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A SIMPLE HYDRAULIC SIMULATOR!

Elliott Damelin and Uri Shamir®

ABSTRACT: A simple simulator was constructed, calibrated, programmed and used in manage-
ment studies of a hydraulic system containing two pumping stations in series, connected by
canals and reservoirs. The features of the model, its calibration and use are described, and
comparisons between measured and computed hydraulic behavior are presented.

(KEY TERMS: canal; flow simulator; surrogate model; wave front; dispersion; distortion; out-
flow generator.)

INTRODUCTION

This paper deals with a mathematical model of a hydraulic system, which was used as
the basic component in a management model of the system. The idea was to make the
simulator of the hydraulic system as simple and computationally efficient as possible, so
that it could be run the very large number of times needed for the management study.

The plan in Figure 1 shows the general layout of the National Water Carrier in Israel.
It conveys some 400 million cubic meters of water annually from the Sea of Galilee to the
centre and south of the country. The operation of the entire carrier has been under study
for some time, and the work has been carried out in a hierarchical form, where the opera-
tion of the system has been decomposed — in time and space — and dealt with by the use
of several models. The work described herein deals with that part of the Carrier from the
Sea of Galilee to the Eshkol Reservoir, which includes two pumping stations operating
in series, connected by pipelines, canals, and reservoirs.

The management model for this section, which was used to determine optimal opera-
ting rules, has been described elsewhere (Damelin and Shamir, 1975). It is the purpose
of this paper to describe in detail the mathematical model of the physical system .— the
hydraulic simulator — as it is incorporated into the management model.

MODELING PHYSICAL SYSTEMS FOR MANAGEMENT

A mathematical model of the physical system, whose design or operation is to be opti-
mized, is always an integral part of the management model. When a mathematical

lPaper No. 77046 of the Water Resources Bulletin. Discussions are open until October 1, 1978.
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programming formulation is used in the optimization, then the mathematical model of
the physical system is embodied in the constraints. When simulation is used, then the
mathematical model of the physical system is embodied in the simulation program.
Whether optimization or simulation is used, careful consideration has to be given to the
way in which the mathematical model of the physical system is formulated. The main
reason is that in both cases the model has to be run a large number of times, and its com-
putational efficiency is of great importance. In optimization, each iteration is essentially
a solution of the model of the physical system. In simulation, each trial of a new alter-
native requires running the program several times. One can afford the large number of
solutions that are needed in simulation studies only if the cost of each run is small.
Selecting the appropriate model requires, therefore, careful weighing between the level
of detail of the model and its accuracy, on the one hand, and its efficiency, on the other.
This paper is devoted to a case study. Simulation was to be used in managing the opera-
tion of a hydraulic system. A mathematical model of this system was needed asa com-
ponent in the simulation program, and the model selected will be described and will show
how a simplified description of the complex hydraulic system was devised and used.
When a simplified model of a real system is used, it may be called a ““Surrogate Model”
which means that not all details of the real system are represented explicitly in the model.
Still, for the model to be useful at all, it has to replicate the system’s behavior in its
important aspects. One obviously has to determine what one considers to be the essential
variables which describe the behavior of the system, and then make sure that the model is
just sufficiently detailed to yield the values of these variables with acceptable accuracy.
The concept of “Surrogate Models™ is not new. For examples, the black-box linear
system used in the Unit Hydrograph method is such a model; an application to a hydraulic
system is shown here.

DESCRIPTION OF THE MODEL

Characteristics of the Physical System

The part of the National Water Carrier dealt with in this work is shown in Figure 1. It
consists of the Kinrot pumping station, which pumps water from Lake Kinneret (the Sea
of Galilee) into the Jordan Canal. The water flows into the Zalmon Reservoir, from which
it is pumped by the Zalmon pumping station, through the Netufa Canal and into the
Eshkol Reservoir. The water is withdrawn from the Eshkol Reservoir via a 108 pipeline
which feeds the center and south of the country.

The three pumps in the Kinrot station can, in their various configurations (combina-
tions of pumps in parallel) supply 0, 24000, 46000 or 67000 m3/hour. The Jordan Canal
is 16 km long, has a carrying capacity of 73000 m3/hr, and, when full, holds about
285000 m3 of water. The Zalmon Reservoir stores approximately 1600 m3 per cm. of
elevation, and has a total capacity of 880000 m3. The Zalmon pumping station has
three pumps which can supply 0, 25000, 49000 or 71000 m3/hour in the various con-
figurations. The Netufa Canal is 18 km. long, is capable of carrying 73000 m3/hour and
holds about 335000 m3 of water, when full. Finally, the Eshkol Reservoir stores some
7500 m3 per cm of elevation, and has a total capacity of 3800000 m3.

From the above data it is clear that the operation of the two pumping stations has to
be coordinated, since considerable fluctuations of water levels in the Zalmon Reservoir
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Figure 1. Schematic Layout of the National Water Carrier, Section Kinnereth — Eshkol.

result from unbalanced flows in and out. Also, any unpredicted pump failure at one
station has to be offset by a matched shut-down of a pump at the other station. A total
power failure results in all the water in the Jordan Canal flowing into the Zalmon Reser-
voir, while no water can be pumped out. Therefore, empty storage has to be provided if
overflow is to be prevented. Such empty storage, on the other hand, causes higher pump-
ing costs in the Zalmon station, due to lower water levels, and there is therefore motiva-
tion to keep the level high. A similar problem does not exist at the Eshkol because of its

relatively large size.
A statistical study of the occurrence of unexpected pump and total failures showed

that the time between successive failures, T, is exponentially distributed.
- —At
fp(t) = e t>0

where A = 1/T is the reciprocal of the mean time between failures, T.
Analysis of the data yielded

Kinrot pumps: T = 400 pump hours, for each pump
Zalmon pumps: T = 730 pump hours, for each pump

Total power failures: T = 800 calendar hours

The operation of the pumps is governed by the availability of electrical energy, and is
therefore subject to constraints imposed by the electric system, rather than by the demand
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for water or hydraulic considerations. This leads to several daily changes in the number
of pumps in operation.

The travel time for the water in each of the two canals is between 4 and 5 hours, where
the canal is initially dry but varies considerably when the canal is flowing full. Discrete
changes in inflow to a canal result in a dispersed wave front at the exit.

Specifications for the Model

For use in analyzing operating policies of the pumping stations, a mathematical model
of the physical system was needed. For this purpose, only the following time-dependent
results are required from the model:

(a) Discharge from each canal into the reservoir.

(b) Volumes in the reservoir.

(¢) Volumes in the canals.

If we were interested in a full description of the time-varying pattern of flows in the
system, we would have to resort to a numberical solution of transient flows in open chan-
nels. Such a solution would be complex, (computer) time-consuming and expensive.
Since we were interested only in the above three physical quantities a much simpler
ad-hoc computational scheme was devised and will be described below.

An hourly log of all pump operations in the two pumping stations and of water levels
in the two reservoirs is available. Using these data, together with the recorded hourly
levels in the two reservoirs, charts of flows and volumes in the two canals were derived.
These were used in evaluating and calibrating the computational procedure described
below. The reservoir levels available were correct to between 1 and 2 cms.

The Hydraulic Simulator

The approach taken was strictly empirical. What was required was the ability to
generate out-flows from the two separate canal sections, and the water volumes in these
sections, given the inflows. Some indication of the nature of the outflows was provided
by a flow-meter located in the outflow section ofthe Netufa Canal. These data were not
altogether accurate, but nevertheless served to indicate the way in which outflows respond
to changes in the inflow. Segments of the curve, shown in Figure 2, indicate an exponen-
tial rise or fall of the outflow resulting from the step change of inflow as pumps are
switched on or off. :

To simulate this behavior of the outflow, each section of the canal was simulated by
the container shown in Figure 3.

The inflow Q(T) is given. It is the constant discharge delivered by the specific pump
configuration which is in operation during the period leading up to the time T. The out-
flow, varying constantly with time, has the value g(t) at the instant T, and is some func-
tion, yet to be determined, of the (time varying) water level iin the container, H(t).
Several attempts were made for selecting an appropriate function q = g(H), and it was
found that a simple linear function served adequately, viz.,

q(t) = K.H(Y) , )
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where K is a constant. The rate of change in the water level is given by:

dt A ’

where A is the cross sectional area of the container.

From (1) and (2)
djﬂ)— = £ pa—
m A { QT) - q(t)}, 3)

Defining P(t) = Q(T) — q(t), the net water addition to the container, then, since Q(T) re-
mains constant during the time interval, dP = —dq. Denoting K/A = a, (3) becomes

_ d_f;(tll = aP(t), 4
or

dP() - —adt (%)

P(t) '

The solution of this differential equation is

P(t) = eCe 0t (6)
Substituting back for P(t)

a® = QT — Ce ™

Consider now the system at some state where the inflow is Q4 and the outflow q,, and
-the inflow is changed at t = 0 to Q(T) and kept at this value thereafter. The value of C
in (7) is computed from these initial values and conditions, and is

€ = Q, — 4y - (8)
and thus the outflow at time t is:
) = QT) —{Qy—gqy} e, (9)

We now select the basic time increment as 1 hour. It is assumed that changes in pumping
configurations can take place only at specified (hourly) intervals, and therefore the state
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of the hydraulic system is examined at hourly intervals. If we set t=1 in (9), we
obtain:

q® = AT - {Q, —q,} ¢™* . (10)

The volume of the water which flows out of the container in the time period from t=0
to t =T, during which the flow into the container is kept constant at Q(T), is:

- T _ _ —at
VM = 1AM —{ Q- gp ) e T dt (1)

and for T =1 the integration yields:

VEam+ Lo g ){ e 1), 12)

This is the volume which leaves the container during one hour, at the start of which the
flow was q, and the inflow was abruptly changed from Q, to Q(T). The volume of water
in the container (the canal) at any time is:

V4t = AH(Y) (13)
Substituting H(t) = q(t)/K from (1), and a = K/A, (13) may be written as

V) = a®fa , (14)

Changes in water volumes in the reservoir are simply computed, using the difference be-
tween inflow and outflow during the time interval.

Lag and Dispersion of Wave Fronts

The real canal differs from its idealized model — the container — in that there is a time
lag between the introduction of a change in the inflow and the response of the outflow.
This lag is due to the travel time of a wave front in a canal, which is different when the
canal is initially empty and some flow is introduced into it and when the change in inflow
occurs when there is already flow in the canal. The response at the outlet is therefore
considered to be affected by two separate phenomena: a lag, which accounts for the
translation time of a sharp wave front; and dispersion, which spreads out the advancing
wave. Both the lag and the dispersion may be measured directly. Lagis the time taken
for a wave front to traverse an empty canal, and dispersion time is the time by which lag
is reduced by a wave traversing a canal containing water.

Lag times for both canal segments were found to be between 4 and 5 hours. Disper-
sion Time (D.T.) was found to be three hours and the dispersion of wave fronts was per-
formed by an approximation method which spread the front over a total of six hours,
three hours (= DT.) on each side of the undistorted, sharp wave front, as shown schemati-
cally in Figure 4 for the case of a change from q = 1 to q= 2. The method for dispersing
the front is as follows.
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If AW3, AW2, AW1 are the differences in flow between any hour’s flow, and the flows
which are 3, 2 and 1 hours ahead of it, then the flow during any time period will have a
unique set of AW (AW;) attached to it.
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Figure 4. Flow History Preparatory to Dispersion.

The differences in flow are smoothed out (or dispersed) by deducting, algebraically,

LAW3 , 2.LW2 , and i% from each hourly flow (say at time T) and adding the

15 15
amounts successively to the flows 3 hours, 2 hours and 1 hour prior to T (ie., T-3, T-2,
and T-1), (the amounts dispersed are inversely proportional to the difference in time).
Where no flow changes exist, then the AW; = 0 and no dispersion is carried out. In the
example in Figure 5 all AW; at the time period T are equal to 1 (denoting proportional
dispersons to the flows at periods T-3, T-2 and T-1), while at time period T+1, AW1 =0
(denoting proportional dispersions to the flows at periods T-2 and T-1, but no dispersion
to the flow at time T which is nominally equal to the flow at time T+1).

The final dispersed front of the history presented in Figure 4 will appear as set out
in Figure 5.

The dispersion procedure is accomplished with the aid of a dispersion factor 1 (In

the case above ﬁL =15.) This factor is determined by the following algorithm.

l-@a+p1) -1,
5 ( )
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where D.T. = Dispersion Time. For D.T. = 3 hours:

1= q+3)2 — 1 =15
8
This factor is so designed that where the dispersion time is other than 3 hours, the
factor § will so be adjusted as to result always in a smoothly dispersed front.

It should be stressed that this procedure is strictly empirical in nature, but has proved
its worth in yielding good results.

CALIBRATION OF THE MODEL

As mentioned above, data of canal outflows resulting from known, time-varying in-
flows were available and were plotted at one hour intervals for several periods of one week
each.

The parameter a and the method for carrying out the dispersion should represent the
physical properties of the canal: length, slope, cross-section and roughness. With the
method of dispersion determined, only a remains to be calibrated. Without adjusting for
dispersion, a preliminary value of a was assumed, and the computed flows were compared
with the historical data. Utilizing the occasions where a flow was introduced into an
empty canal, a satisfactory value for a was easily determined. The fit was tested by in-
spection, and not by statistical analysis.

The dispersed wave front, when operated upon by the distortion effect, now completed
the process and allowed for the perfection of the fit. In the Equation (10), the dispersed
hourly wave front would be represented by Q(T) and the final distorted flows out of the
canal by q(t). Figure 6 shows the effect of changes in the value of a, and Flgure 7 shows
the effect of changes in dispersion time, D.T.
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Figure 6. Effect of Changesin a on the Flows.

A value of a = 0.88 was found to yield the best fit for the Jordan Canal. Only a
slight change a = 0.89, was needed to obtain the best fit for the Netufa Canal (Eshkol
Canal). The fit between computed and measured data is seen in Figure 8.

DISCUSSION

The method developed, and the values of the parameters provided a satisfactory hy-
draulic simulator, whose greatest advantages are its simplicity and computational effi-
ciency. The fit obtained between computed and measured data was as good as could be
expected, with regard to inaccuracies in the field data. The fit can, in fact, be made to
the accuracy of the field data. The accuracy could have improved by using time inter-
vals of 1/2 hour, instead of 1 hour, but the fit with 1 hour intervals is so good that this
was not warranted. o

It should be mentioned that the method worked well even though the Jordan Canal is
interrupted by two large inverted siphons, 720 and 300 meters long (Figure 1). The
Netufa Canal is interrupted by a tunnel 800 m long. The Jordan Canal has a trapezoidal
section, whereas the Netufa Canal has a curved base. The method developed, lumps all
these effects into a very simple simulator, and the results show it works well.

The simulator is easily programmed for a computer, and computation time for a typi-
cal simulation run, one week for example, was negligible. The simulator’s applicability
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and accuracy has been proved in the hundreds of runs which were made for various pur-
poses.

APPLICATIONS OF THE SIMULATOR

The hydraulic simulator was used as the basic element in a mathematical model whose
purpose it was to determine optimal pumping policies for the system, as discussed else-
where (Damelin and Shamir, 1975).

Other applications were:

(2) To determine operating policies when low levels in the Zalmon Reservoir were to
be held for some period, during which maintenance work was carried out. The operators
asked that several policies be studied with the simulator before they were implemented.

(b) Discrepancies between the total volume of water pumped and the total supplied to
customers where pin-pointed to a specific Venturimeter, by the use of the simulator.
Actual dates of cases of tampering with this meter were fixed by such studies.

(¢) The simulator can be used as an early warning system for any changes in the
pumping capacity of pumps at the two stations, and can help in the diagnosis of incipient
mechanical failure.

(d) The simulator is currently used in a study whose aim it is to compare several al-
ternatives for increasing the pumping from the Kinneret to the National Water Carrier.
Some modifications had to be made in the program, such as the addition of an option for
a fourth pump at the Kinrot station. With these modifications, the model can be used to
study the various alternatives for increasing the pumping: more pumping capacity, used
during hours of low electric loads, vs. more pumping at peak load hours, using more ex-
pensive power.

CONCLUSION

It has been demonstrated that a simple simulator can duplicate with good accuracy the
unsteady outflow from a canal, when the inflow is changed by steps. The advantage of
this simulator, over numerical schemes for solving the unsteady flow in open channels, is
its simplicity and computational efficiency.
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