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ABSTRACT

Bear, J., Shamir, U., Gamliel, A. and Shapiro, A.M., 1985. Motion of the seawater
interface in a coastal aquifer by the method of successive steady states. J. Hydrol., 76:
119132,

The paper describes a method for determining the motion of the seawater interface in
aphreatic coastal aquifer during a specified time period in response to changing hydrologic
conditions, provided a seaward flow of fresh water is maintained everywhere above the
interface. The method of successive steady states is used, leading to an approximate
analytical expression which gives the motion of the interface toe during the time period
as a function of the initial conditions and the change in freshwater flow to the sea above
the toe during the time period. Sensitivity of the results to values of parameters and to
hydrologic conditions is investigated, and the results are compared with those obtained
by other methods of analysis.

The motivation for developing the approximate analytical expression for movement of
the interface was to facilitate the introduction of seawater intrusion as a criterion in the
multiobjective management model for coastal aquifers.

1. INTRODUCTION

In order to incorporate seawater intrusion as a criterion, and/or as a
constraint, in the optimal management of a coastal aquifer, an explicit
expression is required for the movement (advance or retreat) of the interface
during a specified time interval, in response to variations in water balance
components. These may include planned activities, e.g., pumping and/or
artificial recharge, and stochastic inputs, such as natural replenishment. The
objective of the present paper is to develop such an expression.

Under certain conditions, an equilibrium may exist, with a stationary
interface and a certain seaward freshwater flow above the interface. Then, as
this flow varies (e.g., by increasing pumping landward of the interface toe),
changes will be produced in the shape and position of the interface. This is
a very simplified description of what happens in reality. Actually, in an
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exploited aquifer, and especially during a development period when pumping
increases continuously, the interface is never stationary. It is always in
motion, depending on changes introduced in components of the (fresh)
water balance and hence in the seaward freshwater flow above the interface.

We consider here a simplified model of a sharp interface, separating fresh
water from seawater, although in reality, a transition zone always exists
between the two zones due to hydrodynamic dispersion.

Theoretically, the flow in each of the two zones — the one occupied by
fresh water and the other by seawater — is three dimensional in nature.
Close to the coast, the freshwater zone overlies the salt-water one, with the
moving interface serving as a boundary between the two zones. Further
inland we have a zone of fresh water only.

Often the upper boundary of the freshwater zone is a phreatic surface
with accretion. Under such conditions, the mathematical statement of the
flow problem leading to the determination of the shape and position of the
moving interface is nonlinear. The solution is difficult even when numerical
methods are employed (Shamir and Dagan, 1971; Pinder and Page, 1976;
Sa da Costa and Wilson, 1979; Mercer et al., 1980).

In view of the fact that the geometry of both zones is such that the thick-
ness of each zone is much smaller than the horizontal lengths of interest,
the flow in the two zones may be considered as essentially horizontal. This
enables the application of the hydraulic approach to the flow in both zones
(Bear, 1979). A great simplification is then achieved in the statement (and in
the solution) of the problem. Obviously, the error introduced is larger in
regions where the basic assumption of ‘“‘essentially horizontal flow” fails.
However, in spite of the simplification introduced by the hydraulic approach
(which actually eliminates the phreatic surface and the interface as boundaries
of the flow domains), we are still faced with a rather difficult problem due
to the movement of the interface. Bear (1972, 1979) reviews the problems
briefly described above.

Although numerical solutions of interface movement based on the
hydraulic approach are available, they cannot yield an explicit relationship
between movement of the interface and known flow parameters, e.g., fresh-
water seaward flow above the toe of the interface. Hence a further simpli-
fication is introduced.

It is assumed that in the vicinity of the coast, the flows in both the fresh-
water zone and the salt-water one are essentially along a line perpendicular
to the coast, and that above the interface itself the flow is always seaward.

2. MOTION OF THE INTERFACE

Fig. 1 is a schematic section through a phreatic coastal aquifer, bounded
from below by a horizontal impervious layer, and recharged from above by
natural replenishment, N. Seaward flows, @; and @, of fresh water and
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Fig. 1. Schematic cross-section of a phreatic coastal aquifer.

seawater, respectively, per unit width, are considered positive. The elevation
of the phreatic surface above sea level is denoted by h¢; h is the depth from
the same datum to the interface (where it exists); B is the depth to the
aquifer bottom; and L is the intrusion length — the distance from the coast
line to the toe of the interface.

The following analysis is restricted to cases where the phreatic surface
rises monotonously over the intrusion length. This means that the freshwater
flow is everywhere seaward in this region.

Assuming a steady-state freshwater balance for a control volume (1—2—
3—4 in Fig. 1) extending from the coast to a distance x:

Qs(x) + Nx —Q¢(0) = 0 (1)

where Q;(0) is the flow to the sea at x = 0. We adopt the Dupuit approxi-
mation (of essentially horizontal flow) and the Ghyben—Herzberg relation
associated with it:

¢ = [(vs —7e)velh = h/S (2)
Eq. 1 then becomes:
K(1+6
—(62—) + Nx —Qu(0) = 3)

where K is the hydraulic conductivity.
Integrating eq. 3, and using the boundary condition h(0) = h,

—2Q¢(0)x + Nx? + K(1 +8)672[h%(x) —h3] = (4)

Hence:
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x = N7'Q¢(0) —N~'[Q}(0) — NK(1 +8)8™2{h?(x) — k3 }] V2 (5)

This equation describes the parabolic shape of the interface in steady state
and the dependence of this shape on Q:(0). The other solution of eq. 4,
namely the one with a plus sign in front of the term in square brackets (the
square root) in eq. 5, is impossible physically; it corresponds to the interface
rising and the phreatic surface falling landward.

In the following, we shall assume ho = 0, which is justified in most
practical circumstances. With

A = KN + §)/8?
we get:
x = N7'[Q¢(0) — {QF(0) — ARr*(x)}"?] (6)

From h = B at x = L (= the toe of the interface), we obtain for the intrusion
length the expression:

L = N7'[Q:(0) — {Q#(0) — AB*}?] (7)

which relates the intrusion length — in steady state — to the freshwater
flow to the sea. When N = 0, Q;(L) = @:(0). By integrating eq. 4 with N =0,
we obtain the known result (e.g., Bear, 1979, p. 396):

1+686 B?
262 Q¢(L)

For the limit case @;(L) = 0 and N # 0, then Q;(0) = NL, and we obtain
from eq. 7:

L = [KQ1 + 8)N"11V2(B/s) (8a)

To obtain the motion of the interface, we start with the volume of sea-
water below the interface, given by:
B

V., =n j xdh ‘ 9)
hO

where n is the porosity. The integration is performed with horizontal

elementary volumes of height dh each, extending from x = 0 to x({) as shown

in Fig. 1. Assuming ho = 0 and using the expression for x from eq. 6, we
obtain:

L=K (8)

n 1 Q40 BA?
_n L 0) — AB2}/2 _ =t so—1
Vew N[Qf(O)B 5 B Qi 0) } 24250 ooy | A9

A check of this result is obtained by observing that for N = 0, eq. 9 inte-
grates to the expression given by Vappicha and Nagaraja (1976):
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nK(1+8) ) ,
Voo = Gac0pr BT3B T 2h3) (11)

Following Henry (1959), if we use:

Q:(0) = Kho/Bd

and hence

ho = B8Q:(0)/K (12)

where §§ is a numerical coefficient (equal to 0.741 according to Henry,
1959), we obtain:
nB(1 + 8)
w = ———(B® —3hiB + 2hn} 13
657, ( o 0) (13)
Bear et al. (1980) also develop an expression for V, for the case h, # 0.
The above discussion is related to steady state. Next, consider the motion
of the interface due to changes in freshwater flow.
We express the seawater flow into the aquifer as a function of the fresh-
water flow to the sea:

dVgw dV,, dQ¢(0

Q.(0) =— = - ) (14)
dt dQ¢(0) dt

Substituting eq. 10 into eq. 14 leads to:
n Q:(0) . _, BA'?1dQ(0) dQ;(0)

(0) = ——|B——— V——--n)——— = F 0 15
Q.(0) N[ ar S o T Q0] =~  (15)
where F is defined by eq. 15.

If we allow hy # 0 and follow the whole development, we get:

n Q:(0) . _, (B—ho)AY?1dQ4(0)
0) = —— |[B—ho)— ! :
Qs(0) N[( 0) a2z S Q¢(0) dt
n dQ¢(0)
= —=F 0 15a
v [Q(0)n, + o] ar (15a)

The difference between eq. 15 and eq. 15a in Q¢(0) is less than ~ 5% for the
example where B =102m, ho=£6Q;(0)/K =334m, K =8395myr.”},
A =8413m?’yr. > and N = 0.536 myr." 1.

Consider now the motion of the interface during a time period At, as
shown in Fig. 2. At time t the interface is PA, and at time (¢ + At) it has
moved to its new position, PCB. At the same time, the phreatic surface has
moved from ODE to OFG. We now formulate the continuity equation
for the control volume OPACFD, under the following simplifying as-
sumptions:



124

D E
Phreatic Surface —
at t ——
F G
hO o) t+Af
3 A‘Qf'_(o)_ - — — — _M.S.L
Tor Q, (L)
Seawater : t+At
Illn'erface at t c
. ' A
| L !

Fig. 2. Motion of the interface and the phreatic surface during t.

(1) The volume of the wedge of seawater, ACB, is negligible, compared
to the total volume of fresh water in the control volume, due to the small
distance of interface advance, AB, during At.

(2) The volume EDOFG, due to the change in the phreatic surface, is
negligible compared to the total volume of fresh water in the control volume
[recalling that (FD) = (AC)/8]. '

The continuity equation is:

Qs = Q¢(L) + NL — Q;(0) (16)
Using eq. 15, this becomes:

dQ((0) |
F(Q+(0)) 4 Q:(L) + NL — Q4(0) (17)

At time t, L and Q;(0) are known. Then, as a result of a new value Q¢(L)
starting at time ¢, and for a replenishment N during At, the value of the
freshwater discharge at the coast line at the end of the time period, ¢t + At,
is:

[Q§+At/?(L) + NL' — Q{(0)] At

F[Q(0)]
QF(0) + AQ(0). ' (18)
Qi*AY¥2(L) is the representative value of Q(L) for the time step (e.g., the

average over At). Introducing the new value of Q;(0) into eq. 7 yields
the new location of the toe:

Lt+ At N-—l [Q£+At(0) — {(Q§+At(0))2 __vABZ}l/Z] (19)

Thus, the new location of the toe can be computed for given initial
conditions (at time t) and the new flow of fresh water above the toe.

One should recall that the freshwater flow above the toe is the outcome
of inputs and outputs in the coastal aquifer landward of this point. Thus,

Qf*41(0) = Qi(0) +



125

this new flow incorporates in it the planned pumping and artificial recharge
(which are the decision variables in the management problem), and the
(assumed) natural replenishment.

This result for the new location of the interface can be used quite easily in
computer programs for forecasting and simulating aquifer behaviour. Since
it is nonlinear, it can be used in models for optimal management only if the
model uses a nonlinear optimization technique. To be used in a linear pro-
gramming management model eq. 19 may be linearized, as follows.

With hg = 0 and h(L) = B, eq. 4 becomes:

NL? — 2Q,(0)L + K(1 + §)672B? = 0 (20)

Cohsidering Q¢(0) and L to be functions of time and differentiating with
respect to t, leads to:

o 219D o0 002 = 0 (21)
dt dt dt

from which:

L_ L0 Loy 22

dt NL—Q¢0) dt At

Using this result in eq. 17 yields:

L4 = L1+ AQ{0)/{NL' — Q4(0)}] (23)

which is a linear relation between the new location of the interface and the
known quantities L*, Q4(0) and Q:*4¥2 (L), with AQL(0) given in eq. 18.

To summarize, the following assumptions have been made;

(a) Flow is everywhere along a line perpendicular to the coast.

(b) The Dupuit approximation of essentially horizontal flow is valid.

(c) The Ghyben—Herzberg law is used. The error due to this approxi-
mation is largest when there is a water divide of fresh water above the
interface, and freshwater flows both sea- and landward. Such situations
cannot exist as a steady state. The error is due to the fact that in the region
landward of the water divide, the depth to the interface, h in Fig. 1, in-
creases, while the height of the phreatic surface, h;, decreases — contrary to
the Ghyben—Herzberg condition. Thus, our results hold for Q;(x) < O for
0 <x <L, ie. the flow over the interface toe is always seaward.

(d) hy = 0. The error due to this approximation can be estimated from
comparing (h2 — h3)Y'? with (h?)'/? for realistic values of the two variables.
For h = 100 m and say, hy = 2m and = 10m, the ratio of the first to the
second expression is 0.9998 and 0.9949, respectively.

(e) Neglecting the volume of fresh water in the control volume (Fig. 2)
due to changes in the phreatic surface. To assess this approximation consider
a change of 10 cm in the phreatic surface at the toe of an interface which
intrudes 1500m inland. For a porosity n = 0.25 the incremental volume
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(per 1 m coast) is approximately 3 x 1500 x 0.1 x 0.25 =~ 19m?, as compared
to a change of 150m? due to the change in interface location (see Table I).
This amounts to some 12.5% — not completely negligible, but acceptable.

(f) Neglecting the wedge of seawater, ABC (Fig. 2). For an initial intrusion
length of 1500 m in a 100-m thick aquifer and a 20-m motion of the toe, the
neglected volume is only ~ 0.01% of the total seawater volume.

3. COMPARISON WITH A NUMERICAL SOLUTION

Because of lack of field data we can only compare with a numerical
solution. The numerical model by Shamir and Dagan (1971) was somewhat
modified by Kapuler (1972). Recently, an improved version has been de-
veloped and tested (Shapiro et al., 1983), and it is to this model that we
compare the results of the nonlinear and the linear successive-steady-states
methods, egs. 19 and 23.

Five cases have been examined. They have been chosen to represent
typical conditions found in the coastal aquifer of Israel (run 5) and vari-
ations of certain parameters to test the sensitivity of the results. The basic
data are:

Aquifer thickness B=102m

Porosity (effective) n=0.25

Net recharge N 0.336 m yr

Hydraulic conductivity: Runs 1, 3, 4 and 5 = 8395 myr. (— 23 mday” )
Run 2 K -839.5myr.”

For 7, = 1.025, 8 = Ye/(Vs — Vs) = 34.5

The results are presented in Fig. 3 and summanzed in Table 1.

The continuous curves in Fig. 3 have been computed with At = 0.01 yr. =
3.65 days (see eq. 18). The nonlinear (eq. 19) and linear (eq. 23) expressions
give essentially the same results, which are shown by the dashed lines in
Fig. 3.

Table I contains the data on the initial condition, which is a steady-state
condition with a balance over the intrusion length (L°) between the fresh-
water flow above the toe (QP (L)), the freshwater flow to the sea (@7 (0)),
and the amount of recharge above the length of the interface (NL°). A
sudden change to Q}(L) is made in the freshwater flow at the toe. The
percentage changes are also indicated, as well as the steady-state intrusion
length, L™, corresponding to this new flow.

Results are compared for ¢ = 0.5 and = 1 yr. Five values are given in each
case: L; =numerical solution: L, = successive-steady-states nonlinear
equation (19), computed with steps of At = 0.01yr.; L; = successive-
steady-states linear equation (23), computed with steps of At = 0.01yr.;
L, and Lg = successive-steady-states nonlinear equation (19), computed
with one step, At = 0.5 yr. and At = 1yr., respectively; Ls and L, = succes-
sive-steady-states linear equation (23), computed with one step, At = 0.5 yr.
and At = 1yr., respectively.
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Fig. 3. Runs I—5: run 1 (A); run 2 (B); run 3 (C); run 4 (D); and run 5 (E).
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The values of L,—L, are shown in Fig. 3B, D and E. In the other two
runs (1 and 3) these values are far out of the range of the figure.
The following conclusions can be drawn from the results:
(1) Computed with small At, the linear and nonlinear expressions give the
same results.
(2) When the initial intrusion length is large — of the order of 10 to 15
times the aquifer thickness — the successive-steady-states results lag con-
siderably behind the actual movement of the toe (assuming the numerical
results to be accurate). Under these conditions, however computing the
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successive-steady-states results with single time steps (At = 0.5 and = 1yr.)
does not change the results much from those for a small time step (At =
0.01yr.).

(3) When the initial intrusion length is small — of the same order as the
thickness of the aquifer — the successive-steady-states solution follows more
closely the numerical solution. This is particularly true when resistance to
flow is small (large K, cases 1 and 3). In this case, however, the single-time-
step computations (L;—L~-) give completely erroneous results. When the
resistance to flow is 10 times higher (low K, case 2) the successive-steady-
states result with At = 0.01 yr. deviates from the numerical solution, but a
single-time-step computation gives more reasonable results.

An error analysis has been carried out on the results of the successive-
steady-states method with At = 0.01yr. (L, or L;). The percent error has
been defined as:

% error = [(AL, — AL,)/AL;] x 100 (24)

where AL was computed at the end of one year for a change of 1% in the
freshwater flow at the toe. Fig. 4 shows the results. The % error is plotted
against the nondimensional initial toe location, L°/B, for various values of
the nondimensional recharge parameter:

N = N/[Kn(1 + §)]

The errors increase with L°/B, and with K for low values of L°/B. As
L°/B becomes large, the error for a given N begins to drop. This is due to the
fact that the amount of recharge above the interface, NL, is now a more

I T T T I 1 T I I I ! T {
- AL = Movement of the interface toe during -
one year, for Q'f(L)=O.99 Q? (L)
80 |- —
AL, =Numerical solution
[=] - —
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T eo|— —
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qQ 40 — -1
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x - —
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@
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L°/B = Dimensionless steady state position of the interface at t=0

Fig. 4. Error analysis.
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dominant factor as compared to the change in freshwater flow above the
toe. The higher N the sooner this drop occurs.

From the results displayed in Fig. 4, it is apparent that the method of
successive steady states does not accurately predict the location of the inter-
face toe for perturbations of the boundary conditions which are ‘‘far” from
the initial steady-state conditions. The cause of this arises from our as-
sumption that at all times the interface shape maintains a geometric simi-
larity with its steady-state profile. Thus it is implicit in the method of
successive steady states that the responses induced by changing the boundary
conditions are instantaneously propagated to maintain this geometric steady-
state profile. Since we have neglected the elastic storage of the porous
medium, pressure propagates instantaneously. However, in reality, the
adjustment of the shapes of both the interface and the phreatic surface
to changes at the boundaries is not instantaneous, and in general, the shape
of these surfaces will not retain a geometric shape which is similar to the
steady-state one.

In more sophisticated (numerical) moving interface models (see, e.g.,
Neuman and Witherspoon, 1971; Shapiro et al., 1983), the shape of the
interface is not prescribed a priori, making it possible for changes in aquifer
storage, due to the movement of both the interface and the phreatic surface,
to be correctly.identified. The sophistication of these numerical solution
techniques, however, would negate the advantage of obtaining a simplified
linear expression for the movement of the interface toe location (eq. 23),
which is ultimately to be used in our management model.

4. CONCLUSIONS

We have developed the approximate expressions for the motion of the
interface toe, especially the linear one, for incorporation into a management
model of an aquifer in which the location of the interface is one of the
criteria (Shamir et al.,, 1984). The management model is constructed as a
linear program, and it was therefore important to have a linear expression for
the motion of the interface.

The management model that we have developed focuses on the operation
of the aquifer for one season or for one year, and therefore the validity of
our approximation must be examined for these time periods. As discussed
above there is considerable deviation between the approximate solution(s)
and the results of the numerical model. The approximate results are, how-
ever, indicative of the true movement for conditions encountered in the
coastal aquifer of Israel. Thus, until a better approximation can be developed,
we feel that the one presented herein is adequate for incorporation into a
management model of this coastal aquifer.
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