SCHEMATIC MODELS FOR DISTRIBUTION SYSTEMS
DESIGN. I: COMBINATION CONCEPT

By Dan Hamberg! and Uri Shamir,2 Member, ASCE

Asstract: This is the first of two papers dealing with schematic models
for water distribution systems. Schematic models for use in preliminary
design of water distribution systems are developed by two approaches:
HA step—wise combination of elements; and (b) a nonlinear continuum
representation of the system as a whole. The objective is to create
models that are equivalent to a detailed network model i in terms of the
computed. distributions of héads and flows over the area, yet are much
more efficient, and therefore enhance the engineering-economic analy-
sis. The step-wise combination method is developed beyond existing
procedures to consider more complex arrangements of pipes as well as
water withdrawals, which vary along the pipes and with time.

INTRODUCTION

This paper [together with its second part, which follows (Hamberg and
Shamir 1988)] presents an approach and methodologles that are suitable
during the preliminary phases of an engineering investigation for the
analysis and design of water distribution systems.

Three phases may be distinguished in the design work: (1) Preliminary
planning; (2) design; and (3) construction drawings and specifications. The
objective of the first of these phases is to determine the conceptual
structure of the system, i.e., how the sources are to be connected into the
distribution network, the basic layout of the feeder mains, and the overall
flow patterns in the network. In the second phase, the design leads to
sizing the individual pipes, pumps, and reservoirs, and to a set of basic
operating rules for the system under various loading conditions. These are
then turned into detailed engineering drawings and construction specifica-
tions in the third phase of the work.

In this division of work, the preliminary planning and design are,
respectively, analogous to the architectural planning and structural design
of a building. Architectural planning examines primarily the functional
aspects of the building’s use, while structural design aims at implementing
the plan in a safe and economic structure. In reality, these two phases of
the work, in the design of buildings as well as of distribution systems,
should be done in full coordination, with feedback and iterations. Never-
theless, it is instructive to identify the two phases, and, particularly in the
context of this paper, to examine the tools of analysis that are most
suitable for use in each.
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Computer programs for steady-state network analysis, also called net-
work solvers, and for simulation of its operation over time are used quite
extensively (AWWA 1984; Cesario et al. 1984). Methods and programs for
optimal design are also beginning to become available (Shamir 1979).
These programs operate on a model of the distribution network in which its
components—pipes, pumps, reservoirs, valves, and special control de-
vices—are identified and modeled. The model can be, and usually is,
schematized, but this schematization mostly amounts to no-more than
dropping small-diameter pipes and replacing pipes or pumps that are in
parallel or in series by an equivalent pipe or pump. An attempt to develop
a few further procedures for aggregating several elements into an equiva-
lent one has been made by Gupta (1978).

These models and computer programs have been developed specifically
for carrying out a detailed analysis of a planned or existing network. The
writers have already advocated in the past the use of schematized models
for those stages of the analysis which the detailed flow and pressure
information at every point in the system is not important (Shamir 1973;
Shamir and Howard 1977). Such models have been called ‘‘surrogate
networks” and ‘‘grey boxes.’” The latter term takes off from the well-
known ‘‘black.box’’ model, which is expressed as a system response
function that converts inputs into outputs without attempting to model the
internal workings of the system. A ‘‘grey box’’ is a network model, but a
model that is greatly aggregated and simplified when compared to a full
(““white box’’?) model of all components in the real system.

When the approach to modeling a network is examined for the purpose
of aiding planners and engineers in their work, the writers’ position is that
for different stages of this work it may be beneficial to use different models.
The models may differ in degree of detail and in their mathematical
formulation and method of solution. Just as an illustration—and ‘this is
based on two actual case studies for cities with a population of 600,000 and
more—a 20-node model may be used in the preliminary design and a
200-node model in the detailed design. The latter has, say, all pipes 4 or 6
in. and larger. The former has nodes, pipes, pumps, and reservoirs, but
they are highly condensed functional representations of whole segments of
the real system.

Now what is the advantage of using the smaller model in the preliminary
design phase: With the proliferation of cheap accessible computing, why
not use a fully detailed model for the preliminary design?

The principal reason for using small, simplified models is that the
planners’ and engineers’ time and effort should be spent examining a broad
range of alternatives, not on the tasks of constructing a detailed model,
collecting data, calibrating, checking for errors, and analyzing voluminous
computer outputs to determine what the results-of various runs mean for
the planning process. The writers believe this is best done with simple
models, which capture the main features of the proposed system’s perfor-
mance without the extensive details.

Thus, the motivation for the writers’ work is not computational effi-
ciency but better planning. The writers propose to provide tools for the
planning phase, a phase that has received too little attention from the
developers of methodologies. The procedure proposed by Deb (1976) is an
exception; he suggested a method of sizing pipes in a network, assuming
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that the pressure surface over the area covered by the network has a
parabolic shape (whose parameters are adjusted iteratively).

With this as background, the remainder of the two papers describes
specific techniques for formulating and using schematic models of water
distribution.systems.

EquivaLenT MoDELS

Schematization of a complex model means finding a simpler one that
exhibits the same performance. For water distribution systems the perfor-
mance examined is in the areal and temporal patterns of heads and flows
for various demands imposed on the system (herein called ‘‘loadings’’) and
boundary conditions (e.g., fixed reservoir levels, operating condition of
sources, and pumps). Thus, two models are said to be equivalent if, for all
demand patterns and boundary conditions, the produce the same flow
pattern and head distribution.

One way to compare two network models is to identify the most
significant points, meaning the sites where one needs to know the heads,
flows, or both in order to assess the performance of the system. Those
significant points have to appear in both network models, and the models
are said to be equivalent if the heads and flows at those points are the same
in both models. Another way to compare two network models is to
consider the overall areal patterns of performance.

In a specific network model the flows are associated with the links (pipes
and pumps), the demands and heads with the nodes. Therefore, to
compare one network model to another, the demands, heads and flows
have to be released from this direct association with network elements and
have to be considered continuous variables over the area covered by the
network. Demands are, in reality, spread over the area, and only for
modeling are they lumped and assigned to nodes. For heads, it is quite
common to produce a map of constant-head lines, which describes a
continuous surface. This is convenient, although not physically precise,
since a head exists only along the links of the network.

For flows the continuous, areally distributed variable, which is flow per
unit width, has to be defined; it is to be understood as follows. Straight line
cuts in any arbitrary direction are taken through the map of the system.
Each cut is sufficiently long to pass through several pipes, but at the same
time short enough so. that the average flow per unit width across the cut
describes the areal flow pattern in the network. The flow per unit width,
which will be referred to simply as ‘‘flow,” is computed by dividing the
normal component of the flow through the cut by its length. [The concept
and definition of a cut is somewhat analogous to that of the ‘‘representative
elementary volume’’ (REV) in flow through porous media (Bear 1972)].

With the continuous representation of heads, demands, and flows, we
can now return to the issue of equivalence. Models of networks are said to
be equivalent if, for all demand patterns and boundary conditions, they
produce the same patterns of heads and flows. Obviously, ‘‘same’’ must be
understood in the engineering context as ‘‘within acceptable accuracy.”

Equivalent models have been developed by two approaches:
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1. Step-wise combination of elements into equivalent ones, schematiz-
ing progressively.
2. Representing the entire network as a continuum.

The two approaches will next be explained and demonstrated: the first in
this paper, and the second in the subsequent one.

Step-Wise COMBINATION OF SYSTEM ELEMENTS

The hydraulic gradient along a uniform segment of pipe is

AH oV
== B(E) teteureriansernnesesaseinnsasiesrnernnnssaisunrennseransronarinnes (1)

where AH = head loss between the two ends; L = length; Q = discharge;
D = diameter; B is a numerical coefficient, which includes a friction
coeflicient and unit conversion; and o and vy are exponents. 8, ., and vy take
on the values shown in Table 1 for two commonly used g)ipe flow formulas,
with AH and L in the same unit (e.g., meters), Q in m>/hr, and D in mm.
In Table 1, #» and C are the friction and smoothness coefficients, respec-
tively.
Another way to write Eq. 1 is

AH_golor
L D™
which automatically takes care of the dependence of the sign of AH on the

direction of flow.
The conductance of a pipe, d, is now defined:

B = D% i e i i ra e eaa, eeene 3)
and the pipe’s resistance, R, is also defined:
BL _BL
R = B o it iiieerirerieeeieeeneereeraatirareiareetateeeateateeeraanaans 4
o @

These definitions will be used later in the derivation of the equations for
combining elements.

Schematization of Discharge Distribution

The value of a concentrated water withdrawal at the end of a pipe with
uniform diameter, which is equivalent to other, more complex, patterns of
withdrawals taken along the pipe’s length, is sought. Equivalence means
the same head loss between the pipe’s two ends. Results for several

TABLE 1. Factors In Pipe Flow (Eq. 1)

Formula B o Y

(1) 2 (3) (4)

Manning 7.9 X 10° n? 2.67 2.0
Hazen-Williams 1.131 x 10° Cc~1-832 2.63 1.852
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TABLE 2. Equivalent Uniform Discharge in Pipe for Several Demand Patterns,
Using Manning’s Equation

Equivalent
uniform
Case discharge

) @

Qe

a q 0.=qV25=g"®

a { Q.=qVIL

9.9 % 9 0.=qgVirn+1)(2n + 1)/6]

. Q. = 0.5777 pL
B ssazansnn
ae Q.+ P=V1+ 25(g/P)y* + 3(g/P) P
o s 9l @ =25¢4frP=0
e S v T w - E Q.= 15gforP>gq

0, +P=VP + (1) g+ qP
Q. =4q/V2=0.707gfor P =0

q | i
pe b el |0, =058gforP=gq

Q. =0.5g for P> g

Q. + P = VP + (13) (pL)* + (pL)P
Q.= LIV3=0577IpLfor P =0

P —
. Q. = 0.53pL for P = pL
o TTTLITIT 2. Q. = pL/2 = 0.5pL for P > pL

P |Q = P =g V(PP) + [(n + D2I{@n + DA + QPlg)}
4y 9 Q2 =[(n + 1)n + 1)/6] ¢* for P = 0
e ¥ Y e g =[(n+ D2lgfor P>>gq

important practical cases, derived from Manning’s flow formula, appear in
Table 2. Somewhat different equations result from use of the Hazen-
Williams formula. Col. 1 in Table 2 shows schematically for each case the
distribution of withdrawals and flows along a pipe of length L and the
location of the equivalent withdrawal, Q,, at the end of the pipe. The
equation for @, is given in Col. 2.
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These results demonstrate that the common procedure of dividing
withdrawals taken along a pipe equally between its two ends is only valid
for special cases.

Other withdrawal patterns can be treated by superposition of the simpler
cases included in Table 2, or by carrying out the analysis of the particular
case. The superposition approach will be discussed later.

Schematization of Structure
For m pipes in series with conductances d;, an equivalent pipe has a
conductance, d, , given by

andlength L,= Y L, c..eennennn. e earer i et riaeane ©)

i=1

The equivalent pipe for m pipes in parallel has a conductance given by

e =Y oottt e @)
i=1
and length L, =L, =constant ..........c.cccveeeiitriuinsernerancineenens (8)

This assumes that all pipes have the same roughness. If not, pipes can be
“normalized’’ to an equivalent diameter of a chosen uniform roughness.
The same can be done for parallel pipes of unequal length, to convert them
to equivalent diameters for length L, .

Egs. 5-8 assume a uniform discharge throughout the pipe length, just as
the discharge schematization equations in Table 2 assumed a uniform
diameter along the pipe.

Superposition

Take as an example the case of two pipes in series with different
resistances (as defined by Eq. 4) R, # R,, and different discharges, Q; #
0, , resulting from the loadings (consumptions), q; and ¢, , as shown in
Fig. 1.

q1 Y
PIPE 1, Ry )| PIPE 2, R; 002
(a) Qy =qy Q,24qy *q,
Qe Q2 -Qe
i EQUIVALENT PIPE, Re 3 Q2
(b) Qe

FIG. 1. Equivalent Pipe: (a) For Two Pipes in Series with Different Flows; (b)
Equivalent Pipe
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0,10 1R, =0y 1011 Ry + Q5 1Q21 Ry e, (9a)

where @, is an equivalent discharge, which can be chosen arbitrarily. If O,
= (, is selected, then:

Q,10,| _ |: (‘h) (‘h)z]
= =R R,|14+2(—= ==
k. Rl_i-Q1|Q1|R2 R q: * 4

TSI (G 4 G20 coneeni i e e (9b)

where the last term determines the appropriate sign of the second term
depending on the directions of flows (defining the direction of Q, and ¢, as
the positive direction). A negative R, means the head loss is in the opposite
direction of Q, (i.e., Q;) and one should change the selection of Q, .

Next, an integral along a pipe in which the flow, Q, and resistance, R,
vary from point to point is defined:

A,p:fgz AR ittt reeee (10)

where Q@ = flow at each point -along the pipe, and dR = incremental
resistance at that point.
i AQz is the area under the curve of Q2 versus R along the system [the two
pipes in Fig. 1(a)]. A2 is the A that would result should only g; exist; g;
might be regarded as analogous to aforce loaded upon a beam at one point,
while Q and H along the whole system result from it as the moments and
shear forces result from the loading and the force. A, , is the A resulting
from a loading of Vq;q, (zero along a segment where only 91 Or g,
produces discharge).

For the case of Fig. 1(a), Az = (R, ¢D) + (R, q)), Az = R X 0) # (R,
¢, and A R, X 0) + (R2 41 9,). The equivalent resistance for two

914,
loadings, as izn Fig. 1(a) and Eq. 9, can be expressed as:
A
R, = Q2 = E (Aqlz + Age £ 24,,,,) [sign(q; +42)] «ovevnenniints (11)

in which g, and g, may be any two distributions of consumptions (i.e., two
loadings) along the system (e.g., equally distributed consumption) and not
only concentrated consumption, as in Fig. 1(a).

A is negative if g, and g, are in opposite senses. Sign (g; + g,) in Eq. 11
means that the A at each segment of the system should have the sign of the
total discharge at that segment (not the sign of the specific loading for
which A is calculated). Should, for example, g, < 0 and Ig,| > Ig,! then, for
Fig. 1(a):

Ag2sign(g; + ) =R;"0—Ryq3=—R,q3 ...coooovvirrnn.n. (12a)
Agasign(qy +g) =Ryq} —Ryqi.cooiiiiiii (12b)
Agyg, SigNn (g +4)=R;-0—R,q,q, = +Ryq, 1q5] wevvvnnninns (120)

R increases linearly with the pipe length if the diameter, D, and therefore
the conductance, d, remain constant.

In the special (but common) case of a pipe with constant diameter
(constant R) with a complicated distribution of consumptions, the super-
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position is simpler. One may quite easily obtain the equivalent discharge of
the sixth case of Table 2 by superposition of the second case and a
consumption P at the end of the pipe. Note that even though Q, and P are
at the same point, Q, at cases 2 and 6 is not the same. While deriving, in
a similar way, the seventh case, note that the third term on the right-hand
side is twice the result of an integral of Ppx over the length x, divided by
L (see Egs. 10 and 11).

Stepwise Schematization of More Complex Systems

A real system includes more complex combinations than pipes in parallel
and in series. Transformations have been developed (Hamberg 1984) for
several other ‘‘primitives,’’ but only a few will be presented here in detail.

An important transformation is from a “‘triangle,”’ i.e., a loop made of
three pipes [Fig. 2(a)] to a “‘star’’ (also called a 7), i.e., three pipes that
meet at a central node [Fig. 2(b)]. This is a transformation commonly used
in the analysis of linear electric systems. Because hydraulic systems are
not linear, the transformation is not universal and depends on the ratios of
flows in the three pipes. This dependence on the flows is not very
pronounced, and in many cases it suffices to know only the ranges of the
flows in order to obtain an adequate transformation.

A triangular loop [Fig. 2(a)] with any pipe properties, which is part of a
larger system, is first converted into a star with three equal pipes plus an
additional segment attached to one of them [Fig. 2(b)]. Later Fig. 2(b) can
be transformed into simpler equivalent systems.

The systems shown in Figs. 2(a) and (b) are said to be equivalent if the
flows and heads at points A, B, and C of Fig. 2(a) are the same as at points
A, B, and C of Fig. 2(b).

For the special case of @, = 0, one gets a conventional combination of
pipes in series and in parallel, so that

1

1 1 2
—=2l et =) e
R ( /R, * VR, + R2> @)

(a) (b)

FIG. 2. Transformation of: (a) Triangle to-(b) Star
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(e) () (e)

Formla: (13)-(16) | (5),(6),(11) (11)

FIG. 3. Steps in Transformation of Triangle into Equivalent Pipe Segment (Dashed
Line Represents Connection to Rest of System): (a) Any Triangle; (b) Equilateral
Star Plus “Remainder”; (¢) Main Line Plus Branch; (d) Two Pipes in Series; ()
Single Pipe

If the flow ratios can take any value, then the transformation of a triangle
with R, , R,, and R; into an equilateral star with three equal resistances,
R would correspond to something in between the results for three extreme
cases, each with one of the three discharges having a value of zero. Eq. 14
assumes the transformation is calculated as the average of the results for
04 =0, Op = 0, and Q. = 0, each calculated analogous to Eq. 13.

1

1
) \/IT,-}-\/(j:ile)_Ri ..................................

For a specific value (or range of values) of flow ratio, one may need to add
a “‘remainder’’ segment to the equilateral star [see AE in Fig. 2(b)]. Such
a remainder is not needed in the three special cases of which Eq. 14 is the
average. '

Should Q, = Qc in Fig. 2(a), and R; > R;, then

R,(2R 2
R=0.2___3w.5
(R; +R, +G)

R.. — Rz(R3 _Rl)z
4" (R; + R, + G)?

where G is defined by
G>=4RR; + R{R, —RyR; .ooiiiiiiiiiiiiiiiieieiiecicei e (16)

Fig. 3 shows a progression of steps in the transformation of a triangle
into an equivalent single-pipe segment. The figures noted near the pipe
segments of Fig. 3 represent examples for values of R, where one assumes
04/Qc-=0to 1 (i.e., one knows only the direction of flows and Q. > Q,).
The values of R in Fig. 3(a) correspond to D; = 300 mm, D, = 250 mm, D,
= 350 mm (12, 10, and 14 in., respectively), considering all L; = 500 m and
all n; = 0.010.

™M w

1_2
R 3,

i
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The conversion between Figs. 3(a) and (b) should be performed by Eq.
14, in general, when nothing is known about the discharges. If a range of
flows can be estimated in advance, as in the example, then a more accurate
equation can be used, like Eq. 13, 15, or 16, which were used for the two
extreme cases of the example.

The system in Fig. 3(c) is similar to the one in Fig. 3(b), except that
segment C; is viewed as a branch at the junction of two unequal pipes
(because A,E, and E,D, have been converted, using Eqgs. 5 and 6, into a
single segment A;D5). The system in Fig. 3(c) is converted into the one in
Fig. 3(d), which consists of two pipes in series plus a withdrawal at D, .
The head at C; is no longer one of the system variables, and now only the
heads at A, and B, are the same as at A; and B, . The final step is to convert
the system in Fig. 3(d) into a single pipe segment as in Fig. 3(¢), using Eq.
11.

The result of these steps is a series of equations for the properties of pipe
AsBs and the flow in it, expressed in terms of pipe properties and flows in
the triangle [Fig. 3(a)], for which the heads at A5 and Bs are the same as at
A, and B, .

One could also transform Fig. 3(c) into Fig. 3(d), which would consist of
A,C,B, (instead of A,D,;B,). This transformation is not shown here. C,
would have the same head as C, , while A,C, # A;D; and C,B, # D;B, . If
all three points (A,B,C) are significant, there is no use in further trans-
forming into Fig. 3(e¢). Segment C; may represent a combination of
segment C,D, and the rest of the system connected to it. The transforma-
tion into C; is then performed using Eqs. 5 and 6 (or rather Eq. 11 if the
discharge varies along the branch). One may proceed with the schemati-
zation the same way, combining into Fig. 3(e) all the system connected to
A and B.

By the example, one may see that even for a large range of possible
ratios of discharge (which relates to an even larger range of discharges),
the equivalent R varies only between 38 and 54 (e.g., 46). If the anticipated
Q4 could be narrowed to not larger than half of Q. (and in the same
direction), the equivalent R would be in the range of 38 to 49 (e.g., 44). This
means that narrowing the range of ratios of discharge by a factor of 2
changes the approximate equivalent R by only 5%, i.e., the transformation
is not very sensitive to flow assumptions.

Schematization of Time-Varying Discharge

When the discharge in a pipe varies over time, an equivalent constant
discharge that will produce the same loss of energy over the entire time
span of interest is sought. Consider, e.g., discharge that varies linearly
from Q, at time ¢, to Q, at ¢,, in a uniform pipe segment. The discharge
may be increasing or decreasing, and the time span (¢, — #;) can be of any
length. Using the Hazen-Williams formula for the energy gradient in the
pipe, the equivalent discharge is

3.852 Qg.852)0.35

=0.623( &
Qe ( Q1 - Qz

This expression is derived by integrating Q, + [(Q, — Q/(t, — 1)]1*°*
- t-over t. More complex cases are analyzed in a similar way by Hamberg
(1984).
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CONCLUSIONS

Feasibility of Step-Wise Combination Approach

It is clear that the step-wise combination approach is feasible only for
reducing somewhat the size and detail of a network model but cannot be
applied in practice to all parts of an entire system.

This is due to the considerable amount of work that is needed to reach
a substantially reduced model size by this approach and because some of
the equivalence transformation equations depend on the relative magni-
tude of flows in network elements. Therefore, this approach is more
suitable for existing networks than for planned ones. A model of an
existing network is used to plan additions and modifications, such as the
introduction of a new source or addition of major storage. A model of an
existing system is also needed when studying its operation or implementing
on-line control. The latter cases are outside the scope of this paper, but it
is useful to keep in mind this additional possible use of schematized
network models.

To summarize, the step-wise combination approach should be used to
reduce the size and complexity of a network model, typically by removing,
say, 10-50% of the elements.

In contrast with the step-wise combination approach, which was dis-
cussed herein and which looks in detail at individual elements and
assembles them into a combined model, the following paper proposes to
look at the system as a whole, as a continuum. This can be viewed,
pictorially, as standing back from the system map far enough to see only
the overall flow pattern and hydraulic head map, without taking interest in
the individual system elements.
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AprPENDIX Il. NOTATION

The following symbols are used in this paper:

Tmmabax

=

~ O o 3§

a, B,y

I | {1 1 A (B 1 A

o

Subscripts

e
i,Jj

[II]

area under curve of @ versus R;
smoothness coefficient in Hazen-Williams formula;
diameter;

conductivity;

energy cost;

cost coefficient;

head;

length;

number of consumptions or pipes;

friction coefficient in Manning formula;
discharge (outflow at end of pipe);
consumption linearly distributed along pipe;
discharge;

consumption;

resistance of pipe;

time; and

coefficient and exponent in flow formula.

equivalent; and
index of consumption or pipe.
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