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Cell models are commonly used for forecasting water levels in aquifers. Calibration of such models is
achieved through identification of their parameter values, the transmissivities and storativities of all cells,
using historical data. Several methods of formulating the identification as a linear or quadratic program-
ing problem are presented. Examples are given, results of the various methods compared, and the sen-
sitivity of these results to errors in the data is discussed. Inflows or outflows during historical periods may
also be determined by the same methods; an example for a real aquifer is presented.

INTRODUCTION

The problem of identifying the parameters of an aquifer
model is known also as the inverse problem. Here identifica-
tion of parameters means the determination of the distribu-
tions of storativity § = S(x, y) and transmissivity 7 = T(x, y)
of an aquifer in which we assume two-dimensional flow in the
horizontal plane. The complete distributions are required if
one wishes to forecast the future regime in the aquifer in
response to various imposed activities of pumping and
recharge.

An indirect way of obtaining the sought distributions is by
some trial and error technique of adjusting the various
parameters until an acceptable agreement is reached between
the response of the model and that of the aquifer itself under
some specified operation regime. A prerequisite for the ap-
plication of this approach is the availability of hydrological
data (e.g., water levels and rates of pumping, discharge of
springs, artificial recharge, and natural replenishment) for
some period in the past called the identification or calibration
period. Sometimes, certain parts of the historical hydrological
data mentioned above are not known. In this case we may
regard the missing information items also as unknown
parameters, the values of which have to be determined during
the identification procedure. The natural replenishment of an
aquifer is often considered such an unknown parameter.
Unless otherwise specified, we shall consider henceforth the
problem of identifying the distributions of § and T only.

The main disadvantage of a trial and error technique is
that it does not involve an algorithm for seeking the solu-

" tion systematically. In recent years, advanced mathematical
methods have been developed and implemented for determin-
ing unknown model parameters. Among these one may men-
tion the works of Deininger [1969], Vemuri and Karplus [1969],
Korganoff [1970), Coats et al. (1970}, Emsellem and de Marsily
[1971], Kleinecke {1971], and Neuman [1973]. The present
work is another attempt in this direction.

In this work the aquifer is represented by a finite difference
model, and linear and quadratic programing procedures are
employed as tools for identifying its parameters. The proposed
methods have been tested on synthetic models, the parameters
of which were a priori known. This technique made it possible
to check results and compare the different methods. The ap-
plication of the proposed techniques to cases of practical in-
terest is now under way and will be reported separately.
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FINITE  DIFFERENCE MODEL

Various numerical models of groundwater systems may be
employed. Essentially, the models considered in this paper
deal with flow in a confined aquifer or in a phreatic one in
which the spatial variations of the water table are small with
respect to the thickness of the aquifer. It is assumed that- the
aquifer is isotropic and that the flow in it is essentially two-
dimensional in the horizontal (x, y) plane.

The continuity equation for this model is
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where T = T(x, y) is the transmissivity of the aquifer, § = S(x,
») is the storativity of the aquifer, ¢ = ¢(x, y, ¢) indicates the
elevation of the water table or the piezometric surface, » = r(x,
». 1) represents inflow per unit (horizontal) area (e.g., by artifi-
cial and natural replenishment), and p = p(x, y, 1) represents
withdrawal from the aquifer per unit (horizontal) area (e.g., by
pumping).

The flow domain is subdivided into a network of rectangular
cells (Figure 1) which serve in constructing the finite difference
representation of (1).

In the cell model the continuous variables transform into
discrete ones in the following way:
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In Figure 1 the centers of the cells are indicated in order to
emphasize the fact that any property of the cell is represented
by a single value which is assigned to its center. Note that the
value of the transmissivity is also assigned to the centers of the
cells and not to the border lines between adjacent cells, as is
sometimes done. The number of transmissivity values, which
are to be identified, is equal to the number of cells, whereas as-
signment of values to cell boundaries would result in roughly
twice this number.

Two finite difference schemes, commonly used for
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Fig. 1. An aquifer model divided into cells.
forecasting groundwater levels, are presented below. Figure 2 + 1 (&J.H + T, .¢i‘j+1n+1 — b
shows the nomenclature used for a typical cell (i, j) in the finite Ay; 2 AYiir/e

difference equations.
The first finite difference model to be employed is the im-

plicit scheme:
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Fig. 2. Nomenclature for a typical cell.
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As seen from (10) the average transmissivity is used for com-
puting the rate of flow between two adjacent cells.
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The second scheme is based on the Crank-Nicholson
method [Von Rosenberg, 1969]:

+1/2 +1/2
__1__ (Ti+1,i + Ti,i_¢i+1,j" _ ¢i,in

ax 2 Ax; 11y
- Ti—l.i -.|- Ti,i’¢i,jn+l/2 _ ¢iA1‘jn+1/2)
2 AX; 19
-+ _1_ (Ti,:'ﬂ + T,; "bi.i+1n+1/2 — ¢i'in+1/2
a; 2 AYiise
— Ti,i—l + Ti,a'.d)i.jnﬁ/z —_ ¢i'1__1n+1/2>
2 Ayi_1/2
n+1 n

where spatial gradients are computed at the rﬁidpoint of the
time interval. For example,

¢ ot 1/2 Yi,i 1 Yi,q4
B

= 3 (12)

BouNDARY CONDITIONS

One has to specify the appropriate boundary conditions
when (10) or (11) is written for a boundary cell. The possible
boundary conditions are a given potential, an impervious
boundary, and a given flux across the boundary. To introduce
the boundary conditions in the finite difference model, we have
used fictitious cells, located outside the model boundary (see
Figure 1). The transmissivity of each such cell was made equal
to that of the aquifer cell to which it is adjacent, and the values
of ¢ in the fictitious cell were manipulated to introduce the ap-
propriate boundary condition into the model. This leaves the
number of transmissivities to be identified equal to the number
of cells. The methods for specifying the boundary conditions
are detailed eisewhere [Hefez et al., 1972].

STATEMENT OF IDENTIFICATION PROBLEM FOR A CELL MODEL

The identification problem can be stated as follows: Deter-
mine 7;; and S;; for each cell of the model, using the equa-
tions obtained by writing either (10) or (11) for every cell and
for every time interval during the calibration period. The fol-
lowing characteristics have to be specified for the particular
problem at hand: shape of model, its division into cells,
boundary conditions in terms of values of ¢ in the fictitious
cells, initial values of ¢, values of ¢ in all cells at the beginning
and end of each time interval, and inputs and outputs (artifi-
cial and natural recharge, pumping, spring discharge, etc.) for
all cells and for all time intervals.

The method of solution proposed here enables several relax-
ations relative to the above requirements: (1) when informa-
tion is missing in some cells, one can identify the parameters
for only part of cells; (2) it is possible to identify unknown dis-
charge rates; (3) when boundary conditions are unknown, one
may identify parameters for all cells except the storativity in
cells adjacent to the unknown boundary; and (4) it is possible
to identify all parameters when water levels are known for only
part of the historical period in some cells.

IDENTIFICATION AS AN OPTIMIZATION PROBLEM

For the sake of simplicity, let us first assume that data are
available for all cells at all times, i.e., ¢, p, and r are known for
all i, j, and n. Denoting the number of cells by C, the number
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of sought parameters is 2-C, while the number of available
equations is N-C, where N is the number of time intervals in-
cluded in the calibration period. The equations are linear in
the unknowns T and S and can be solved as a system of linear
equations provided that the number of equations is equal to
the number of unknowns and provided that all equations are
independent of each other. Obviously, the first condition is
satisfied when N = 2, i.e.,(for two time intervals. In cases of
parameter identification of practical interest, however, we
usually have information for more than two time intervals, i.e.,

(13)

which means that the number of equations is larger than the
number of unknowns.

If we wish to solve the problem as one of solving 2- C equa-
tions in 2- C unknowns, we have to pick two specific time inter-
vals, which brings up the questions of which ones to choose
and whether each pair of chosen intervals will yield the same
solution. The answer to the last question is in general negative.
This stems from the fact that in the equations, water levels and
parameter values are those of a model, whereas the informa-
tion we use is that of water levels in the field. This discrepancy
introduces a certain noise in each equation. Each equation
becomes an approximation, and hence a different solution will
be derived from any subset of equations. Obviously, we should
be interested in making use of all the information available, as-
suming that as we use more information, a better solution will
be obtained. ‘

Hence the problem becomes one of obtaining the best set.of
parameters, i.c., that set which will satisfy the equations most
closely, closeness being defined in some exact sense. In other
words, we are faced here with the problem of obtaining the op-
timal solution of the given set of equations. In what follows we
shall show that by choosing the criterion according to which
we determine how closely the equations are satisfied, we deter-
mine the type of optimization problem we have on hand.

So far we have assumed that the only unknown parameters
are T and S and that all the information for the calibration
period is available. When information is missing for any cell
during any time interval, the number of equations will be
reduced. '

N>2

STATEMENT OF THE IDENTIFICATION AS A LINEAR OR
QUADRATIC PROGRAMING PROBLEM

It was shown above how the identification problem is
reduced to one of seeking the optimal solution to a set of equa-
tions. We shall now be more specific and state the problem on
hand as one of linear or quadratic optimization. We shall show
several alternatives for defining the objective function and dis-
cuss the differences among them.

Let us first rewrite the model equation (11) in a form which
will emphasize that 7 and S are the unknowns to be identified:

a,-,,-"“/z . Ti,j—l + b,:'jn+”2 . Tl—l,j + Ci‘jn+l/2‘ . T,"j + di’jn+1/2
Ty + e Topy + [0 - Sy
= pi,j"+l/2 _ ri,jn+1/2 (14)
The coefficients in this equation are
n+1/2
n+1/2 __ —1 _A¢‘i,i—1/2 (15)
i,7 -
2Ay; Ayi-1/a
n+1/2
n+1/2 __ —1 A¢i—1/2,i
b; i = ' (16)
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Equation (10) can be treated in a similar manner. In order to
simplify the presentation, while emphasizing the various op-
timization criteria, (14) may be further reduced to the follow-
ing compact form:

5
Z gn T + 1,777 S0
m=1

n+1/2 n+1/2

= Di,; — Fi; (21)

V i, j,n
where the sum is taken over the five terms which include trans-
missivity, i.e.,

_ n+1/2
Zg,,,'T,,, = a;, T

n+1/2 n+1/2
+ b, *Tia,; +Cm T,

+ di.i"+1/2' T, + ei.inﬂﬂ' T; ;i (22)

Even when the optimal solution is obtained and inserted
back into the equations, only in part of the set of equations
(21) will equality hold between the right- and left-hand sides.
In the remaining equations a difference, or deviation, will be
observed between the two sides of the equation. We shall use
the absolute values of these deviations and their squares in
order to define five different possible criteria for approaching
an agreement between the two_ sides of the equations.

Criterion A: the maximum absolute deviation. Let X denote
the maximum absolute deviation occurring in one equation
(21), i.e., for all cells and all time intervals. We may therefore
state that all other deviations are less than or equal to X:

5

n+1/2 n+1/2 n+1/2
ng'Tm+fi,i =S — Pii + 7.
m=1

<X (23)

This inequality may be replaced by two equivalent ine-
qualities:

Vi, j,n

5
Z1 &n T + fo,"71% S

n+1/2 n+1/2
— Pi,i + r; < X

Vij,n
5 (24)
D gn T+ 10" S,
m=1
_ pi'in+l/2 + ri’in+1/2 Z _X v i, j, n

Using this criterion the identification problem may now be
stated as the following optimization problem: determine the
unknown values of S;;, T;;, and X from
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min F = X (25)
subject to the constraints
5
Z gm'Tm + fi,,'n+1/2'si,,' — X
m=1
<p T = M Vi, j,n
"7 .7 s ./3 (26)
2 g T 1S+ X
m=1
2 pi’in+1/2 _ I‘,in+1/2 v i, j, n
and to the nonnegativity restrictions
T, Sijy X 20 Vi j 27)

This is a typical statement of a linear programing problem in
which there are (2C + 1) decision variables and 2CN con-
straints (not counting the physical restrictions expressed by
(27)). One should note that X is.regarded here ‘as a decision
variable and it alone appears in the objective function.

Criterion B: the sum of the absolute values of the maximum
deviations in all time intervals. For each time interval we have
C (equal to number of cells) balance equations, with different
deviations between the two sides. Let Y"*/2 denote the max-
imum absolute value of all deviations corresponding to the (n
+4) time interval. We may then state that all other deviations
for the time interval are smaller than or equal to Y"1 je,,
foreachn =0, -+, N — 1,

5
D 8n T+ £, 8,
m=1

n+1/2 n+1/2
- Di,j +

<Y v, (28)
The number of maximum deviations Y"*'/? is equal to the
number of time intervals in the calibration period.
The second linear identification problem can therefore be
stated: determine 7, S; ;, and Y"**2 such that the sum of the
absolute values of the maximum deviations in all time intervals

will reach a minimum:

N-1
. 1/2
min F = », ¥**V

(29)
n=0
subject to-the constraints
5
Z Em* Tm + fi.infl/z'Si,i - Y"+1/2
m=1
< ) _n+1/2 —r .n+1/2 V i, .,n
— p’t 2 7 Tl ] (30)
5 . .
ng'Tm + f«;,i"H/z'Si,j + Yn+1/2
m=1
2 pi’]_n+l/2 . i’]_n+1/2 v i, j, n
and the nonnegati‘}ity restrictions
Tijy Sig, YPH2 >0 Vi jon 31)

Here we have (2C + N) decision variables and 2CN con-
straints of type (30). Again, 7 and S do not appear in the ob-
jective function.

Criterion C: the sum of the absolute values of the maximum
deviations in all cells. Denote by Z; ; the maximum of the ab-
solute values of the deviations occurring in the N equations of
a cell. We may then state that for each cell the absolute values
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of the deviations in all the balance equations will be smaller
than or at most equal to Z, ;, i.e., for each (i, ),

5

1/2 1/2
E &n' T + fi,in+ 'Sf,in+
m=1

n+1/2

— 2"+ <z, Vn (32

Accordingly, the third linear optimization problem may
now be stated: determine 7}, Sy, and Z; ; so as to minimize
the objective function F:

min F = Z ZZM
i i

(33)

subject to the constraints

5
Z.gm‘Tm + fi,:'n+l/2'Si,:‘ - Z;;

m=1

< p nt1/2 :rn+1/2

i, 7 L%

Vv i,j,n (34)

5
Z &m" T, + fi,jn+l/2'si,j + Zi,i
m=1

> p _n+l/2 _ An+]/2

= %) i

Vo isj,n
and the nonnegativity restrictions

Tijs Sipy 21, 2 0 Vi, j (35)
The number of decision variables here is 3C, and the
number of constraints of type (34) is 2CN.
Criterion D: the sum of absolute values of all
deviations. Denote by U, ;**'? the absolute value of the

deviation for each equation, i.e., for each i, j, and n,
q J
5
+1/2
ngTm+ fiyin 'Si,i
m=1 .

— Ui,j"+1/2 (36)

nt+1/2 n+1/2
= Pi.i +ri;

The identification can now be stated as a linear programing
problem in the following way: determine the values of T, , S, ,
and U, ;**'/? such that the objective function F will attain a
midimum

. 3 L e
min F = 2, 3 30 U™ (37)
subject to the constraints
Z g.,.'Tm _|_ fi,in+1/2'sc‘,i - Ui',_n+1»/2
m=]
: 1/2 n+1/2 Lo
S pi " = Vi, j,n 38)
5
Z &n T + fi?,in+1/2lsi,j + Ui,jnﬂ/z
m=1
Z pi.j'n+1/2 - ,',1‘"4-"/2 V i, j, n
and the nonnegativity restrictions
Ti,j, St,j, Ut’jn+1/2 =20 v i, j, n (39)

Here the number of unknowns is C(N + 2) and the number
of constraints of type (38) is 2CN. Since the absolute value of
the deviation is defined by the equality (36), in the optimal
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solution only one of each pair of constraints will be binding,
while the other will actually be redundant. In order to avoid
this unnécessary redundancy which will only burden the solu-
tion, let us modify the criteria defined above, which will be
denoted as D/1, and define an alternative criterion D/2.
Let the deviation in each equation be expressed as a
difference between the values of two positive variables:

5

/2 +1/2 1/2
Z gn' Tw + fm"” “Sei =0T "
m=1

n 2 n
—_ Vl-'i +1/ — W,,'.j +1/2 (40)
The deviation itself may be either positive or negative,
depending on the magnitudes of ¥ and W. The linear op-
timization problem may now be restated: determine the values
of Ty, Sij, Vi"t V2, and W, "*/2 such that objective function

F will attain a minimum:

min F = Z 2 Z (Vi.i”+l/2 + qu,in+i/2) (41)

subject to the constraints

5

1/2
Z g T + 1" 8 — V"7 + w2
m=1

— pi,;'n+l/2 _ ri,j"+1/2 v i, j, n (42)
and the nonnegativity restrictions
Ti‘/, Si,j, V,-‘jn+1/z, Wiyjn+1/2 >0 v i, j, n (43)

In this form there are 2C(V + 1) decision variables and NC
constraints of type (42). In the optimal solution, at least one of
each pair for a cell, ¥ and W, will vanish. The advantage of in-
troducing this modified form of the criterion is that the
number of constraints has been cut in half, resulting in a
significant reduction in computational effort.

Criterion E: the sum of the squares of the deviations. A
quadratic objective function may be defined by taking the sum
of the squares of the deviations between the two sides of the
equations for all cells and all time intervals. The optimization
problem will then be stated: determine the values of T ; and
S, such that the objective function F will attain a minimum:

5
min F= 2, 3 > <Z g T + f:,"% 805
n i 7 m=1

2
_ pi,in+l/2 + ri‘jn—i—l/?) (44)

subject to the nonnegativity restrictions

Tij,S:; 20 Vij (45)

This is a typical quadratic programing problem, with a
quadratic objective function and linear constraints.

The main difference between this and the previous optimiza-
tion problems is that here the balance equations appear as part
of the objective function, whereas the constraints are only the
physical (nonnegativity) ones.

SOLUTION OF THE LINEAR AND THE QUADRATIC PROGRAMING
PROBLEMS

The solution of linear programing problems can be obtained
by using ready made reliable computer programs, which are
nowadays supplied as a routine by computer manufacturers.
In the present work, use was made of IBM’s program
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TABLE 1. Comparison of the Optimization Problems
Linear Criteria Quadratic
Criterion
A B C D/1 D/2 E
Number of variables  2C + 1 2C+N 3C CIN+2) 20N+ 1) 2C
Number of 2CN 2CN 2CN 2CN CN
constraints
Number of variables 1 N C CN 2CN 2C
in the objective
function

MPS/360. Prior to using the program the data have to be
prepared in an appropriate manner. For this purpose a com-
puter program composed of two stages has been prepared. In
the first stage the data of the identification problem (water
levels, pumping and recharge rates, boundary conditions, etc.)
are read in, and the coefficients for the objective function and
the constraints are computed and stored in a proper format on
a disk, to be later used as input for the linear programing
program. In the second stage the MPS/360 program (available
in the computer library) reads the data from the disk and
solves for the optimal values of the sought parameters (details
and a listing of the program are contained in the report by
Hefez et al. [1973)).

The quadratic programing problem was solved in the pres-
ent work by a computer program suggested by Kunzi et al.
[1968], which is based on Wolfe’s [1959] method. The program
underwent significant modifications before it could be applied
(details and a listing of the program also appear in the report
by Hefez et al. [1973)).

COMPARISON OF OPTIMIZATION CRITERIA

The five criteria presented above differ from each other and
will therefore result in' different values for the optimal
parameters of the given cell model. This is so in spite of the
fact that all criteria are based on the same data and the same
balance equations. Since we are interested in only one solu-
tion, we shall have to decide which criterion to use.

A first approach for selection among the various criteria
may be based on the degree of difficulty of computing the solu-
tion. Table 1 summarizes some of the differences among the
optimization problems set up according to the five criteria.

If the five criteria were theoretically equivalent to each
other, the choice of the one to be used could be based on such
technical considerations as computer time, computer memory,
etc. This is especially true for models involving a large number
of cells' C and a large number of time intervals N, as these
numbers determine the numbers of variables and constraints.

From Table 1, one can see that among the linear criteria,
criterion A involves the least number of variables, whereas the
second form of criterion D involves the least number of con-
straints.

It is of interest to note that in the quadratic criterion E the
numbers of constraints and of variables are the least. This may
lead one to assume that this criterion will also be the most effi-
cient from the point of view of computer memory and com-
putation time. However, the solution of the quadratic
programing problem is much more complicated in comparison
with that of linear programing so that one cannot really es-
timate the required memory and computing time on the basis
of the numbers of variables and constraints alone. It should
also be emphasized that reliable and efficient computer
programs are readily available for the solution of linear

programing problems, whereas this is not usually the case for
quadratic programing.

In all five criteria, one has to compute the balance equations
for all cells and for all time intervals. In the linear problems no
further computations are necessary in order to form the objec-
tive function and the constraints. In the quadratic programing
case, on the other hand, one has also to compute the coeffi-
cients appearing in the objective function by squaring and
summing up balance equations.

A better basis for choice relates to the differences in the
results obtained by employing the different criteria. Kleinecke
[1971] reports very poor results obtained by using criterion E.
He chose criterion C as the best, arguing without proof that
this criterion is better than D. He reached this conclusion by
comparing the results of the analysis with those obtained by

_using an electric analog.

In the present work, a comparison among the different
criteria was made by identifying the parameters of a number of
synthetic models. Here a synthetic model is one whose
parameters are known a priori, and hence for which we can
forecast the water levels for the calibration period. These water
levels are, in turn, used as input data for identifying the model
parameters. The parameters thus obtained are then compared
with the known parameters of the model. The deviations of the
computed parameters from the known values resulting from
the use of each criterion presented above facilitate the com-
parison among the criteria. From this comparison, some
results of which are presented below, it is suggested that the
best criteria are D and E in which the objective function incor-
porates the sum of all the deviations.

RESULTS

Example 1: Identifying the Parameters of a Synthetic
Nonrectangular Model

This example deals with the identification of a synthetic
nonrectangular model of 24 cells (Figure 3). The following
questions were studied by use of this model: the differences
between the five criteria, the differences between the two finite
difference schemes, (10) and (11), and the sensitivity of the
solution to errors in values of ¢.

Because of the large amount of data we shall present here
only the main details. The cells of the model were numbered as
shown in Figure 3. The dimensions of all cells are Ax = 1000 m
and Ay = 1500 m. The duration of the calibration period was 2
years, during which a specified schedule of summer pumping
and winter recharge was implemented. The recharge took
place in all cells. Pumping took place only in the cells whose
numbers are encircled in Figure 3.

In the forecasting stage the water levels for the calibration
period were computed by using 6-day intervals. However, for
the identification problem, water levels at 60-day intervals
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Fig. 3. The model studied in example 1.

were used. This resulted in 12 time intervals for the identifica-
tion problem.

The true values of the parameters (used to obtain the water
levels in the model) were 7 = 3000 m?/d and § = 10% in all
cells. Following are some results and conclusions derived from
the example.

Tables 2 and 3 show the results obtained for 7' and S, respec-
tively, using the five criteria and the forecasting equation (11).
Examination shows that the best results were obtained when
criterion E was used, and that the results obtained by using the
second form of criterion D are better than those obtained by
the use of criterion A, B, or C.

In order to examine the effect of the choice of a finite
difference scheme, we compare the results of using criterion
D/2 as shown in Tables 2 and 3 with those shown in Table 4
(first two columns) which were obtained with the same
criterion but with the scheme of (10). The main difference is
that the values of storativity in all cells as shown in Table 4 are
lower than the true value of 10%. Better results are obtained in
this example (and in additional ones) when the scheme of (11)
was used.

Analysis of results. Before using the model, with parameter
values determined by the identification process, one should es-
timate the degree of accuracy to be expected when the model is
used to forecast future water levels. There are several ways for
doing this: (1) use the model to compute water levels for some
historical period, the data of which were not used in the iden-
tification, compare the results with measured data, and draw
conclusions; (2) perform a statistical analysis of the deviations
between computed and measured water levels for the calibra-
tion period and assume that the same statistical behavior of
the deviations will occur in forecasting future water levels; (3)
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TABLE 2. Identified Transmissivity Values for Example 1
Criterion
Cell A B C D/2 E
| 2947 3020 3033 2980 2997
2 2807 2970 2933 2977 2971
3 3106 2923 3025 2952 2970
4 2972 2854 3104 2942 2967
5 3081 2958 3006 3050 3018
6 2735 3012 3037 3027 3018
7 2499 2898 2896 2995 2971
8 3088 2977 3086 2937 2994
9 2813 2790 2999 3036 2997
10 3523 3133 3025 3131 3062
t 3022 3078 3033 2994 3000
12 2897 2989 2830 2983 2980
13 2981 2801 2877 2979 2954
14 3380 2945 3260 3018 3034
15 2267 2893 3017 3014 3012
16 2187 2786 2888 3043 2981
17 3324 2940 3264 3029 3007
18 3126 2652 3138 3087 3002
19 2940 3260 3037 2989 3002
20 3004 3020 2758 2966 2947
21 3173 2759 2848 3086 2978
22 2503 2755 2936 2958 3001
23 2381 2612 2981 3111 3073
24 3464 2793 3098 2924 2972
| AT max 733 388 264 131 73
2laT $362 3824 217 1072 544
>|AT| /24 223 159 93 45 23

Values are given in square meters per day.

examine the sensitivity .of the parameter values computed in
the identification process to ‘noise’ in the data.

While the first and/or second way should be performed in
practical cases, it is instructive to examine results obtained by

Identified Storativity Values for Example 1

TABLE 3.
Criterion
Cell A B C D/2 E
1 11.7 11.3 11.6 11.6 11.5
2 11.7 112 11.4 11.2 11.3
3 11.6 12.1 10.6 11.5 11.6
4 12.2 12,0 12.0 12.0 11.6
5 11.1 12.0 11.4 11.5 11.4
6 9.7 10.0 9.8 9.9 9.9
7 10.2 10.6 10.7 10.7 10.6
8 9.8 10.0 9.9 10.2 10.0
9 9.2 9.5 9.2 9.4 9.6
10 10.3 9.8 10.0 9.8 10.1
1 10.0 9.8 9.3 99 99
12 10.2 9.7 9.4 9.7 9.8
13 9.3 10.0 9.4 10.3 10.1
14 9.4 9.6 9.5 10.0 9.7
15 9.9 10.2 10.0 9.9 99
16 9.7 9.8 9.9 9.8 9.8
7 10.3 9.8 10.3 9.8 9.8
18 10.1 10.1 10.5 10.0 10.1
19 9.9 9.8 9.8 9.9 99
20 10.1 10.2 10.1 10.4 10.2
21 10.3 10.0 10.3 10.0 99
22 10.1 10.3 10.3 10.0 10.1
23 9.4 101 94 99 10.0
24 10.3 10.0 10.1 10.0 10.0
[AS| max 2.2 2.1 2.0 2.0 1.5
S)AS] 13.9 12.3 13.2 11.4 10.4
SIAS| /24 0.58 0.51 0.56 0.48 0.44

Values are given in percent,
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TABLE 4. Effect of Noise on Identified Parameters

Without Noise With Noise £2 cm With Noise +5cm
Cell T S T S T S
1 3055 6.4 2867 8.0 2823 9.0
2 3050 6.2 2933 6.2 2597 6.0
3 3027 6.2 2737 84 2316 8.7
4 3017 6.3 2880 9.2 2220 14.5
5 3053 6.5 2991 5.7 2748 4.7
6 3010 8.0 2828 7.4 2591 6.2
7 2989 7.7 2703 7.5 1957 7.8
8 2962 7.8 2779 9.6 2396 9.9
9 2946 7.8 2929 7.3 2162 9.0
10 3000 8.1 2942 8.3 2387 9.0
I 3011 9.2 2717 9.7 2551 10.2.
12 2943 9.3 3255 10.0 3149 11.0
13 2943 9.1 2473 8.8 1722 8.2
14 2993 9.5 2648 9.0 2050 8.5
15 2980 9.5 2819 9.8 2610 9.6
16 2964 9.6 2546 9.2 1506 9.1
17 2938 94 2617 9.1 1894 9.6
18 2877 : 9.7 3186 10.3 2157 10.6
19 2958 9.7 2501 9.1 1954 8.2
20 2928 9.6 3536 10.3 3306 10.7
21 2922 98 2611 94 1571 9.6
22 2921 9.7 2995 9.7 2327 10.6
23 2958 9.7 2435 10.2 638 11.0
24 2960 9.9 2321 9.9 1668 10.4
max | Al 123 38 679 4.3 2362 5.3
Z| Al 1036 35.3 6705 295 19310 359
Z\ Al /24 43 1.49 281 1.24 808 1.50

the third way and draw general conclusions on the robustness
of the identification process, i.e., the stability of computed
values to random noise in the data. '

Sensitivity to errors in values of ¢. Table 4 summarizes
results of the identification performed on the synthetic aquifer
of example 1 under the following conditions: (1) the criterion is
D/2, the forecasting scheme is (10), and there are no errors in
the data for ¢; (2) same as the first except that errors in values
of ¢ are introduced as a random noise, uniformly distributed
over the range +2 cm; (3) same as the second except that the
range of the noise is £5 cm.

These perturbations in the data are representative of the
degree of error to be expected in water level data used in the
model. These errors may be due to measurement errors and to
the way in which one value per cell is obtained by averaging
data of several observations. The magnitude of the noise repre-
sents only a very small relative error in the water levels
themselves, which may be of the order of several feet to
hundreds of feet. More important, though, are the relative er-
rors introduced in the spatial and temporal gradients, which
make up the coefficients in the constraints of the optimization
prohlem. Typical differences between water levels in adjacent
cells are of the order of tens of centimeters, and changes in
water levels over 60 days are of similar magnitude. Thus the
noise in water level data, which does not seem very significant
in itself, may result in very substantial errors in the gradients,
as much as 100% and more.

The deviations of the computed transmissivities are much
more affected by the noise than the storativities. The greatest
effect is in cells 16-24, where the gradients are smallest.

Inflow and outflow rates as unknowns. So far, only the trans-
missivity and storativity have been considered as unknown
parameters which have to be identified. However, in certain
problems of practical interest, inflow and/or outflow rates in
certain cells and/or during certain time intervals are also not

known a priori and have to be determined as part of the
calibration procedure. As an example, let the natural
replenishment be added to the list of parameters whose values
are being sought. Let ¢, ;"**/2 denote the natural replenishment
in the cell (i, j) during the time interval (#, » + 1). In the
balance equation (11) this discharge rate was included in the
inflow rate:

r(»jn+1/2 = (r')i‘jfwl/z + qi,jn+1/2 (46)

where ¢ is the known part of the inflow. By inserting (46) into
(21), we obtain

5
Z gn T + fi,,'Hl/Z‘Sa,,' + qiljn+1/2

m=1

pi iR =@ M 4D

‘This equation is still linear; hence the techniques described
above are applicable here also except that (47) will be used in-
stead of (I1). Following is a numerical example in which the
winter natural replenishment was identified for the Yarkon-
Taninim aquifer in Israel.

Example 2: A Single-Cell Model of the
Yarkon-Taninim Aquifer

Data for this model were provided by the research and
development team of the Hydrological Department of Water
Planning for Israel (Tahal) Ltd. The objective of this model is
to represent the regime of the aquifer and to enable the incor-
poration of the model in a comprehensive model dealing with
the operation of the entire Israel National Water Scheme. For
this purpose a single-cell model was found sufficient. The
model is presented here, to give an example of identification of
a real aquifer, and to give an example of identifying an inflow
rate in addition to the storativity of the aquifer. Figure 4 gives
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Fig. 4. A single-cell model of the Yarkon-Taninim aquifer.

a schematic representation of the model with its inflows and
outflows. (Transmissivities play no role in a single-cell model.)

The balance equation (47) for the single-cell aquifer can be
rewritten in the form

A¢n+]/2 Pn+]/2 . (R/)n+1/2

+ Qn+1/2 — (48)
where Q is the natural replenishment during the time interval
(n,n + 1) and R’ are all other inflows during that same period.

In (48) the storage capacity S - 4 (equal to the product of
storativity and area of cell) appears as a single unknown
parameter. Obviously, if 4 is known, one can regard S as the
parameter to be identified; Q"2 are a series of n unknown in-
flows from precipitation (and from other unidentified sources).

The calibration period, which included the 11 years from
1958 to 1969, was divided into summer and winter seasons.
Each season of 6 months served as a time interval in the
calibration process. Table 5 summarizes the data used for the
identification in this example. Table 6 shows the results ob-
tained for S-4 and the Q"*'/2 using criteria A, B, and E.

It was a priori assumed that natural replenishment occurs
only during winter. An attempt was also made to identify the
parameters separately from the winter balance equation and
from the summer ones. The results in Table 6 indicate that the
same S - A value of 85.3 was obtained from the summer equa-
tions as from the full set of equations. However, the result for
S - A obtained from the use of the winter equations alone is
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TABLE 5. Data for the Identification Procedure of Example 2
Pumping
Minus
Recharge

Ag, Precipitation, P—-R,

Season m 108 m® 10° m?
Summer 1958 —2.80 0 244.2
Winter 1958-1959 1.30 497.7 165.9
Summer 1959 ~2.36 0 216.5
Winter 1959-1960 0.80 3944 138.3
Summer 1960 -2.52 0 230.7
Winter 1960-1961 1.78 570.5 145.5
Summer 1961 —2.62 0 198.5
Winter 1961-1962 2.30 654.1 136.6
Summer 1962 —2.63 0 275.5
Winter 1962-1963 1.03 418.4 158.6
Summer 1963 —2.65 0 204.3
Winter 1963-1964 3.07 737.4 145.1
Summer 1964 —2.85 0 243.5
Winter 19641965 447 824.5 95.8
Summer 1965 -2.68 0 206.9
Winter 1965-1966 1.72 520.0 95.1
Summer 1966 —3.72 0 266.2
Winter 1966-1967 4.36 968.2 120.5
Summer 1967 —2.30 0 221.7
Winter 1967-1968 2.14 540.2 130.4
Summer 1968 —-2.94 0 249.9
Winter 1968-1969 4.42 883.4 117.5

meaningless. As in this case the number of unknowns exceeds
the number of equations by one. The use of criterion E
(minimization of the sum of the squares of the deviations)
yielded results similar to those of criterion B or D.

PossIBLE IMPROVEMENTS: WEIGHTING TERMS IN THE OBIJEC-
TIVE FUNCTION

There is a possibility of modifying the objective function by
assigning different weights to certain terms in the objective
function. The weights actually reflect the importance of each
deviation, both in time and in space. Weights can be used in all
criteria, except criterion A which has only a single term.

For criterion B we write, instead of (29),

N~1

min F = Z wn+1/2. Yn+l/2

n=0

(49)

For criterion C, instead of (33),

TABLE 6. Identified Storage Capacity and Natural Replenishment of Example 2
Criterion A (or C)
Summer Winter All Criterion Criterion

Parameter Units Equations  Equations  Equations B(or D) E

Value of the optimal 10° m?® 234 0 806 233 7865
objective function
S-A 10° m®/m 85.3 0 85.3 85.4 84.2

0, 1958-1959 10° m® 166 226 271 275
Q, 1959-1960 108 m? 138 155 207 206
Q, 1960-1961 10° m? 146 246 298 295
0, 1961-1962 10°m? 137 282 333 330
0, 1962-1963 10°m?® 159 195 247 245
Q, 1963-1964 10° m? 145 356 407 404
0, 1964-1965 10° m® 96 426 478 472
0, 1965-1966 10° m® 95 191 242 240
0, 1966-1967 10° m? 121 441 493 488
Q, 1967-1968 10¢ m* 130 262 313 311
Q, 1968-1969 10° m? 118 443 495 490
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min F = 3 > wi ;- Zi; (50)
It i
For criterion D/1, instead of (37),
min F = Z Z Z wi,jn+]/2' Ui’in4—1/2 (51)
n i 7

For criterion D/2, instead of (41),
min F — Z Z Z Wi'i( Vi’in+l/2 + Wi,jnw'»}‘/fl) (52)
n i i . !

For criterion E, instead of (44),

5
min F = 3, 3 2 wi,,-"“”(z 8w’ Th
n 7 i m=1

+1/2 1/2
+ fi','n .Si’jﬂ“’

2
— pi,in+1/z + ri,inﬂ/z) (53)

The method for éssigning weights has not been finalized, nor
experimented with, during the phase of the work reported
herein. We propose that weights can be assigned by one or
more of the following considerations: (1) cell areas, i.e., when
cells differ considerably in their-area, one may assign a higher
weight to smaller cells, since they usually indicate a higher con-
centration of wells with known data; (2) cells in which the in-
formation available seems less reliable may be assigned a
low weight; (3) cells in sensitive areas, where the reliability of
the computed results is important, may be assigned a high
weight.

As already stated above, this subject requires further in-
vestigation before the use of weights can be made systematic.

calibration period of aquifer calibration
A. Selection of a
mathematical model

for f’orecasting e — - e — ———— _l
water levels |
i
preparing operation B. Selection and preparing water I'
data for use as implementation of levels for use as t
input to model ™ identification [*1 input to the model |
procedure |
|
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and improvements

General flow chart for the identification procedure.

FLow CHART FOR THE CALIBRATION PROCEDURE

In addition to the solution of a linear or quadratic program-
ing problem the identification procedure involves several ad-
ditional steps. These are summarized in the flow chart shown
in Figure 5. The chart indicates four main steps in the identifi-
cation procedure: (1) selection of a mathematical model to be
used for forecasting water levels in the aquifer; (2) calculating
the values of the parameters of the model using the data of the
calibration period (prior to using these data they have to be
prepared in a form accepted by the identification program
(nodes, time intervals, etc.)); (3) forecasting water levels for the
calibration period, making use of the derived aquifer
parameters and the information of operation during the
calibration period; (4) analysis of deviation between the
response of the aquifer (e.g., water levels) and that of the
model and a sensitivity analysis of the solution to possible er-
rors in the data. This may lead to the introduction of weighting
coefficients and to an improvement in the model response.

The full arrows in Figure 5 show the direction of informa-
tion flow during the various steps. The dashed arrows show
possible routes to be taken by the analyst.

Figure 6 shows the same flow chart in a somewhat different
form, with more details. The operations are shown in a
chronological order, separating those performed by man from
those performed by the computer. In this form one can clearly
see the importance of the engineer’s or planner’s decisions.
Although the computations are carried out by the computer,
and they yield the solution, it is the analyst’s guidance of the
process which determines what the solution will be.

SUMMARY

Although the evaluation of the identification methods
proposed here was based mainly on the analysis of synthetic
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Fig. 6. Detailed flow chart for identification of model parameters.
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models and not on real aquifer situations, one may reach
several intermediate conclusions already at the present stage of
the development.

Complete identification procedure. The procedure of iden-
tifying model parameters does not terminate with their com-
putation by a method which guarantees the best fit between
model and aquifer discharge rates. It is recommended to seek a
solution which will also result in an optimal fit between model
and aquifer water levels. This conclusion stems from the fact
that the water levels for the calibration period are known to a
higher degree of certainty than the various discharges. Accord-
ingly, once the parameters have been identified, one must
continue as follows: (1) use the parameters to forecast the
water levels for the calibration period; (2) carry out a statistical
analysis of the deviations of the computed water levels from
the observed ones; (3) recompute the parameters by introduc-
ing weights in the objective function; (4) repeat steps 1 and 2
with the computed values of the parameters (repeat until a
satisfactory agreement is reached between aquifer and model
water levels); and (5) finally, carry out an analysis of the sen-
sitivity of the solution to possible error or changes in the water
levels in the variots inflow and outflow rates during the
calibration period.

Balance equations. The ultimate objective of the model,
once all its parameters have been identified, is to forecast
future water levels in the aquifer in response to various natural
and planned activities. It is therefore desirable to identify the
same model which we shall later use for forecasting. The alter-
nating direction implicit (A DI) method has been found to be
very efficient for forecasting future aquifer water levels [Hefez
et al., 1972]. Unfortunately, this scheme is impractical for the
identification of parameters. It has been demonstrated in the
present work that (11) is closest to the ADI scheme and may
be used in the identification process.

Criteria for identifying the parameters. Five different
criteria were presented here. Four were based on the absolute
value of the difference between the two sides of the balance
equations, and one was based on the square of this difference.
By using synthetic models, the best criteria were shown .em-

pirically to be those in which the sum of absolute deviations

(or squares of them) for all balance equations was used as the
objective function.

Linear and quadratic programing. The identification
problem as stated in the present work is solved as a linear or a
quadratic programing problem. The solution in the latter case
is much more complicated, whereas the solution of the linear
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programing problem is based on readily available computer
programs. One advantage, however, of the quadratic program-
ing problem is that the size of the problem (number of con-
straints) and the needed computer memory are independent of
the number of time intervals included in the calibration period.

Identification of inflows and outflows. 1t is possible to iden-
tify inflows such as from natural replenishment and outflows
by the identification procedure described here.
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