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Design of Optimal Water Distribution Systems 

E. ALPEROVITS1 AND U. SHAMIR 

Faculty of Civil Engineering, Technion-lsrael Institute of Technology, Haifa, Israel 

A method called linear programing gradient (LPG) is presented, by which the optimal design of a water 
distribution system can be obtained. The system is a pipeline network, which delivers known demands 
from sources to consumers and may contain pumps, valves, and reservoirs. Operation of the system under 
each of a set of demand loadings is considered explicitly in the optimization. The decision variables thus 
include design parameters, i.e.. pipe diameters, pump capacities and reservoir elevations, and operational 
parameters, i.e., the pumps to be operated and the valve settings for each of the loading conditions. The 
objective function, to be minimized, reflects the overall cost capital plus present value of operating costs. 
The constraints are that demands are to be met and pressures at selected nodes in the network are to be 
within specilied limits. The solution is obtained via a hierarchial decomposition of the optimization 
problem. The primary variables are the flows in the network. For each flow distribution the other decision 
variables arc optimized by linear programing. Postoptimality analysis of the linear program provides the 
information necessary to compute the gradient of the total cost with respect to changes in the How 
distribution. The gradient is used to change the flows so that a (local) optimum is approached. The 
method was implemented in a computer program. Solved examples are presented. 

INTRODUCTION 
Water distribution systems connect consumers to sources of 

water, using hydraulic components, such as pipes, valves, and 
reservoirs. The engineer faced with the design of such a system, 
or of additions to an existing system, has to seiect the sizes of 
its components. Also he has to consider the way in which the 
operational components, pumps and valves, will be used to 
supply the required demands with adequate pressures. The 
network has to perform adequately under varying demand 
loads, and in the design process, one considers several signifi-
cant loads: maximum hourly, average daily, low-demand peri-
ods during which reservoirs are to be filled, etc. Operational 
decisions for these loads are essentially part of the design 
process, since one cannot separate the so-called design deci-
sions, i.e.. the sizing of components, from the operational 
decisions; they are two inseparable parts of one problem. 

This paper presents a method for optimizing the design of a 
water distribution system: sizing its components and setting 
the operational decisions for pumps and valves under a num-
ber of loading conditions, those which are considered 'typical' 
or 'critical. '  The detailed sequence of operation of the system, 
say. over a day. cannot be determined by this method. St il l ,  
inclusion in the design process of the operational decisions for 
the typical and critical loadings insures that the resulting de-
sign properly reflects the operation. Also the method can be 
used to determine optimal operating rules for an existing sys-
tem . 

Work on optimal design and operation of water distribution 
systems up to 1973 has been reviewed by one of the authors 
[Shamir, 1973, 1974]. Subsequent works in this area are those 
by Watanatada [1973], Hamberg [1974], and Rasmusen [1976]. 
Methods for optimal design of looped systems can be sepa-
rated into two categories: ( 1 )  methods which require the use of 
a network solver (at each iteration of the optimization, one 
first solves for the heads and flows in the network, then uses 
this solution in some procedure to modify the design [Jacoby, 
1968; Kally, 1972; Watanatada, 1973; Shamir, 1974; Rasmusen, 
1976]) and (2) methods which do not use a conventional 
network solver. Lai and Schaake [1969] and Kohlhaas and 

Mattern [1971] did not use a network solver, but both works 
treated the case in which the head distribution in the network 
is fixed. To the best of our knowledge, the linear programing 
gradient (LPG) method presented in this paper is the first to 
incorporate the flow solution into the optimization procedure, 
without making any assumptions about the hydraulic solution 
of the network. We believe that this is not merely a technical 
detail, since, as will be demonstrated in the paper, it enables 
optimization for multiple loadings and explicit inclusion of 
operational decisions. 

The next section presents a method for designing branching 
networks by linear programing (LP), which is a basic com-
ponent in the LPG method. Then the basic LPG method will 
be developed for a pipeline network operating by gravity for 
one loading condition. A simple example will complete this 
presentation. Next, the method will be extended to real net-
works, which contain pumps, valves, and reservoirs and which 
operate under multiple loadings. An additional example will 
demonstrate the application of the full method. 

OPTIMAL DLSIGN OF BRANCHING NETWORKS BY LP 
Consider a branching network supplied from a number of 

sources by gravity. At each of the nodes of the network, j = 1. 
.... N', a given demand dj has to be satisfied. The head of each node 
Hj is to be between a given minimum H minj and a given 
maximum H max;. The layout of the network is given, and the 
length of the l i n k  (pipeline) connecting nodes (andjf is'Ly. The 
LP design procedure [Karmeli et al., 1968: Gupta, 1969; Gupta 
et al., 1972: Hamberg, 1974] is based on a special selection of 
the decision variables: instead o( selecting pipe diameters, 
allow a set of'candidate diameters' in each link, the decision 
variables being the lengths of the segments of constant diame-
ter within the l i n k .  Denote by xUm the length of the pipe 
segment of the mth diameter in the l i n k  connecting nodes /and 
/: then 

 
has to hold for all links, where the group of candidate diame-
ters may be different for each link. In a branching network, 
once the demands d} are known, the discharge in each link Qu 

can easily be computed. The head loss in segment in of this link 
is 
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(2) 

 
where J, the hydraulic gradient, depends on the pipe proper-
ties, diameter and roughness, and on the discharge. Specifi-
cally, by using the Hazen-Williams equation, 

 
(3) 

where Q is the discharge, C is the Hazen-Williams coefficient, 
D is the pipe diameter, and « is a coefficient, whose value 
depends on the units used (for example, for Q in mVh and D in 
centimeters, a = 1.526 X 101"; for Q in ftVs and D in inches, a 
= 8.515 X 105). 

Starting from any node in the system $ at which the head is 
known in advance (for example, at a reservoir' or at some 
source), one may write for node n, 

(4) 

 
where the first summation is over all links (/, j) connecting 
node s with node n, and the second summation is over all 
segments m in each link. The sign of the terms depends on the 
direction of flow. Equation (4) represents two linear con-
straints. The H min constraint usually results from service 
performance requirements. The H max constraint may result 
From service performance requirements, or from technological 
limitation on the pressure-bearing capacity of the pipes. 

The cost of a pipeline is assumed to be linearly proportional 
to its length, a reasonable assumption under most circum-
stances. Without undue complication of the linear formulation 
the cost may be a function of location, i.e., the link. Thus the 
total cost of the pipeline network is 

(5) 
Minimization of (5) subject to 

constraints of the form (4) and to nonnegativity requirements 

 
(6) 

is a linear program. 
The objective function can be expanded to account for the 

cost of pumps and their operation over time [Karmeli et al., 
1968] by using linear cost functions. Nonlinear cost functions 
for pumping costs will be dealt with later in this paper. 

It should be noted that preselection of the candidate diame-
ters for each l i n k  introduces an implicit constraint into the 
optimization problem, by virtue of the fact that the range of 
possible diameters has been limited. Restriction of the number 
of possible diameters may be based on some constraint from 
engineering practice; for example, only certain diameters may 
be commercially available. Usually, however, limiting the 
number of diameters in the candidate list is aimed at reducing 
the number of decision variables and the computational effort 
and does not reflect a real constraint. When this is done, the 
implicit constraint introduced by restricting the diameters in 
the lists for the links may be binding at the computed opti-
mum, and a true optimal solution may not be reached. At the 
optimal solution, no link should be made entirely of a diame-
ter at one extreme of its list of candidate diameters. I f this does 
happen, the list of candidate diameters for this link should be 
expanded in the proper direction, and the problem solved 
again, until this constraint is not binding for all links. It can be 
shown that at the optimum, each l i n k  will contain at most two 
segments, their diameters being adjacent on the candidate list 
for that l ink.  

The optimal  solution  should be examined  for segments 

whose optimal length is too small to be of practical signifi-
cance, and they can be eliminated. Although the resulting 
design is not strictly optimal and possibly even does not ex-
actly satisfy constraints (4), it is probably acceptable. If it is 
not, slight modifications may be needed. In engineering prac-
tice it has been the custom to select a single diameter for the 
entire length of each link. If this is done, the design will not be 
optimal. 

To keep computation time down, one should attempt to 
reduce the number of constraints (which is the prime computa-
tional factor in a linear program; the number of variables is 
less important). Constraints of type (4) should be written only 
for selected nodes in the network. One may start with few such 
constraints and examine the solution. If it satisfies a l l  head 
constraints at the other nodes, the solution is acceptable. Oth-
erwise, one adds constraints for those nodes at which they 
were not satisfied and solves again. 

When storage reservoirs are to be designed by using a linear 
program, their cost has to be approximated by a linear func-
tion of the water level in the reservoir. The reservoir is consid-
ered a source with a fixed head. 

M ore than one set of demands can be handled by the same 
formulation. Each loading adds an additional set of con-
straints to the LP problem; the entire set is then solved simul-
taneously. If energy costs are included, the objective function 
contains a weighted sum of the energy costs of operating under 
the different loadings. 

BASIC LPG METHOD 
The LPG method deals with looped networks and decom-

poses the optimization problem into a hierarchy of two levels 
as depicted in Figure 1. We shall present the method for a 
pipeline network operating under gravity for one loading. 
Later sections will extend the basic method to cover multiple 
loadings and to allow for pumps, valves, and reservoirs. 

The first step in developing the LPG method is to consider 
optimization of the design when the distribution of flows'in the 
network is assumed to be known. We adopt the formulation 
given by equations (1), (2), (4), and (5), in which the lengths of 

 

 
Fig.  1.    Overview of the LPG method. 
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Fig. 2.    A two-loop network supplied by gravity. 

the segments of constant diameter in each l i n k  are the decision 
variables. If the flows in the links are assumed to be known 
(how they change will be explained later), then the constraints 
on heads at nodes, equation (4), can readily be formulated. 
Constraints (I), (4), and (6) do not. however, suffice to ensure 
a feasible solution, and one has to add the conditions that the 
head losses along certain paths in the network satisfy the 
following type of constraint: 

(7) 

 
where bp is the known head difference between the end nodes 
of the path p. The first summation is taken over all links i , j  in 
the path, and the second over all segments in the l i n k .  Equa-
tion (7) has to hold for all closed paths, i.e.. loops, with 6 = 0. 
For each pair of nodes at which the heads are fixed, equation 
(7) is formulated by proceeding along any path which connects 
the two nodes, starting at the node with the higher head, so 
that bp > 0. These constraints having been added, the linear 
program 

TABLE l<j.    Basic Design Data for the Network in Figure 2 With 
Two Loops, One Source, and a Single Load 

with the objective function (5) can be solved, and the set of 
optimal segments will be such that the network is hydraulically 
balanced. If we denote by Q a vector of Hows in all links, which 
satisfy continuity at all nodes, then for any Q the optima! cost 
of the network may be written as 

 
(8) 

where LP simply denotes thai cost is the outcome of a linear 
program. The comments which were made in a previous sec-
tion about making certain that the selection of the candidate 
diameters does not impose an unwanted constraint on the 
solution apply here too, 

The next stage is to develop a method for systematically 
changing Q with the aim of improving cost, since now we have 
the relation (8) which ensures that for each Q the best cost can 
be found. The flow distribution thus becomes the primary 
decision variable, and the actual design variables result from 
the LP solution. The method for changing Q is based on use of 
the dual variables of the constraints (7), which aid in defining a 
gradient move. AQ, a vector of changes in the flows in all links, 
is sought such that LP(Q + AQ) < LP(Q), and the 'move' has 
been in the best possible direction, i.e., along the negative 
gradient of cost. If one denotes by AQn the change in flow in 
path /?, then 

(9) 

 
Here Wp is the value of the dual variable of the constraints of 
type (7) for the path, which may be positive or negative, since 
(7) is an equality constraint. The second term on the right is 
computed from equation (7). The notation used in (9) is not 
strictly correct, because bp is a given constant [hat does not 
change. Actually, bp in (9) stands for the following expression, 
which does change with Q: 

 

The computation stopped when max DQ(I) equaled 1.0 or after 50 
major iterations; Results will be printed out every five major iterations 
or whenever best total cost is further improved. Flow change in loop 
/ will be executed only if DQ{I)/DQ max is greater than 0.20. The 
number of minor iterations allowed after a feasible solution has 
been reached for a flow distribution was 20. The local solution is con-
sidered to be reached if last improvement per iteration equals 0.0%. 

� ( I I )  

 
The first identity on the left holds because both 8(AQP) and 

8(QP) are incremental changes in flow in the same path. Since 

TABLE \b.    Basic Cost Data for Pipes 
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the constant 1.852 appears in all components of the gradient, 
and we are interested only in their relative magnitude, we can 
leave the constant out and write the component of the gradient 
vector G as 

(12) 

 
It should be kept in mind that the summations are always 
performed only for the appropriate links, i.e., those belonging 
to the /Jth path. At each LP solution, &Htjm and Qtj have been 
used in setting up the linear program, and one merely needs to 
perform the appropriate summations and to multiply by the 
dual variables obtained in the solution of the linear program. 

The components of the vector of changes in flows AQ are 
made proportional to the corresponding components of the 
gradient vector given by (12). The distance to move along this 
vector (the step size) has now to be determined. The changes in 
flows should be such that the step size is optimized, i.e., by 
finding 8 from 

(13) 

 
No simple way was found to do this, and the heuristic ap-
proach was adopted. A step size, given in terms of a change in 
flow, is fixed at the start of the program (given by the user as 
input data). The flow component which has the largest (abso-
lute) value of the gradient component is given a flow change of 
the specified step size, and the other flows are changed by 
quantities reduced by the ratio of the appropriate gradient 
components to the largest gradient component. The step is 
thus in the direction of the gradient, i t s  maximum component 
being determined by a user-supplied value. The program also 
contains a routine for increasing or reducing the step size from 
one iteration to the next, based on the success or failure of 
previous steps. The overall iterative procedure stops when no 
improvement is achieved with the minimum step size allowed 
(a user-supplied parameter), or after a prescribed number of 
iterations has been exceeded. 

At each flow iteration the final solution of the linear pro-
grain is hydraulically balanced, and there is therefore no need 
for a conventional network solver (such as that presented by 
Shamir and Howard [1968]). The linear program itself guaran-
tees a hydraulic solution at the same time that it optimizes the 
design for the given flow distribution. The user has only to 
specify an initial flow distribution which satisfies continuity at 
all nodes, The program calculates losses through the network, 
sizing components to satisfy (7); it then makes the flow 
changes for successive LP solutions in such a way that continu-
ity at all nodes is retained. 

Experience has shown that when a network is designed for a 
single loading, unless a minimum diameter is specified for all 
pipes, the optimal network will have a branching configura-
tion; i.e.. all loops will be opened in the process of the solution 
by deleting certain pipes. Reliability considerations usually 
dictate that some or all of the loops be retained. For all pipes 
in these loops, one specifies a minimal (nonzero) diameter. The 
tendency toward a branching network s t i l l  remains, and cer-
tain pipes will be at their minimum diameter. The additional 
cost of reliability can thus be determined as the difference 
between two optimal solutions, one without the minimal diam-
eter requirement, the other with it. Forcing the network to have 
a fully looped configuration is not a satisfactory way of defin-
ing reliability. A more intrinsic definition is needed, one which 
depends on a performance criterion for specified emergency 
situations. More work should be done in this area. 

SIMPLE EXAMPLE 
Consider the network shown in Figure 2, which has eight 

pipes arranged in two loops and is fed by gravity from a 
constant head reservoir. The demands are given, and the head 
at each node is to be at least 30 m above the ground elevation 
of the node, denoted by E} in the figure. Tables la and \b give 
the basic data. Costs are given in arbitrary units. (Several pipe 
classes of varying wall thickness and therefore of different 
costs and pressure-bearing capacities can be introduced, but in 
t h i s  problem, only one class was specified.) 

The maximum diameter allowed is 24 in. Also limits are set 
on the minimum and maximum hydraulic gradients (Jin equa-
tion (3 ) )  in the pipes: 0.0005 and 0.05 in the example. This 
means that no l i n k  can be eliminated completely, although it 
may be made as small as 1 in .  (the lowest diameter on the list) 
as long as the hydraulic gradient in it does not exceed 0.05 (a 
very large gradient, probably several times larger than normal 
values in pipelines). 

Tables la and 2b give a summary of node and pipe data. For 
each pipe, there is an i n i t i a l  flow, selected arbitrarily but so 
that continuity at nodes is satisfied. Table 3 summarizes the 

 

   TABLE 2b. Section Data   

   Range of  Initial Flow   
   Allowable  Distribution, m3 /h  

Section Length, m c in. Class Loadl Load 2 ' Selected Diameters, i n .  

1 1000.0 130.0 0-24 1 1120.0 0.0 12, 14, 16, 18,20 
2 1000.0 130.0 0-24 1 220.0 0.0 6,   8, 10, 12,14 
3 1000.0 130.0 0-24 1 800.0 0.0 10, 12, 14. 16,18 
4 1000.0 130.0 0-24 1 30.0 0.0 3,   4,   6,   8, 
5 1000.0 130.0 0-24 1 650.0 0.0 10, 12, 14,16. 18 
6 1000.0 130.0 0-24 i 320.0 0.0 8, 10, 12, 14. 16 
7 1000.0 130.0 0-24 1 120.0 0.0 6,   8, 10, 12, 14 
8 1000.0 130.0 0-24 1 120.0 0,0 6,   8, 10,12, 14 

 

TABLE 2a.    Node Data 
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TABLE 3.    Structure of the Initial Linear Program: Strings of Pipes 
for Pressure or Loop Constraints 

 
1 he constraint data include 39 variables, six pressure equations, two 

loop equations, no equations between sources, and a coefficient 
matrix of 16 rows and 55 columns. 

linear program which was set up in i t ia l ly.  There are 39 vari-
ables (4-5 candidate diameters for each of the eight pipes), six 
pressure equations for each node except I. at which the head is 
fixed, and two loop equations. Because only H min is specified 
at each node (the maximum is unrestricted in this example), 
there are six head constraints (equation (4)). Their structure is 
listed in Table 3 by showing the 'strings* of pipes in each 
constraint. For example, for node 7 the constraint is formu-
lated by going along pipes 1 , 3 , 5 ,  and 6. The constraint is thus 

�(14) 

 
�(15) 

There are two loop equations, whose strings of pipes are 
listed also in Table 3. A negative sign means that the flow 
in i t ial ly assumed is in a direction opposite to that taken in 
formulating the hydraulic head l i n e  continuity constraint 
(equation (7)). For example, the equation for the upper loop 
starts and ends at node 2 and goes along pipes 3, 4, 7. and 2. 
This loop equation is 

Fig. 3. (a) initial flow distribution and i t s  linear programing 
design at a cost of 493.779. (b) Final flow distribution and optimal 
design at a cost of 479.525. 

 
Table 4 summarizes the intermediate results of the computa- 

TABLE 4.    Intermediate Results of the Computations for the Network in Figure 2 

 

 

 
 

where, for example. 
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TABLE 5a.    Final Results for the Design of the Network in Figure 2: Section Data and Optimal Diameters for Iteration 18 

 
The solution was reached after six minor iterations. The total network cost (there were no penalty costs) was 479,525. 

tions. The first column on the right gives the number of LP 
iterations w i t h i n  the flow iteration. It is seen that for the first 
flow distribution, 32 LP iterations are needed to obtain the 
optimum. At subsequent points the number of LP iterations is 
very small; often just one is needed (see Appendix 1). Tables 5a 
and 5b give the final solution, the one reached on the 18th 
iteration (on the 19th iteration the cost increased, so the com-
putation was stopped, and the besl solution was printed out). 
The total cost of the network is seen to have decreased from 
493,776 cost units for the initial assumed flow distribution, to 
the final value of 479,525, a decrease of approximately 3%. 
Note that no in i t ia l  design was assumed, but only the flow 
distribution, and the value of 493,776 is the optimal cost for 
that flow distribution. Had one been required to specify a first 
design, it is quite certain that its cost would have been consid-
erably higher. In the final solution the head is exactly equal to 
the minimum required at three of the nodes, and higher at the 
others. 

The optimal designs for the i n i t i a l  flow distribution and for 
the final flow distribution are shown in Figure 3. Note the 
tendency toward a branching design, which was constrained 
by the minimum diameter (I i n . )  and maximum allowable 
hydraulic gradient (0.05). 

This simple network was studied extensively, to see how cost 
= LP(Q) changes with Q. The flows in the network were 
changed systematically by incrementing AQX and &Qz, the 
flow changes in the two loops from some initial flow distribu-
tion. The cost = LP(Q) was obtained for each new Q and was 
plotted versus &Q, and AQ2. The response surface showed 
multiple local optimums, with low ridges along directions in 

the (A£>i, SQz) plane which correspond to zero flows in links, 
an indication of the low cost of branching configurations. 

EXTENSION OF THE METHOD FOR COMPLEX SYSTEMS 
Several types of variables d id  not appear in the formulation 

presented above. We now introduce them one by one and 
show how the basic formulation of the LPG method is made 
applicable to more general hydraulic systems. 

Multiple loadings. In the design of a water distribution sys-
tem, one should consider its operation under more than one 
loading. The maximum hourly flows and fire fighting demands 
are normally used as the design conditions, but often the low-
demand periods, such as night flows, have to be considered as 
well. This is especially true when there is storage in the system. 
If only peak loads are considered in the design process, the 
reservoirs may be sized properly, and they may empty at 
acceptable rates during peak demands, but there is no guaran-
tee that it will be possible to fill them during periods of low 
demand. The LPG method allows for simultaneous, consid-
eration of several loadings, thereby ensuring proper design and 
operation of the system. For each of the loadings, one has to 
specify an initial flow distribution which satisfies continuity at 
all the nodes. Then for each loading the constraints on heads 
at nodes (equation (4)) and the path constraints (equation (7)) 
are formulated. Constraints (7) for open paths, i.e.. between 
fixed head nodes, which have to be formulated by proceeding 
from the high to the low head, may be written in opposite 
senses for the high- and low-demand loadings. The constraints 
for all loadings, together with the length constraints (equation 
(!)), are satisfied simultaneously in the linear program which is 

TABLE 5b.    Final Results for the Design of the Network in Figure 2: Node Data for Iteration 18 
 

  Minimum   
 Friction Pressure Existing Dual 

Node Losses Allowed Pressure Activity 

  Pressure equation   
2 6.6 30.0 53.4 0.0 
3 19.2 30.0 30.8 0.0 
4 10.9 30.0 44.1 0.0 
5 30.0 30.0 30.0 -638. 
6 15.0 30.0 30.0 -0.977 E04 
7 20.0 30.0 30.0 -0.321 E04 

  Loop equation   
2 0.0   184. 
7 -0.0    -85.1 
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Pumping   capacity , HP 

Fig. 4.    Cos! per installed horsepower (schematic). 

solved. The gradient section modifies the flow distribution for 
each of the loadings, using the results of the linear program. 

Since the initial flows for each loading are arbitrary, one 
cannot guarantee that a set of diameters can be found such 
that the head line equations for all paths are balanced for all 
flow distributions. To overcome this difficulty, we introduce 
in to  each of the constraints of type (7) two new variables for 
each loading. These variables act essentially as valves; each 
provides a head loss when the flow in the path is in one of the 
two possible directions. These dummy valve variables make it 
possible to satisfy the head l ine  constraints by 'operating' them 
differently for each load. These variables are given a large 
penalty in the objective function (and are therefore analogous 
to the artificial variables used in a linear program), and the 
optimization algorithm will try to eliminate them from the 
solution. If it is possible to do so, i.e., if there exists a feasible 
solution without these valves, then their introduction has 
merely served the purpose of reaching this feasible solution by 
the LP procedure. If. on the other hand, il is found that one o^ 
these dummy valves does appear in the optimal solution, this 
means that a real valve is needed at that point if the network is 
to operate as specified. The LP procedure deals simultaneously 
with reaching a hydraulically feasible design and optimizing it. 

Pumps. When there are to be pumps in the system, the 
problem is one of the design-operation type; i.e., one has to 
select the capacities of the pumps as well as to decide which 
pumps should operate for each of the loading conditions. The 
locations at which pumps may be installed are selected by the 
designer, but since the program can set certain pump capaci-
ties to zero, if that is the optimal solution, the program ac- 

tually selects the locations at which pumps will be installed. 
The decision variables associated with each location at which 
the designer has specified that a pump may be located are the 
heads to be added by the pump for each of the loadings. The 
maximum of these determines the pump capacity which has to 
be installed. If one denotes by XP(t, I) the head added by 
pump number I and load /, then the head constraints of the 
type (4) for paths with pumps become 

 
where the first summation is over the pumps in the path. An 
index / has been added to those variables which may be a 
function of the loading condition. For any path which has 
pumps in it .  be it a closed loop or an open path, equation (7) 
has to be modified in a similar manner, and it then becomes 

 
In (17) and (18) the signs in front of the various terms depend 
on the direction of flow. 

The decision variables for the pumps XP(t, I) have to be 
introduced linearly into the objective function if the problem is 
to remain a linear program. This is done by considering the 
cost of the pump as a function o? its capacity, i.e., its rated 
horsepower. Figure 4 shows schematically the cost per in-
stalled horsepower as a function of pump capacity. The curve 
we used in this work is based on real data and was found to 
have the shape seen in Figure 4. It reflects the decreasing 
marginal cost as the capacity increases. The actual cost data 
are introduced into the program, and there is no need to 
assume any particular form of this curve. Successive approxi-
mations are used in the program to cope with the nonlinearity 
of this cost curve. The power needed to operate the pump is 
given by 

(19) 

 
where 7 is a coefficient, Q is the flow, XP is the head added by 
the pump, and i) is the efficiency. If we assume a fixed effi-
ciency (we have used r\ = 0.75), then for a fixed discharge 
through the pump, (1 9)  becomes 

 
Fig. 5.    Network with a pump, a balancing reservoir, loads, and initial and final flow distributions. 

 

 
where K,  i s  a  constan t .  In  equat ion ( 1 9 ) ,  y  i s  computed to  
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Fig. 6.    Schematic diagram of a real network. 

reflect the total length of time that the specific loading condi-
tion is assumed to prevail throughout the design horizon (say, 
25 yr) and a coefficient that converts streams of annual ex-
penditures to present value. 

Recall now that the LPG procedure is to fix the discharges 
throughout the network, optimize, then change the flows. 
From (20), if the efficiency is assumed to be constant, the 
power is linearly proportional to the head added by the pump, 
for each linear program. The operating cost of the pump is 
therefore linearly proportional to the decision variable, which 
is XP. The capital cost, however, is not linear, as seen from 
Figure 4. This is where an iterative procedure is developed. (I) 
Assume values for the cost per horsepower, from the data 
represented in Figure 4, for each pump. (2) Solve the linear 
program with these values as the coefficients of the XP in the 
objective function. (3) For the resulting XP after the linear 
program has been solved, compute the cost per horsepower. I f 
all values are close enough to those assumed, this step is 

TABLE 6a. Basic Design Data for The Network in Figure 5 With 
Two Loops, One Pump, One Source, One Reservoir, and Two Loads 

 
The computation stopped when max DQ{!) equaled 1.0 or after 50 

major iterations. Results will be printed out every 10 major itcralions 
or whenever best total cost is further improved. Flow change in loop / 
will be executed only if DQ(l)/DQ max is greater than 0.15. Number 
of minor iterations allowed after a feasible solution has been reached 
for a flow distribution was 20, Local solution is considered to be 
reached if last improvement per iteration equaled 0.0%. 

complete, and one proceeds to a flow iteration by the gradient 
method. Otherwise one takes the new costs and solves the 
linear program again. 

This procedure has been found to work very well, owing 
probably to the relatively mild and regular slope of the cost 
curve. No more than 2-5 repetitions of the linear program at 
any gradient move were required to converge to within reason-
able accuracy, with up to three pumps in the system. An 
alternative would have been to use separable programing, but 
due to the success of the relatively simple procedure outlined 
above, this was deemed unnecessary. 

Each pump designed by this procedure may represent a 
pumping station. One now takes the values of the flow and 

TABLE 6b.    Basic Pump Data: Cost Function of Pumps 

 
Other data include the following. Pump 1 was connected to pipe 1. 

The assumed i n i t i a l  cost for pump 1 was 1000. The additional storage 
elevation cost {per unit of elevation) was 2000. 

TABLE 6c.    Basic Cost Data for Pipes 
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TABLE la.    Node Data 
 

  Minimum Consumption, m*/h 
 Elevation, Pressure   
Node m Allowed Load 1 Load 2 

1 210.0 0.0 -420.0 -300.0 
2 150.0 30.0 100.0 0.0 
3 160.0 30.0 100.0 0.0 
4 155.0 30.0 120.0 0.0 
5 150.0 30.0 270.0 0.0 
6 165.0 30.0 330.0 0.0 
7 160.0 30.0 200.0 0.0 
8 195.5 0.0 -700.0 300.0 

head for each loading and selects the pumps for this station, 
which will deliver these flows at the prescribed heads. 

Valves and dummy valves. Valves may be located in any 
pipe. If one denotes by XV(v, I) the head loss provided by the 
valve at location v under the /th load, the appropriate con-
straints will contain this variable in the same way that XP{t, I) 
was in equations (14)  and (15). The cost of the vaive should 
then be incorporated into the cost of the pipeline in which it is 
located. 

When more than one loading is considered, two dummy 
valves have to be added in each loop, as was explained in a 
previous section. The variables XV(i\ /) of the dummy valve 
appear in the constraints in the same way as they would for 
real valves. These XV are given a high penalty in the objective 

function, which will tend to delete them from the optimal 
solution whenever this is possible. 

Reservoirs. Systems having operational storage have lo be 
designed for more than one loading, since by definition the 
storage has to act as a buffer for the sources, i.e., to fill al times 
of low demand and then empty when demands peak. It should 
be mentioned in passing that proper design of the storage, i.e., 
i ts  sizing, the way it is linked to the distribution system, and 
the way in which it is operated, is one of the most difficult tasks 
in design, one for which good engineering tools are missing. 
The storage is usually sized in accordance with some accepted 
standard, but it often does not perform its intended oper-
ational role, i.e., it stays at a relatively constant level, not really 
helping to balance the load on the sources. We think that the 
method presented here goes a long way toward solving this 
problem. The solution obtained is such that the reservoirs are 
not only sized but actually operated in an optimal manner. 

The decision variable for a reservoir is the elevation at which 
it is to be located, An in i t i a l  elevation is assumed, then XR is 
the additional elevation where the reservoir is to be located, 
relative to its initially assumed elevation. Path equations have 
lo be formed between the reservoir at node s and nodes in the 
network. For node n, 

TABLE 7b.    Section Data 
 

TABLE 1c,    Structure of the In i t i a l  Linear Program: Strings of Pipes for Pressure or Loop Constraints 

Begin 
Node 

�End �
Node �Load 

�Number Order of Sections �
Connected Between the Nodes 

�Number Order of 
Pumps, �Valves, and 
Storages 

 
The constraint data include 51 variables, iive pressure equations, two source equations, four loop 

equations and a coefficient matrix of 20 rows and 71 columns. 
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TABLE 8«.    Optimal Solution for the Network in Figure 5: Section Data and Optimal Diameters for Iteration 22 
 

The solution was reached after one minor iteration. The total network cost (there were no penalty costs) was 299,851; the total pipeline 
cost, 267,113; the additional storage elevation cost, 4330; and the total pumping cost, 28,408. The total lengths of pipes Tor class 1 were ihe 
following: for diameters of 4, 6, 8, 10, 12, 14, and 16 in., the lengths were, respectively, 70.4, 2120.2, 983.6, 2859.5, 966.1, 1000, and 100 m. 

where HO* is the initial elevation of the reservoir at node 5, 
and XRh is the additional elevation to be selected by the 
program. Note that XRS is a single variable, the same for all 
loadings, since the reservoir once fixed cannot be moved. The 
coefficient of XRS in the objective function is the cost of raising 
the location of the reservoir by one unit (1 m). An upper 
bound on XRH is added when the topography allows only a 
certain range of elevations for the reservoir. 

The flow into or out of the reservoir is specified in a manner 
similar to that of all other demands. The designer sets the flow 
out of the reservoir during peak demands and into the reser-
voir at low demands, and the program will find the optimal 
network configuration, including the pumps if they are i n -
cluded, which will operate the storage as required. 

Combined systems. One can allow all types of elements in 
the network: pumps, reservoirs, and valves. Each path con-
straint will include the appropriate elements as explained in 
the preceding sections, and the solution will give simultane-
ously the optimal values of the decision variables: pipe diame-
ters, pump capacities, and pump and valve operation for each 
loading, and the reservoir elevation. 

Additions to an existing system. When parts of the network 
already exist and only new parts are to be designed, the exist-
ing components are specified as being fixed, and the program 
solves for the rest. For each existing pipe, its diameter is 
specified as being the only one on i t s  candidate list. When 

TABLF- 8/).    Optimal Solution for the Network in Figure 5: Node 
Data for Iteration 22 

Minimum � Pressure �
Allowed 

Node 

entire loops exist, two dummy valves have to be inserted in 
each of them even when only one loading is considered. This 
insertion takes place because the initially assumed flow distri-
bution will in general not be feasible hydraulically. The high 
penalty incurred by the 'operation' of these variables will guide 
the gradient procedure in modifying the flow distribution in 
existing loops toward the hydraulically correct values. 

When a pump exists, the XP(t, i) values are constrained to 
be less than its actual head capacity. The objective function 
will then contain only the cost of operating the pump over the 
design horizon. 

Operation of an existing system. One can solve for the 
operational variables, pump operation and valve settings 
when the entire system is already in existence. The objective 
function now includes only the cost of operating the pumps 
(and penalties on operating the dummy valves). 

SECOND EXAMPLE 
Figure 5 shows a network similar to the one in Figure 2, 

with a pump added at the source and a reservoir linked to node 
7 by an additional pipe. Basic data appear in Tables 6a-6c. 
There are two loadings, and six dummy valves are needed: one 
for each loading for each of the three equations, one between 
the two reservoirs, and one for each loop. 

The cost for the pump as a function of i ts  horsepower is 
given as a piecewise linear function: at 11 hp the value is 3000, 
at 21 hp the value is 1800, etc. As an initial value the cost is 
assumed to be 1000, i.e., a horsepower of 41.  The cost for 
raising the reservoir at node 8 is 2000 per unit rise (1 m). 

Node and pipe data, as well as the setup of the initial linear 
program, are given in Tables la-lc. Minimum head con-
straints are given for nodes 3, 4, 5, 6, and 7 under loading 
number 1 only, since it is assumed that at low demands, heads 
will be adequate. Two path equations are specified between the 
source and the reservoir. For example, the one for loading 
number 1 is 

�(22) 
where &HUm(l) - JUm(l)xUm is the head loss in the mth 
segment of the pipe connecting nodes i and j under the /th 
loading; XP{\, I) is the head added by the pump (whose 
number is 1) under the /th loading; and XV(v, t) is the head 

 

�Dual 
�

Activity 

Frictio
n 

 

Existing 
Pressure 
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The compulation stopped when max OQ{1) equaled 1.0 or 
after 30 major iterations. Results will be primed out every live 
major iterations or whenever best total cost is further improved. 
Flow change in loop / will be executed only if DQ(I)/DQ max 
is greater than 0.20. The number of minor iterations allowed after 
a feasible solution has been reached for a flow distribution was 160. 
The local solution is considered to be reached if last improvement 
per iteration equals 0.0%. 

loss due to dummy valve number v under the /th loading. Two 
dummy valves appear in this equation, each able Lo produce a 
head loss when flow is in one of the two possible directions. 
The optimal solution, which was obtained in 22 flow iterations, 
is given in Tables 8a and 86, The total cost is 299.851, out of 
which 267,113 is the pipeline cost, 4330 is for raising the 
reservoir by 2.2 m, and 28,408 is the pumping cost. The pump 
is operated only under loading number 2, and adds 6.3 m to 
the head, above the head al the source. The cost of the optimal 
network for the ini t ial  flow distributions is 323.666, of which 
294,350 is the pipeline cost. 9700 is for raising the reservoir by 
4.9 m, and 19,616 is the pumping cost. The pump is operated 
only for loading number 2, and adds 4.4 m of head above the 
source. The process has thus reduced the total cost by over 7%, 
relative to the optimal cost for the i n i t i a l  flow distribution. 

SUMMARY AND CONCLUSIONS 
The main features of the LPG method for optimal design of 

water distribution systems, as presented in this paper, are the 
following. 

1. The method deals with multiple loadings simultane 
ously. 

2. Operational decisions are included explicitly in the de 
sign process. 

3. Decision variables are pipe diameters, pump capacities, 
valve locations, reservoir elevations, and pump and valve op 
erations for each loading. 

4. The method yields a design that is hydraulically feasible 
for each of the loadings. 

5. The design obtained is closer to being optimal than the 
one from which the search is started; this holds true even when 
the optimization procedure is terminated prematurely. 

6. The method is applicable to real, complex systems. 
Some weak points of the method are the following. 
1. The engineer has to select the layout of the network, the 

location of pumps and reservoirs, and the initial How distribu-
tion. Even though the method can end with 'zero elements' 
(eliminate certain elements), thereby allowing some measure 
of selection between alternate system configurations, these can 

only be configurations which are 'close' to the one specified by 
the engineer. 

2. The objective function contains only capital and oper 
ating costs. It should reflect other aspects as well, such as 
performance (for example,  instead  of imposing rigid con 
straints on pressures at supply nodes, one could use residual 
pressures as an additional performance criterion and include 
them in the objective function) and reliability (a more basic 
delinilion of reliability should be developed and made part of 
the objective function, instead of setting arbitrary constraints 
on the minimal diameter allowed for certain pipes). 

3. Only a local optimum is reached by the search pro 
cedure. Several starling points have to be tried if one is lo have 
some assurance of not having missed a better design. 

4. The search procedure relies on several heuristics whose 
efficient use requires experience. 

5. Flows into and out of reservoirs have to be fixed for 
each of the loadings. This ensures proper operation of the 
reservoirs but does not include their capacity as a decision 
variable. 

Several aspects uf the overall approach, the LPG method, 
and its implementation in the computer program are under 
improvement and further development. Among them are the 
following aspects. 

1. A 'screening model1 is being investigated. Its task will be 
to propose the basic system configuration, which will then be 
optimized by the LPG method. 

2. Instead of specifying the initial flow distribution, the 
engineer w i l l  be able lo specify the initial design. A network 
solver will solve for the flows in this network, and the optimi 
zation procedure will take over from there. 

3. Several aspects of the optimization procedure are being 
investigated. The heuristics governing the step size and the 
termination criterion for the search procedure are under i n  
vestigation. The termination criterion for the linear program 
within each flow iteration is being examined. This is aimed at 
preventing excessive computations after feasibility is reached 
in the linear program, since there is no need to reach exact LP 
optimality except on the last flow iteration. Other search meth 
ods for flow modilication are being examined, among theni a 
method which does not use the gradient. 

APPENDIX 1:SO M E  DETAILS OV rat IMPLEMENTATION 
Selection of the candidate diameters. At the outset the l i s t  

of candidate diameters for each l i n k  is based on a minimum 
and a maximum value of the hydraulic gradient supplied to the 
program. We have normally used 0.0005 and 0.025 (or 0.050) 
for these values. For the i n i t i a l  assumed flow distribution,  
these limiting gradients will yield a maximum and a minimum 
diameter admissible for each l i n k .  All pipes in this diameter 
range, from a l i s t  supplied lo the program as data, are then put 
on the initial candidate l i s t  for the l i n k .  There is good reason to 

TABLE 9b.    Basic Pump Data: Cost Function of Pumps 

 

TABLE 9a.    Basic Design Data for a Real Network With Two Loads 

 
Other data include the following. Pump I was connected lo pipe 65 

and pump 2 to pipe 18. The assumed initial cost for both pumps was 
2000. The additional storage elevation cost (per unit of elevation) 
for storage I was 22,000. 
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specify a relatively narrow range, since it decreases the number 
of decision variables in the initial LP problem (the number will 
change later). At the same time, the limits cannot be too 
narrow, or the linear program will have no feasible solution 
and the computer run will fail. 

If the first selection of candidate diameters resulted in an 
optimal LP solution the list may have to be modified after the 
flows in the network have been changed by the gradient move. 
The modifications in the lists of candidate diameters are based 
on the following rules. (I) If in the optimal LP solution a link 
is made entirely of one diameter, then for the next linear 
program the l ist  is made of three diameters, the existing one 
and both its neighbors. (2) When in the optimal LP solution a 
link is made of two diameters, the l i s t  for the next linear 
program is made of these two, plus one adjacent to that 
diameter which has the longer of the two lengths. 

Both cases result in a list  of only three diameters for each 
l in k .  In going from one LP solution to the next the list for a 
particular l i n k  may remain unchanged, or a diameter may be 
dropped off one end of the l i st  and a new one added at the 
other. 

Updating the LP matrix and its inoer.se between successive 
flow iterations. Since the coefficients in the LP matrix all 
depend on the flows in the network, they will all change after 
each flow iteration, A well-known technique for updating the 
inverse matrix, due to changes in the matrix itself, was imple-
mented and proved to save considerable computer time. The 
same thing holds true upon introduction of a new candidate 
diameter to replace an old one. The column that belongs to 
this new diameter now has new values in it. As occurred 
before, the inverse is updated in an efficient way, which elimi-
nates the need to reinvert. 

The first basic solution for each linear program. Since the 
changes from one flow iteration to the next arc not major, it is 
reasonable to assume that the new optimal basis will contain 
much of the previous one. The number of iterations in each 
linear program can be kept low by starting it with the old 
basis, i.e., the same variables are in the starting basis. There 
are three possible cases. (I) This basis is optimal, (2) This basts 
is feasible but not optimal. A new LP iteration is started, and 
the process is continued to optimality. (3) This basis is not 
feasible. This is detected by computing the value of each row 
and finding that one or more of the RHS's are negative (when 
all are nonnegative the basis is feasible, and we are in the second 
case above). One then finds that row having the largest (abso-
lute) value, and one subtracts this row from all other infeasible 
ones. This makes all other rows feasible, since now their value 
is positive. In the only row that is infeasible, one introduces an 
artificial variable, which is given a very high penalty in the 

objective function and is thus 'forced out' in the next iteration. 
These updating procedures have been found to keep the num-
ber of LP iterations down. 

Computing times. The program was written in Fortran and 
was run on an IBM 370/168. Computing times for the three 
examples given in this paper were as follows: two loops, 
single loading (Figure 2), 19 iterations, 4.05 s cpu; two loops, 
two loadings (Figure 5), 22 iterations, 7.39 s cpu; and real 
network. Appendix 2, 10 iterations, 540 s cpu. These times do 
not include compilation (which required 11 s of cpu time), 
since the runs were made from the compiled program. 

APPENDIX 2: DESIGN OF A REAL SYSTEM 
The method was applied to the system shown in Figure 6, 

which has 51  nodes, 65 pipes.  15 loops, two pumps which 

 

 

TABLE 9c.    Basic Cost Data for Pipes 
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TABLH 9c.    Section Data 
 

 

supply from external sources, and a balancing reservoir. (The 
computer output shows 52 nodes, because the reservoir is 
given two numbers, one for each loading. It shows 34 loop 

equations: 15 for loops and two for equations between the 
sources and the reservoir, one equation for each loading.) This 
network was designed several years ago to serve one out of 
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TABLB 9/    Structure of the Initial Linear Program: Strings of Pipes for Pressure or Loop Constraints 

 
The constraint data include 340 variables, 22 pressure equations, four source equations, 30 loop 

equations, and a coefficient matrix of 121 rows and 461 columns. 
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TABLE 9g.    Optimal Solution for the Real Network: Section Data and Optimal Diameters for Iteration 2 

 
The solution was reached after 43 improvement iterations; in all there were 45 minor iterations. The tolal network cost, including penalty 

costs was 1,403,999,488; the total network cost excluding penalties, 5.722,635: the total pipeline cost, 5,440,668: additional storage elevation 
cost, 51,233; and (he total pumping cost, 230.735. 
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four pressure zones within a city whose total population is 
forecast for the end of the design period at 200,000, Elevations 
in this pressure zone range from 1295 m at the lower right to 
1370 m at the top left, with a hill rising to 1450 m where the 
reservoir is shown. Residual pressures are to be at least 30 m at 
all nodes. (Only 22 constraints on minimum pressures at se-
lected nodes were specified: 12 for the peak loading, load 1, 
and 10 for the low-demand loading, load 2.) 

The design was based on the projected peak hourly demands, 
which total 1720 mVh (1.1 mgd), and a low-demand period 
with a total demand of 725 ma/h (0,46 mgd), during which the 
reservoir was to fill. The reservoir capacity was set at 6900 m3 

(1.68 mg) by using reserve and fire-fighting considerations. 
Difficulties were encountered in the engineering design, even 

though a network solver was used extensively. The main diffi-
culty was in utilization of the reservoir to balance the load on 
the sources. A satisfactory design was reached only after con-
siderable trial-and-error work. Costs from the original design 
were not available, and therefore the optima! cost of the LPG 
design cannot be compared with that of the engineering de-
sign. It is clear, however, that a satisfactory hydraulic design 
has been reached, and that it is cheaper than the design on the 
first iteration. 

Tables 9a-9g show the design and cost data, the setup of the 
first linear program, and the optimal solution. The computer 
run cost approximately S60 and resulted in a cost reduction 
from 6,263,747 on the first flow iteration to 5,722,635 at the 
optimal solution, a reduction of approximately 9%. 
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Alperovits and Shamir [1977] have provided a valuable con-
tribution to the problem of optimal distribution system design. 
They have suggested an iterative approach which uses the  
dual variables from the solution of a suboptimal linear pro- 
gram to determine gradients with which the linear program is 
modified. Since we believe the approach is a significant ad-
vancement, we are attempting to integrate it into our own re-
search activities. Alperovits and Shamir have provided us  
with a preliminary version of their computer program. In  
working with this material we find that there are mathemati- 
cal corrections in the gradient derivation which are required  
to calculate the gradient and to apply the gradient properly to 
subsequent iterations. 

In the derivation of the gradient for path p as given in (9)- 
(12) of the original paper the interactions of the paths with  
each other have been neglected. As a result, required terms  
are omitted from (12). A derivation of the gradient which in-
cludes these extra terms is presented below. An additional,  
and less important, point is that the sign of each gradient term, as 
presented in the original paper, appears to be incor- 
rect. This can be seen by examining Table 4 of the original pa- 
per, if G1 = ∂(cost)/∂(∆Q1), as defined in (12) of the paper,  
and G1 is positive, a positive ∆Q1, should result in a positive 
∆(cost); in such cases, however, ∆(cost) is actually negative.  
This difficulty may be more a matter of presentation than of 
substance, since the computer program provided by Alpero- 
vits and Shamir correctly applies their gradient, once the ad-
ditional terms are included. 

The additional terms required in the gradient calculations 
are necessary because a change in flow in one path affects the 
flow in other paths in the network. For example, consider the 
network presented in Figure 2 in the original paper. It is a 
two-loop network, and link 4 is in each loop. Each loop is a 
path as defined in (7), and a change in flow in one loop affects 
the flow in the other loop. In addition, there are six paths de- 
fined by the six minimum node pressure constraints, and these 
must also be considered when these constraints are binding 
and can therefore have nonzero dual variables. Although 
these paths must be considered in calculating gradients for other 
paths, it is not necessary to calculate a gradient for these 
paths specifying minimum node pressure. 

The gradients should be calculated using the following re-
placement for (12): 

whether or not path r uses link i, j in the same direction as  
path p. The sign is negative if the direction is the same and 
positive otherwise. 

As an example, the information in Table 1 of this comment 
can be used to calculate the correct gradient for iteration 18 of 
the example problem. That iteration is described in Figure 3b 
and Tables 4, 5a, and 5b of the original paper. Loop A in- 
cludes links 3 and 4 in the direction of flow and links 2 and 7 
in the opposite direction. With the exception of the path to 
node 2, every path in Table 1 includes at least one of the links 
in loop A and must therefore be included in the calculation of 
the gradient, ∂(cost)/∂(∆QA). The equation for the gradient 
component would be 

 
or 

 
Similarly, the gradient component for loop B can be ob- 

tained as follows: 

 
or 

 
Since each gradient is positive, both ∆QA and ∆QB should be 
negative. 

Alperovits and Shamir's computer program was modified to 
incorporate the new gradient calculation for the small ex- 
ample problem. The programing change is specific to that 
 

 

where R is used to denote all the paths other than p in the network 
and the sign of each additional term depends on
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problem and does not yield a general purpose program. Be- 
cause of the complexity of the program no attempt at a gen- 
eral purpose correction was made. Using the starting solution 
given by Alperovits and Shamir (iteration 1 in their Table 4) 
and the same initial step size, the intermediate results shown 
in Table 2 were obtained. The final cost of 441,522 (using the 
same cost units specified in the original paper) represents a 
considerable improvement from the 479,525 obtained and 
presented in the original paper. 

DERIVATION OF GRADIENT EXPRESSION 
For illustrative purposes the gradient expression given in 

general form in (1) is derived for the example problem shown 
in Figure 1. For simplicity, only the two loop paths are con- 
sidered. It is assumed that additional paths, which would be 
used to specify minimum node pressures, are not included 
and therefore such paths are not considered in the derivation 
of the gradient expressions. In an actual problem, of course 
these paths must be taken into account, as shown in (2) and 
(3). New notation is defined as follows: 

Hlij head loss in the link between nodes i and j in the direc- 
tion of the flow; 

Qij flow in the link between i and j; 
dα change in flow in all the links in loop A; 
dβ change in flow in all the links in loop B; 
γ head discontinuity at node 4 from loop A; 
8 head discontinuity at node 5 from loop B. 

The signs of the flows, head losses, changes in flow, and 
changes in head losses are all positive in the direction of the 
arrows in Figure 1. Solving the linear program results in the 
following: (1) the set of Xijm values which give the minimum 
cost for the given flow pattern, (2) the cost of that solution 
and (3) the set of dual variables, which are associated with 
pipe length, minimum heads at the nodes, and pressure along 
the paths in the network, 
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cost in the space of the loop flows, since the loop flows are the 
only variables that can be changed to go from one linear pro-
graming problem to the linear programing problem of the 
next iteration. 

First, the discontinuity expressions are written explicitly: 

 
We wish to determine the flow changes necessary to cancel γ 
and δ; the total change in head loss around the loops due to 
the changes in flows should be –γ and – δ, respectively. Thus 
the total increment in the head loss around each loop should 
be zero. 

Fig. 1.    Example network. 
 

The  loop  constraints  from   the  linear   program  can  be  writ- 
ten in the direction shown in Figure 1, 

 
The dual variables for these constraints, WA and WB, respec- 
tively, represent the change in cost that would result if the 
head loss in the loops could change. It is not possible for this 
change to occur in the actual problem, but it is useful to con- 
sider, in a mathematical sense, the imposition of a change in 
the head loss constraints. If a discontinuity in head loss is in-
troduced, WA and WB can be used to determine whether the 
discontinuities in the right-hand sides of the constraints 
should be positive or negative to reduce the cost of the system. 
If the appropriate changes in head loss are made and the lin- 
ear program resolved, the resulting network would not be hy-
draulically balanced. In the physical system, changes in the 
flows in the links are necessary to balance the head losses (i.e., 
to 'heal' the discontinuity). Since flow and head loss are not 
independent, the necessary changes in flow can be predicted. 
We wish to reverse this process, to change the flow (which is 
initialized before formulating the linear program) in such a 
manner that cost is reduced. It is important to note that the 
change in flow is not introduced to impose a change in head 
loss but is to correct a head loss discontinuity. 

What is needed is an indicator of the direction and magni- 
tude that cost will change with a change in the flow pattern, 
i.e., ∂(cost)/∂α and ∂(cost)/∂β. If these values are known, it is 
possible to calculate the changes in flow in each loop for any 
suitable step size. Once α and β are calculated, the change in 
flow in each link can be calculated. If the change in flow in each 
link is noted as dQij, 

 
All the information required to determine the change in 

cost with respect to a change in the flow in the paths is now 
available, 

 

The terms ∂(cost)/∂γ and ∂(cost)/∂δ are the dual variables for 
the loops, and the remaining terms can be found by picking 
out the coefficients of the differentials in (17) and (18), 

 

The flow pattern is completely determined by the known
nodal inflows and outflows and the loop flows (α and β in the 
sample of Figure 1). What is desired is the gradient of the
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Substituting these parital derivatives and the dual variables 
into (19) and (20), ∂(cost)/∂α and ∂(cost)/∂β can be expressed 
as 

 
where Dm is the pipe diameter, Lij is the length, and     and C 
are constants. Taking the derivative with respect to Qij, 

 
The constant appears in each term of the gradient equations 

and can be omitted. It is therefore possible to write the gradi- 
ents using only the dual variables and the ratio of head loss to 
flow in each link, 

 

A generalization of the above derivation leads to the gradi- 
ent equation given previously as (1). 

A minor additional comment applies to the authors' state- 
ment that at the optimum of each linear programing problem, 
'each link will contain at most two segments, their diameters 
being adjacent on the candidate list.' A counter example can 
be obtained by changing the cost of 16-inch diameter pipe in 
Table 1b of the original paper from 90.0 to 125.0 and solving 
the small example problem. The modification of the cost input 
results in the use of 14- and 18-inch pipe in one of the links, 
and these diameters are not adjacent. This point does not af- 
fect the overall method of optimization, but would require, 
perhaps only in such specially contrived cases, the modifica- 
tion of the heuristic employed for selecting feasible pipe diam-
eters. Limiting the number of feasible diameters to three, as 
suggested, would seem to be too restrictive for links with non-
adjacent diameters. 

From the Hazen-Williams formula, 

In conclusion, we believe the solution method provided by 
Alperovits and Shamir offers a promising advance in the field 
of optimal distribution system design. What is required is a 
further exploration of the interrelationships between the con-
straints of the linear programming formulation for both looped and 
branched systems. 

REFERENCE 
Alperovits, E., and U. Shamir, Design of optimal water distribution 

systems, Water Resour. Res., 13(6), 885-900, 1977. 

(Received April 10, 1978; 
revised October 25, 1978; 

accepted November 15, 1978.) 

∧

α



VOL.. 15, NO. 6 WATER RESOURCES RESEARCH DECEMBER 1979 

Reply 

E. ALPEROVITS AND U. SHAMIR 

Environment and Water Resources Engineering, Technion-Israel Institute of Technology, Haifa, Israel 

We are grateful to Quindry et al. [1979] for their comments. 
Their correction of the procedure for computing the gradient 
indeed improves the performance of the linear programming 
gradient method for the examples tested. Quindry et al. pro- 
vided us with the comments during their work with our pro- 
grams, and while they implemented the correction only for 
the specific example cited, we have modified the general pro- 
gram to perform the gradient calculations as revised [Quindry 
et al., 1979, equation (1)]. The new version of the program 
also incorporates numerous other modifications and improve-
ments, which resulted from use in the design of a number of 
real water distribution systems. 

As Quindry et al. state, the matter of the signs of the gradi- 
ent terms is one of notation and presentation rather than one 
of substance. To generalize, the following statement can be 
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made: Denote by F the objective function. Then ∂(F)/∂(∆Qp) 
> 0 indicates that ∆F > 0 for ∆QP > 0. If F is to be minimized 
(as is the case for cost, the objective function considered in the 
original paper), the gradient term for changing Qp must be 
given the opposite sign of the derivative, i.e., Gp = –∂(F)/ 
∂(∆Qp); while if F is to be maximized (for example, if F is some 
measure of system performance), then Gp = d(F)/ 
 ∂(∆Qp). 
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