple water supply network (after Alperovits and Shamir [1977]).

flow. No further iterations are executed, since the final GOF
points towards negative flow in arc 8.

There are two. techniques by which the gradient can
incorporate constraints. The first is the reduced gradient,
used in the GRG method. The second is the projected
gradient, where the gradient is projected onto the constraint
surface. The two techniques require a similar numerical
effort and have the same theoretical background. We have
elected to adopt the projected gradient over the reduced
gradient due to its geometrical interpretation, although both
have similar performances.

The complete set of constraints under which the flows are
restricted may be described as follows:

q=qy+Lg, (57)

(58)

where qq is any fixed feasible flow distribution and q,,;, is the
minimum allowed flow in each arc. A minimum flow con-
straint stands for the quality of service and reliability de-
mands of water supply network. Substituting (58) into (57)
the constraint surface of q, is obtained:

q = Qmin

L7q;= qmin — qo (59)

Corresponding to the triangular region in Figure 2.

Applying the projected gradient method, it is necessary to
evaluate the gradient and the maximum step size along it.
The projected gradient is evaluated for the following two
cases:

1. The present point q, is an interior point of the feasible
region, so that the flow constraints are all nonactive. In this
case the projected gradient is equal to the unconstrained
gradient, i.e., the GOF.

2. The present point is on the edge of the feasible region
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Fig. 2. Objective functjon surface of the simple network.

so that one or more flow constraints become active. The
construction is carried out by decomposing the GOF into
two orthogonal components: one parallel to the constraint
surface and one perpendicular to it. The parallel component
will be the desired vector projection. It can be shown
[Reklaitis et al., 1983, p. 407] that the projected gradient is
given by

(I - L) " 'L (- GOF) (60)

where L is a submatrix of the loop matrix L, whose columns
correspond to the set of active constraints. The maximum
step size may be derived by (59) so that the next point will be
within the feasible region. A detailed description of the GOF
projection algorithm is given in Appendix C, followed by a
solution of the previous simple network.

Generally, it is known that the optimal solution tends
towards a tree configuration; that is, (ne — nn + 1) of the
arcs of zero or minimum flow discharge. From a geometrical
point of view these arcs correspond to the edges of the
feasible region, while the final solution is a vertex where (ne
— nn + 1) edges intersect. Starting from an interior point of
the feasible region and proceeding according to the LPG
algorithm, one of the constraints becomes active. Applying
the projected gradient, the new search direction lies along
the edge of the active constraint until another constraint
becomes active, etc. It follows that after encountering the
first active constraint, the line search is conducted along the
edges of the feasible region. The search is terminated when
a vertex of (ne — nn + 1) edges is reached. The necessary
conditions under which the last vertex is optimal are given
and tested by the gradient projection algorithm. The major
computational burden of this algorithm consists of the up-
dates of (L7L)™!' each time the active constraint set is
modified. However, since constraints are added one at a
time it is possible to develop formulae for updating (L7L) "
which make use of the prior values of that matrix [Rosen,
1960].

Solving the simple network by the projected GOF algo-
rithm (Appendix C), it is shown that the optimal flow
distribution is found at a point C (Figure 2), where g, = 20
m*/hour and g,, = 10 m*hour. Furthermore, point C satisfies
the Kuhn-Tuker conditions for optimality (step 7, Appendix
C) and is therefore a local optimum. Note that unless a
minimum flow constraint is imposed, arcs 4 and 8 will attain
zero flows discharge and so the optimal solution will ap-
proach a tree configuration. Comparison of the optimal
solutions, which have been obtained so far for this network,
is presented in Table 2. It gives the optimal cost and its
corresponding optimal flow distribution, given by ¢,, and g,
with respect to the same initial flow distribution (given in
Figure 1). While the previous works restricted the hydraulic
gradient to be between 0.5 to 50 promiles, the present work
restricts, instead, the minimum flow discharge to 10 m*/hour.
Still, the hydraulic gradients of the present solution are all
less than 50 promiles so that our solution is comparable to
the optimal solutions of others.

Allocating the optimal flow distributions on the constraint
surface at Figure 2, it is clear that earlier solutions are away
from the local optimum (point C) and thus are not optimal.
Comparing between the present solution and the solution
obtained by Fujiwara et al. [1987], it seems that two different
flow distributions give similar costs. However, our solution
results in 10 m?/hour in arc 8 while Fujiwara et al. [1987] find

TABLE 2. Optimal Solutions of the Simple Water Supply

Network
Cost, dn» qn;
Reference units m>/hour m3/hour

Alperovits and Shamir [1977] 497,525 193.0 71.6
Quindry et al. [1979] 441,552 58.0 5.0
Goulter et al. [1986] 435,015 58.0 0.7
Fujiwara et al. [1987] 415,271 35.68 1.01
Present solution 417,500 20.0- 10.0
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1.01 m*hour in arc 8, which is actually zero and thus
impractical from reliability point of view. Relaxing the
reliability constraints (i.e., ¢ = 0 instead of ¢ = 10 m*hour),
the minimal cost solution is 400,155 units corresponding to a
spanning tree in the vicinity of point C (g, = g,, = 0).

CONCLUSIONS

Each stage of the LPG method was analyzed and refor-
mulated. The first stage was introduced in matrix form and
shown to be independent of the choice of the paths and
loops, contrary to the claim by Goulter et al. [1986]. In the
second stage of the LPG method it is shown that the original
gradient of the objective function (GOF) did not account for
the change of the nonbasic variables. Hence that expression
should be regarded as an approximate gradient which,
however, has been found to give good results. Due to the
iterative process of the LPG the GOF is evaluated each time
independently of the previous ones, and so is self-correcting.
The flow bound constraints which result from the prefixed
flow direction in each arc are taken into account in the
second stage by converting the original unconstrained gra-
dient search into a constrained one. This is done by project-
ing the GOF onto the constraint surface, which requires
some additional numeric steps.

APPENDIX A: THE RELATIONSHIP BETWEEN VARIOUS
FORMULATIONS OF THE HEAD CONSTRAINTS

The original version of the LPG method describes the
head constraints by sets of paths and basic loops. The
alternative version describes the head constraint by the
incidence matrix, R (equation (37)). We shall prove that both
versions are identical and discuss first the relationships
between the path matrix and the incidence matrix.

Give a water supply network with of one source node and
(nn — 1) demand nodes. The nodes are connected by (ne)
directed arcs such that no self-loop or parallel arcs exists.
Consider a spanning tree T rooted at the source node, which
defines a unique path between the source and each of the
demands nodes. This set of (nn — 1) paths is represented by
the path matrix P (size (nn — 1) X ne), defined by (13).
Reallocating the arcs of 7 (called branches) to occupy the
first (nn — 1) columns of P, we have

P =[P,lo] (A1)

where P, (size (nn — 1) X (nn — 1)) is a submatrix of P.
Following the same columns arrangement, the reduced inci-
dence matrix R is given by

R=[R/R] R=[R/R] (A2)

where R, is a submatrix of R (size (nn — 1) X (nn — 1))
consisting of columns which belong to the branches, while
R, (size (nn — 1) X (ne — nn + 1)) consists of columns which
belong to the rest of the arcs (called chords).

Consider a demand node i and its path to the root p; given
by the ith row of P. Then

RPI=¢ —¢ (A3)
where e* and e’ are the unit vectors (size ne):
e=[1,0,0,,0" ¢€=[0,,010,0]" (A4

The left-hand side of (A3) is a summation of columns of R,
corresponding to the arcs which appear in the path. Since

1477

each column of R consists of only two nonzero elements,
(+1) and (—1), the above summation eliminates all terms
except for the first and last ones (telescoping property of the
sum). A similar proposition was represented by Kennington
and Helgason [1980, p. 50]. Equation (A3) is modified to
account for all demand nodes as follows:

R, 1
B-(2) v

Disregarding the first row of (AS5) and substituting (A1) and
(A2) into (AS), we have

, 1] (AS5)

(R,R)(P/0) = — I (A6)

RP/ = -1 (A7)

Since R, is a singular matrix [Kennington and Helgason,
1980, p. 58] R;' exists and so the relationship between the
path and the incidence matrices is given by

P=-®R " (A8)

Next, it is shown how the original head constraints (equa-
tions (15) and (16)) are converted into the new from (equa-
tion (44)) following a series of elementary matrix operations.

1. Conversion of the head path constraints: the original
version of the path constraints (equation (16)) is equivalent
to

PAh < hx - hmin hs = [hm h.ﬁ T, hs] (A9)
Introducing the slack variables h™, (A9) becomes
PAh+h* =h,— hy, (A10)

dividing the hydraulic headlosses into Ah, (for branches) and
Ah_. (for chords) and using only the paths on the spanning
tree,

P,Ah, +h* =h; — hy;, (Al1)
Substituting (A8),
~ (R, "YTAh, +h* =h; — hyy (A12)
or
R’h* — Ah, = R7(h; ~ hy,r) (A13)

2. Conversion of the head loop constraints: the original
version of the loop constraints (equation (15)) is

LAh=o0 (Al14)

Taking the loop matrix for the set of basic loops as defined
by the spanning tree T it is shown [Deo, 1974, p. 214] that

L = (L, (A15)

where L, is a submatrix of L (size (ne — nn + 1) X (nn ~ 1))
corresponding to the arcs of T and I is a unit matrix (size (ne
— nn + 1) X (ne — nn + 1)) corresponding to the set of
chords. The original loop constraints are therefore

(L/I)(Ah/Ah,) =0 (Al6)

L,Ah, + Ah. =0 (A17)

A well-known result from graph theory [Deo, 1974, p. 217} is
that RL” = o; thus
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R/R)LIM =RLI+R. =0 (A18)
or
L=-®R, 'R)T (A19)
Substituting (A19) into (A17) results in
— (R, 'R,)TAh, + Ah, =0 (A20)
~RH®R,;")TAh, — hpin} + Ah, = R’y (A21)
The term in brackets equals to h* — h; (A12) and so
-RIh* —hy) + Ah, = Ry, (A22)
R’h* — Ah, = R1(h; — hyip) (A23)

3. Finally, combining the resulting expressions of the
path and loop constraints (equations (A13) and (A23), we

have
RtTh - Aht R[T(h\ - hmin)
— == (A24)
R/h* — Ah, R (h; — hyipn)
or
R’h* — Ah = R7(h; — hy,;,) = R7Ah, (A25)

which is the same as the proposed new version of the head
constraints (equation (44)). The same proof holds for a
multisource network. To see this an artificial node is added
to the network and is connected by artificial arcs to all
sources. The desired spanning tree includes the artificial arcs
and is rooted at the artificial node.

APPENDIX B: EVALUATION OF THE
GOF’s FIrRsT TERM

The first term of the GOF, which appears in (51), d%(q,,
x5)/dq,, is the gradient of the objective function, where the
optimal nonbasic variables are kept constant. That is, the
optimal change in the objective function with a fixed basis.
Following are the mathematical evaluation and the hydraulic
interpretation of this term.

Denote the basis of x* by the subscript b; then

0F(qp, x5 ofesxia, xDY  ,oxkqp x5
= =Cy (Bl)
aqy aq, aq,

Expressing ¢, by means of the optimal dual variables r, (B1)
becomes

F(qy, xF oooxR(qp, xE
(q ")=717Ab Bap, x7) B2)

dq, dq,

where A, is the basis of the constraint matrix in (48). The
right-hand side vector of P4, b, is given by

b= A,(q)x} + A, (q)x} = blq, x5, x}) (B3)
Since b is a constant value it follows that
b . *)_abd +abd*+abd*— (B4)
q;, X, Xp) = aq[ q, axj‘; Xy (’)Xt X,=0
Keeping x* at constant value then
db ab dxi ax}
S T = AT (BS)
aq, ax} dq, aq,
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Substituting (B5) into (B2), the desired derivative is given by

8?(qla X?; _ —’JTT ab(qh X;IL XZ)

= (B6)
dq, aqq

Notice that db/dq, = o for the length constraints (equation
(17)), so that (B6) includes only the head constraints. An
hydraulic interpretation of the above result may be described
as follows.

1. Given an optimal solution of the pipeline diameters for
some feasible flow distribution, q,.

2. The circular flows are changed, while keeping the
pipeline diameters unchanged. The head constraints b are
violated by the amount db/dq,.

3. The violated head constraints are compensated by an
optimal change in the pipeline diameters (i.e., by changing
the lengths of the segments x) while keeping the flow
distribution unchanged. Such a compensation is given by
dcost/db = a7, which is the optimal change in the objective
function following an incremental change in b. The minus
sign in (B6) comes to oppose the previous violation in step
).

The above expression of d%/dq, corresponds to the gen-
eral LPG model (P4). With regard to the particular case of
the original formulation of the head constraints (equations
15) and (16)), the GOF expression can be further analyzed as
follows.

The original head constraints (equations (15) and (16)) are
combined such that

(L/P)ILJ(g)x<b (B7)

where b is taken with regards to the head constraints only.
Since the dual variables of the nonbinding constraints are
equal to zero, (B6) becomes

oF r L\ . o(J(gq)x) T L\ 5Ah
—_— = =7 | —= -7 bl B
aq P aq, P/ aq;

B L\ 0Ah dq (BS)
~ " 7\P) Taq dq
where Ah is the vector of the head losses in each arc and
dAh/dq, is taken for constant value of x. ‘

The functional relationship between the arc flows q and
the citcular flow q, is given by

a=qo+Lq (BY)
where q, is some feasible flow distribution.
Differentiating (B9) with respect to q,; we have
dg/dq; = LT (B10)

Substituting (B10) into (B8) the final term is obtained:

oF L\ 4Ah L
— == —LT'= -7T[ =] sLT B11
aq, P/ oq 4 P ( )

where S is the ‘‘resistance matrix’’ defined by (23). Notice
that the final result is equal to the GOF as proposed by
Alperovits and Shamir [1977], given by (25).

Following the same procedure for the alternative model,

P3, the head constraints (equation (44)) are given by
R™h* — Ah(q)=b (B12)

and the resulting expression for 0%/dq, is
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0F/aq, = w!SLT (B13)

APPENDIX C: THE PROJECTED GOF ALGORITHM

Following are a (1) brief description of the GOF projection
algorithm and (2) a solved example of the simple network,
shown in Figure 1. Theoretical background and a detailed
description of the gradient projection method is given by
Reklaitis et al. [1983, pp. 402—419].

According to the LPG second stage, the cost function is
minimized in the space of the circular flows only. The
corresponding constraints are the assumed flow directions
and the minimum flow discharge in each arc. The problem
may thus be formulated as follows:

min {cost(q,)|ILIq, = b} (Ch

where b = q,;, — q,. Given a feasible flow distribution q}{"
and a convergence parameter ¢ = 0, the algorithm steps are
as follows:

Step 1. Solve the LPG first stage, P2 or P3, and calculate
the GOF by (53) for P2 or (54) for P3.

Step 2. Identify the active set of constraints for which
or Ligi’=b j=(,,0) (€2
where L;is a column of L and the bar denotes the matrix and
vector corresponding to the active constraints.

Step 3. Calculate the projected GOF by

o = (1 - LIL'L) " 'LT)(- GOF) (C3)

Step 4. If ™)} < &, go to step 7, otherwise, determine the

maximum step size

. { { by — Liq”
Omax = Min y max [0, ————— or

0 o if Lo = 0}
L

k:I,“',ne} (C4)
Step 5. Solve the line search problem for a*:
min {cost(q}” + aw®?)}  0=< o< Ay (Cs)
Step 6. Set q§"* P = q'”+a*w™ and return to step 1.
Step 7. Test optimality conditions according to
(LL) ~ 'LT(GOF) (C6)

If the terms are all nonnegative, terminate. Otherwise, the
constraint corresponding to the most negative term is de-
leted from the active constraint set and step 2 is reinitiated.

Due to the concave nature of the objective function,
cost(q,), it is usually found that step 5 and step 7 are not
necessary. That is, instead of line search in step 5, @, 1S
used to set the new flow distribution, while step 7 is always
satisfied.

An implication of the above algorithm is presented with
regard to the simple network shown in Figure 1. Given a
minimum flow discharge of 10 m*hour and the initial flow
distribution in Figure 1. The flow constraints corresponding
to the second stage (equation (59)) are
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Starting from point A in Figure 2, the first active constraint
is met at point B where g;, = 63.7 m*hour and ¢, = 10.0
m*/hour. Consider point B to be a new starting point. The
algorithm proceeds as follows.

Step 1. P2 is solved at point B and its corresponding GOF
is calculated by (53):

GOF = (0.103, 0.439)T
Step 2. Constraint (8) becomes active, that is,
0xX63.7+1x10=10

and so L7 = [0, 1].
Step 3. The projected GOF is given by

(B e
(3

Step 4. The maximum step size is

r1: max {0, o }
2: max {0, o}
. —640 - 63.7
3: max 0, w
amax = min { 4: max 10, 1—9-:—6-03—_‘1—76;-19} > = 42427
5: max {0, o }
6: max {0, o }
7: max {0, w }
8: max {0, o } )

Step 5. The maximum step size is adopted:
a¥ = apayx = 424.27

Step 6. The new flow distribution is

_(B3TY | pamof 0103} _ (20
a=\ 10 : 0 “lio

which corresponds to point C in Figure 2. The next iteration
proceeds as follows.
Step 1. P2 is solved for point C:

GOF =[0.183, 0.267]"

Step 2. Constraints (4) and (8) are active and so

o (1-1 o (11
LT:(O 1> (L'L) l:<12>

Step 3. The projected gradient is

o6 (00961

cost = 417,500 units
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Step 4. ol < &
Step 7. Optimality critera are tetsted:

F1V/1 —1)/0.183) (0.183

12)\0 1/\0.267) = \0.450) = 07 OK
Therefore point C satisfies the Kuhn-Tucker conditions with
optimal cost of 417,500 units.

NOTATION

a = [a,] vector of arc length.
A general constraint matrix.
A, basis of the constraint matrix.
b right-hand side of a general constraint set.
¢ = [c, ] cost per unit length in segment x, .
chw Hazen-Williams coefficient.
cost cost of pipeline network.
d € D, pipe diameter, belongs to the commercial
diameter set of arc e.
an arc which belongs to the arc set of the
network.
e unit vector.
E elementary matrix.
gradient of the objective function.
hydraulic head in each node.
h* surplus/slack head variables.
h, vector consists of identical elements h,.

ec E

I unit {identity) matrix.
I matrix of the internal arrangement of the pipe
segments within the arc set.
J =1[j.4 hydraulic gradient in the pipe segment x, .
1 € L loop, belongs to the set of basic loops.
L loop matrix.
L. submatrix of L.

nd number of commercial pipe diameters
allocated for each arc.

ne number of arcs in the network.

nl  number of basic loops.

nn number of nodes in the network.

np number of critical paths.

ns number of pipe segments.

p € P critical path belongs to the critical path set.
P path matrix.
q = [q,] flow discharge in each arc.
q, a given feasible flow distribution.

q; = [g,,] vector of circular flows.
q,,;, Mminimum allowed flow in each arc.
R incidence matrix.
R reduced incidence matrix.
S “‘resistance matrix’’ of the pipeline network.
T spanning tree.
x =[x, 4 length of pipe segment with diameter d
in arc e.
Ah, , head loss along the pipe segment x,_ .
Ah, maximum allowed headloss in each path.

o projected GOF.
7 dual variable corresponding to the path and
loop constraints.
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Subscripts

basic.
chord.
diameter.
arc.

loop.
nonbasic.
old.

path.
source.
tree.

~ LT O N /N

Superscripts

T transpose.
* optimal.
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