Water supply reliability theory

Uri Shamir and Charles D.D. Howard

Water supply system reliability can be defined in terms of the shortages that result
from failures of a system’s physical components. A reliability factor for a single
tailure or for a selected time period can be defined in terms of the capacity lost
during failure, which is measured as a fraction of the demand rate or the demand
volume. Since the lost capacity is a random variable, so is the reliability factor, and
its probability density function can be derived analytically from that of the lost
capacity. Reliability, defined as the probability that a given reliability factor will be
achieved, can be increased by adding facilities, storage, pumping capacity,
pipelines. The least-cost combination of facilities can be identified from the cost
functions and the probability distributions of the reliability factor.

In 1972, Damelin, Shamir, and Arad!
outlined the considerations involved in
assessing water supply reliability. They
developed a computer simulation model
that was used to evaluate reliability for
specific water supply systems and
defined a reliability factor in terms of
shortages in annual delivery volumes.
Because the system is subject to random
failures of pumping equipment and of
electrical power supply, the reliability
factor is a random variable. Analysis of
its random nature was performed
through repeated runs of the stochastic
simulation. An economic model was
based on this analysis.

Mathematical functions developed by
the authors are used to describe reliabil-
ity and to develop a framework for its
economic assessment. The new proce-
dure is a screening model that provides
preliminary solutions based on an
approximate, analytical, optimization
model. These solutions can be used as a
basis for a more -complete analysis by
simulation.

The effect of a supply failure on a
system’s reliability depends on system
demand at the time the failure occurs.
The analysis in this paper is based on the
demand being fixed and known. Real
system demand varies over time and has
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a random component. Therefore, the
reliability analysis developed herein ad-
dresses only one part of the overall prob-
lem. Future work will deal with the
random nature of both demand and
supply.

Definition of a reliability factor
A natural way to define water supply
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system reliability is in terms of the short-
falls relative to the desired demand.

Demand for water may be considered in

terms of the rate of supply required, in
units of discharge, or in terms of the total
volume to be supplied over a given peri-
od of time. Other considerations may
relate to the number of failures per time,
regardless of the length or magnitude of
each, and to the total duration of the
failures during a time period, e.g., one
year. The authors define reliability in
terms of total volume and supply rate
shortfalls. Together these factors suggest
the possibility that a short-term loss. of
the entire supply may have a more seri-
ous effect than a longer-term loss of only
a portion of the capacity, even if the
volume of the shortfall is the same in
both cases. i

The overall reliability can be consid-
ered to depend on two components. The
first is the discharge reliability factor,
RC ' ‘

RC=1- (%y (1)

where C is the capacity rate in units of

discharge, lost because of the failure, out
of the total rate required CT. Values of
the power n greater than 1 cause RC to
decrease very rapidly as- C approaches
CT. Values of n less than 1 cause RC to
drop rapidly for small values of the
shortfall C (Figure 1). The second compo-
nent is the volume reliability factor, RV

v

RV =1 7T (2)
where V is the shortfall volume during a
single failure or during an entire time
period (e.g., one year) out of the total
volume desired VT. V is a product of the
lost capacity rate C and the length. of
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time required for repair and restoration
of full supply D. By using these two
factors, the overall reliability factor can
be defined as follows:

RC + RV
Fe—rZi——

> ®3)

For a single failure event
V=C-D @)
VT = CT+D (5)

in which D is the duration of the failure,
the reliability factor can be written

,_(creTye ; (C/CT) ©)

The reliability theory is based on this
definition. Alternative definitions of a
reliability factor could include consider-
ation of the total number of failures in a
given time period, the duration of peri-
ods without failures, and the magnitude
or duration of the worst failures.> For
each alternative definition of the reliabil-
ity factor it is possible to develop the
alternative reliability theory, following
the procedure described herein.

Shortfall probability

There are many components in a water
supply and distribution system that are
subject to failure. Water main breakage
is a common source of failure that causes
a relatively small reduction in the overall
delivery capability of the system. Failure
of a major supply aqueduct or a water
treatment plant may be infrequent, but
the result is a substantial, or even total,
loss of capacity. Based on an analysis of
the data in Damelin et al (see Appendix
1), the authors postulated that the proba-
bility density function (pdf) for lost
capacity is of the general form

RF =

m+1
CT

fele) = (1—E:C,—r)mOSCSCT )

with m > 1 a parameter to be deter-
mined from data. The cumulative distri-
bution function (cdf) for lost capacity is

C
F =1-(1—-=)""1 0<¢c=<CT (8
@) =1-(1-2Z5) c=CT (8)

The parameter m can, for example, be
computed from recorded information
that gives:

¢
ili — < - e]
Probability [CT al =p 9

If Eq 8 is used, this results in

1-(1—a)™l=p (10)

from which the value of m is given by

_log(t1—p)

- log (1—a) -t ()

The pdf from Eq 7 is plotted in Figure 2
for CT = 100 (e.g., a total capacity of 100
m*/h) and for m = 1,2, and 5. The cdf
from Eq 8 is plotted in Figure 3 for
m = 1,2, and 5.
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Another expression for the pdf, which
is easier to work with, is

fc(c) = BeBe o0 ¢ (12)

Even though this distribution allows
C > CT, which is physically impossible,
this may not be detrimental if the param-
eter B is such that P [C > CT] is suffi-
ciently small. (See Appendix 1 for an
example of fitting Eq 12 to data.) B is a
constant equal to the reciprocal of the
average capacity which is lost (C) when a
failure occurs. Equation 12 is plotted in

Figure 2 for B =0.06, for which
P[C > 100] = 0.0025.
The cdf for Eq 12 is
Fegle)=1—eBc 0=<¢ (13)

Equation 13 is plotted in Figure 3 for
B = 0.06.

Probability distribution of the
reliability factor

Since C is a random variable, so is RF.
The pdf of RF is given by
dC
frr (r) = ﬁfc(c)

where c is the value of the failure corre-
sponding to the specific reliability factor
r. If Eq 6 is used:

(14

dRF CTr-1 4+ pCn-1
—_——_—— (15)
dc ~ 2CT" .
from which
dC l _ 2CTR (16)
dRF| ~ CT"1+ nCo-
Thus
_ 2CTn
far (@) = ot noni fdey  (17)

where ¢ is expressed as a function of r.
For n = 1, Eq 6 becomes

C=CT(1—BF) (18)

Introducing this into Eq 17 leads to
far(r) = CT fc[CT(1 -] 01 <1(19)
For n = 2, Eq 6 leads to the quadratic

equation
C:+ C-CT-2CT*(1-RF)=0 (20)

which yields

_ —CT[1-/1+8(-RF)]

2

C

Ay

Only the negative sign is retained in this
solution of the quadratic equation,
because the positive sign leads to the
physically impossible result C < 0. With
Eq 21, Eq 17 becomes

_ 2CT
Ve Y e
—~CT [1- 8(1 —
{ ( 21+ a-nl }05r51(22)

For other values of n it may not be
possible to express C = C(RF) explicitly
from Eq 6; a numerical evaluation of

Shortfall—C

Figure 2. Pdf of lost capacity during a fail-
ure

wr

1-6-006C

It
4 50 100

Relative Shortfal—C

Figure 3. Cdf of lost capacity during a fail-
ure

Reliability—r

Figure 4. Pdf of the reliability factor forn = 1,
Eq 24

Taetr)

Reliability—r

Figure 5. Pdf of the reliability factor forn = 2,

Eq 25
\

JOURNAL AWWA



e
@
I

Reliability—r

Figure 6. Pdf of the reliability factor, Eq 27

0 0.5 1.0
Reliability~—r

Figure 7. Pdf of the reliability factor, Eq 28

0 1 10 100 1000
Return Period Tg;°~years

Figure 8. Reliability factor frequency curve

Repair Duration—D

Figure 9. Region of integration for Eq 33

J

ULY 1981

fre(r) is still possible by using Eq 17.
If Eq 7 is used as the pdf of the lost
capacity, then Eq 17 becomes

f 2CTr m+ 1
Ar() = Gy o G

( )\ =
1-— 0=r=1
CcT

For n = 1, based on Eq 19, this yields
fRr) =(m+1Drm o<r<1 (24)
For n = 2, based on Eq 22, Eq 23 yields

(23)

_ 2(m+1)
frr (9 BVET T e
1-/T1+80=D

[1+ > Jm0=<r=1(25)
Equations 24 and 25 are plotted in Fig-
ures 4 and 5, respectively, for m = 1,2,
and 5. :

If Eq 12 is used as the pdf of the lost
capacity, then Eq 17 becomes

2CTm
—_— —,BC T 6
CE ncnil,Be (1) r < 1(26)
For n = 1, based on Eq 19, this yields
far (r) = CT+ Be Blct(r— ] r <1 (27)

For n=2, based on Eq 22, Eq 26
becomes

fre(r) =

2BCT

frr (1) EVE S (ET) =
BCT(1 — / T+ 81 =1
P |

2

}rs1@m

Equations 27 and 28 admit negative val-
ues of r, and not only 0 < r < 1 as would
be expected, because the authors al-
lowed C > CT in Eq 12. The pdfs from
Equations 27 and 28 are plotted in Fig-
ures 6 and 7, respectively, for CT = 100
and 8 = 0.06.

Interfzilure times

The time between successive failures
T is a random variable, which was found
by Damelin et al to be distributed
according to

fr(t)=XeAt=0 (29)

A = 1/T is the reciprocal of the mean
time between failures (MTBF) and is
therefore the average number of failures
per time unit. If T is measured in years,
then A is the average number of failures
per year. The statistical parameter A is
related to maintenance; as maintenance
improves, A should decrease.

Return period of the reliability
factor

The associated reliability factor can be
computed for each shortfall. The same
can be done for any selected time period.
If a reference value of the reliability
factor RF, is selected, the average length
of time it takes before the reliability
factor drops below this value can be

calculated. Using annual quantities, the
return period is
1 1

o " XP[RF = RF,] AFpp (RF,) (30)

This result defines a reliability factor
frequency curve that can be used in
comparing the reliability of alternative
systems.

~ For example, Figure 8 shows this rela-
tionship for two hypothetical alterna-
tives, A and B. They have the same relia-
bility factor at a return period of 10
years, but differ considerably at other
return periods. In this instance, alterna-
tive B is normally more reliable (at return
periods of less than 10 years) but on rare
occasions becomes much less reliable
than alternative A, which has a more
stable behavior. Choice of the best alter-
native depends on the relative benefits
and damages that result from more fre-
quent, relatively small shortfalls and
from rarer but larger ones. The factors of
interest in comparing the reliabilities of
alternative systems may be the slope of
the frequency curve and the reliability
factor at some conveniently defined
return period.

The return period shown in Figure §
indicates the average number of years
between times when the reliability factor
falls below the designated level. It is also
useful to estimate the probability that
the reliability factor will not fall below
the designated value during a certain
number of years. This can be accom-
plished by assuming a reliability factor
RF, with an average return period of
Tgrr_ = 10 years. If successive shortfalls

[
are statistically independent, then the
probability of not experiencing a short-
fall with RF < RF, over a 10-year period
is approximately 0.33 (computed from a
binomial distribution).

Trr,

Repair duration

Damelin et al found that repair dura-
tion D is well described by the log-
normal distribution.

fM(m) = 27 O
o (31)
(m—M*

}OSm
oM

exp { - %
where m = log (repair duration, D). M
and o) are the mean and standard devia-
tion, respectively, of the logarithms of
the repair durations.

For sufficiently large values of the
repair durations, a different pdf can be
used for the repair duration to make
further computations easier.

foid) = o Ydo=d
Variation of demand

In the preceding discussion, demand
was assumed to be constant. Real
demand for water changes over time and
typically shows patterns of daily and
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seasonal variation. Demand also usually
increases over the years. Moreover, there
is a random component to demand, mak-
ing it unpredictable except in a probabil-
istic sense. Demand is taken into consid-
eration in the definition of reliability.
Even if the supply capability has the
same probability of failure at all times,
the reliability factor will change as the
demand probability changes. A complete
analysis of reliability will, therefore,
consider both supply and demand as
random variables.

Improving supply reliability

Water supply reliability may be
improved by means of a variety of mea-
sures, such as
® Additional production capacity of
sources, i.e., wells, pumping stations at
surface sources, water treatment plants;
® Standby pumping capacity at wells or
pumping stations;
® Additional storage;
® Increased conveyance capacity of the
transmission lines from the sources;
® Additional pipelines in the distribu-
tion system; and
® Improved maintenance of pumps,
pipes, and other components.

When a particular system is being
studied, specific characteristics must be
investigated. The evaluation of the role
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of storage in reliability of supply is an
example. A practice commonly em-
ployed in the water industry can be used
to illustrate how a probability factor can
be determined. If a pump failure occurs
at the source and that water can be
supplied directly from a reservoir while
this failure is being repaired, the storage
volume S needed to cover the shortfall is
a product of the lost capacity C and the
time necessary to repair the failure D.
The probability density function of the
required storage can be derived from
those of the failed capacity and the
repair duration. This is illustrated sche-
matically in Figure 9.

The probability that a storage volume
S, will meet consumer demand during a
failure event is
P[C-D<S,] = {{fc D(c,d) dc dd (33)
where  is the area in which (C-D < S),
as indicated by the shaded area in Figure
9. If the storage reservoir has a volume
S, and if it is assumed that sufficient
time is available between failures to
replenish the reservoir, then Eq 33 gives
the probability that no shortfall will
occur during a failure.

It is possible that lost capacity during a
failure and the repair duration are not
statistically independent. However, in

the absence of specific data, independ-
ence might be assumed. Equation 33 then
becomes

PIC+D < S,] = o feld)de fp(d)dd  (34)

with .the two pdfs given in previous
sections.

For failures with a capacity loss below
a specified value C, P[C+D <SS,
C < C,) can be computed by restricting
the integration to that part of  below
C = C,. For each value of C, the corre-
sponding reliability factor RF, can be
computed by using Eq 6 with the appro-
priate value of n. Thus

R (RF,S,) = P[RF < RF,|S = S,]
=P[C-D<S,|C<Cyj (35

A schematic diagram of the results of
this computation is shown in Figure 10.’
The probability R is called the reliability
and serves in this example as a function
of the reliability factor (a measure of the
lost capacity) and the storage.

When the probability functions fc(c)
and fp(d) are not given in analytical
forms but as histograms or data tables, it
is still possible to make the computations
to evaluate the reliability curves directly
from the data.

For a selected reliability value, e.g., R,,
it is possible to construct an isoreliability
curve that will show the trade-off
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TABLE A1*
. . , , 0010
Interfailure statistics and repair duration
of pumps
0.008 —
z
: : Mean Time Mean Repair 2
Pump Capacity Between Failures Duration 3 0.006 —
Number m*/h hours hours z
3
1 115 1300 50 3
2 230 650 50 & 0004
3 280 1500 52 0.0040:0.004¢
4 115 1100 50
5 153 900 50 0.002
6 130 950 50
7 350 800 52
8 100 1200 50 0 1 ' L '
9 250 1000 50 200 300 400 500
10 395 1000 52 Lost Capacity—C
*After Damelin, Shamir, and Arad! Figure At. Histogram and fitted probability
distribution of lost capacity -
TABLE A2

Probability Distribution of Lost Capacity

Pump Mean Time Between Mean Annual Relative Number Capacity Probability Density
Capacity Failures (MTFB) Number of Failures of Failures Interval of Lost Capacity

m3/h hours 8400/MTBF RNF m3/h RNF/Capacity interval

100 1200 7.00 0.082 92.5-107.5 0.0055

115 1100 7.64 0.166 107.5-122.5

115 1300 6.46 0.166 107.5-122.5 0.0111

130 950 8.84 0.104 122.5-141.5 0.0055

153 900 9.33 0.110 141.5-216.5 0.0015

280 650 12,92 0.218 216.5-315.0

280 1500 5.60 0218 216.5-315.0 0.0022

350 800 10.50 0123 315.0-372.5 0.0022

395 1000 8.40 0.099 372.5-422.5 0.0014

450 1000 8.40 0.099 422.5-477.5 0.0018

J

between the reliability factor RF and
storage S (Figure 11). The right-hand
scale in Figure 11 is expressed in terms of
the relative lost capacity C/CT, a unique
function of RF, obtained from Eq 6. (For
n = 1 the scale transformation from RF
to C/CT is linear; see Figure 1.)

Assume that it is possible to install
standby pumps at the source. These
pumps would be placed in operation
when repairs were being made to failed
main pumps. The reliability factor can
be increased by the addition of these
standby pumps, by additional storage, or
by combinations of these two measures.
For any combination of lost capacity C,,
reservoir volume S,, and standby pump
capacity SBC,, the reliability R can be
computed by integrating the joint proba-
bility function f¢ p(c,d) over the region ¢
shown in Figure 12:

R (RF,, S,, SBC,) = /f fs(c)dc
fo(d)dd @ (36)

Results are plotted in Figure 13 for a
selected value of the reliability factor.

Economic optimization

Isoreliability curves can be used in an
economic optimization of a system. Con-
sider, for example, the system discussed
in the preceding section. For every isore-
liability curve, it is possible to compute
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the cost of the combinations of storage
and standby pumping capacity and then
determine the least-cost combination
(Figure 13).

These results can be plotted in two
other ways: minimum cost versus R for a
fixed value of RF (Figure 14) and mini-
mum cost versus BF for a fixed value of
R (Figure 15). Figures 14 and 15 show the
expected outcome: as R approaches 1.0
for any value of RF, the cost curve
becomes steeper. The marginal cost of
reliability rises sharply as higher reliabil-
ity is desired.

These results can aid in selecting an
appropriate level of reliability. If it is
possible to pinpoint damages resulting
from shortfalls, then costs and benefits
can be balanced to yield the optimal
system. More often, however, it is not
possible to quantify these damages. The
decision must then be based on an obser-
vation of cost curves (Figures 14 and 15)
to locate a reasonable reliability value.

Conclusion

Reliability computations for water
supply systems depend on the defini-
tions used. It is possible to develop a
comprehensive statistical description of
reliability by defining a reliability factor
that is a function of the relative shortfall
during a failure or over some period of

time. The data required to perform the
analysis should be readily available in
the maintenance records of water supply
agencies, since interfailure times and
repair durations are the only data
needed. If such data are available, they
should be used to develop reliability
factors and associated probabilities—the
only way to determine which facilities, if
any, should be expanded or added to the
system to increase reliability.

When a system must be expanded to
meet rising demands, the plan for expan-
sion should consider reliability as part of
the criteria for assessing alternatives. A
procedure can be developed to deter-
mine which alternative measures pro-
vide the desired reliability, so that the
best alternatives can be identified. This
procedure was demonstrated for the al-
ternatives of additional storage versus
standby pumping capacity. The same
could be done for a trade-off between
new aqueduct capacity and terminal storage
or additional treatment capacity.

The analysis presented here has not
considered the reliability of the sources
in terms of the hydrological behavior of
the watershed or aquifer. It should be
possible to extend this analysis to
include such an assessment by replacing
the failure probability density functions
with functions that describe the natural
availability of water at the sources.

Appendix 1
Probability density functions
from data

Damelin, Shamir, and Arad present
some statistical data on interfailure
times and repair duration. From this data
it is possible to approximate the proba-
bility distribution of lost capacity. This is
done by considering separately the inter-
failure statistics that are given for each
pump, along with its capacity.

These data (Table A1) were reorga-
nized and analyzed as follows:

1. Pumps are arranged in ascending
order of capacity.

2. It is assumed that all pumps operate
8400 hours per year. This is equivalent to
700 hours of work per month, with some
20-44 hours for preventive maintenance
and other scheduled outages.

3. The relative number of failures of
the specified pump capacity RNF is the
mean annual number of failures of the
particular pump divided by the total
number of annual failures of all pumps.

4. The probability density of lost
capacity is the relative number of annual
failures RNF divided by the capacity
interval which it represents.

5. Pumps of equal capacity
grouped by adding their RNFs.

The total pumping capacity in the
water supply system which is analyzed
here is 2368 m*/h. The analysis is based
on the assumption that the probability of
two or more pumps failing simultaneous-

are
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ly is negligible. The results are given in
Table A2 and plotted in Fig Al. A gamma
or log-normal distribution could have
been used to fit the data, but over the
range of lost capacity that is of interest,
say above 200 m*/h (about 10 percent of
the total capacity), the exponential dis-
tribution (Eq 12) may be adequate. The
parameter of the distribution may be
fitted in several ways. One would be to
make it equal to the reciprocal of the
mean capacity which is lost, 245 m?*/h,
i.e,, B =~ 0.004. Another way would be to
set the parameter so that the probability
of exceeding some given value of the lost
capacity is as found in the data. For the
given data these also lead to a value of 8
close to the one given above. The expo-
nential distribution with B = 0.004 is
shown in Figure Al.

Appendix 2

Calculating probabilities in Eq 35

If lost capacity C and repair duration
D are independent and exponentially
distributed, then the computation of the
reliability in Eq 35 is performed as fol-
lows, based on Figure 9 and the area
below the line C = C,;

P[C-D < §,jC < CJ]
= [Cofdo)dc L5 fp(d) dd

With Eq 12 and Eq 32 as the pdfs of C
and D, respectively, the integration
yields

BWSCog-Bode  f5o/C eV gy

o

c Bc“+\IISG
=(1—efC)—p [ e — J dc

c

The last integral must be evaluated
numerically, which can be done with a
programmable calculator. The results are
shown schematically in Figure 10.
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