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Two methods which employ a cell model for forecasting water levels in aquifers are compared: the
(noniterative) alternating direction implicit (ADI) finite difference method and a semihybrid iterative
method, in which a resistor network is the analog part. By using simulation of the semihybrid method it is
concluded that this method requires a larger computational effort than the ADI method.

NEED FOR AQUIFER MODELS

Various questions related to the future groundwater regime
have to be answered by the planning engineer, or hydrologist,
in the process of determining the policy for operating an
aquifer. Among these questions we may list those related to
the quantity, location, and time of pumping from the aquifer
and/or artificially recharging it with imported water, the need
for additional pumping and recharge installations, the quality
deterioration (e.g. by seawater intrusion or encroachment
from adjacent aquifers), etc. Obviously, it is impossible to car-
ry out experiments and tests in the aquifer itself in order to
forecast its response to operations proposed in the future and
to make comparisons among responses to different possible
policies in order to determine the most desirable one. As in all
other branches of science and engineering, whenever the treat-
ment of real systems or phenomena is impossible (or the cost
of such treatment is prohibitive), models of the systems or
phenomena are used.

Here the term model is introduced in its most general sense.
Often the terms conceptual model or mathematical model are
used. It is a simplification of the complicated reality. There is
no need to elaborate on the fact that most real systems, and
certainly the aquifer system considered here, are indeed com-
plicated beyond our capability to treat them as they really are.
The porous medium continuum is inhomogeneous,
anisotropic, etc., and simplifications are necessary. These take
the form of a set of assumptions, which should not be forgot-
ten whenever the model is being employed in the course of in-
vestigations. Examples of assumptions are that the flow is es-
sentially horizontal, that water is released from storage in a
phreatic aquifer immediately upon decline of the water table,
or that the water table is a surface which separates a fully
saturated region from a region with no moisture at all.

On the basis of such assumptions, the model of the in-
vestigated groundwater system is presented in the form of a set
of mathematical equations, the solution of which yields the
behavior of the considered system.

The choice of a model for a given aquifer system is dictated
not-only by the features of the aquifer itself (e.g., its geological
properties) but also by the following criteria. First, it should be
sufficiently simple so as to be amenable to mathematical treat-
ment. Second, it should not be so simple that features of in-
terest in the investigation on hand are excluded from it. As the
range of possible models between these two limits is still wide,
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we should add two more important criteria, namely, that in-
formation should be available for calibrating the model and
the model should be the most economic one for solving the
problem on hand.

There is no justification for choosing a very detailed model,
which should give very accurate results, if it cannot be
properly calibrated so as to give the user confidence that the
model indeed simulates the behavior of the real system. It is
meaningless to seek a model which gives very accurate results
when the input data are much less accurate, sometimes by far.
Similarly, it is useless to choose a model which yields very
detailed results when these can never be checked in the future
against the behavior of the real aquifer system.

FiNITE DIFFERENCE MODEL

The finite difference model is based on the following partial
differential equation, which describes two-dimensional essen-
tially horizontal flow in an anisotropic nonhomogeneous

aquifer:
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where T is the transmissivity; ¢ is the piezometric head, or
potential; » is the rate of recharge (natural and/or artificial)
per unit (horizontal) area; p is the rate of pumping per unit
(horizontal) area; and S is the storativity.

Development of (1), and the assumptions on which it is
based, can be found in most references on groundwater
hydrology [e.g., Bear, 1972]. The equation is applicable to con-
fined aquifers and to phreatic aquifers in which the drawdown
is small in comparison to the thickness of the saturated zone
below the phreatic surface. In this case the transmissivity at a
point is approximated as the product of the average height (k)
of the saturated zone and the average hydraulic conductivity
(K) at the point.

To complete the mathematical statement of the flow
problem in an aquifer, we have to state (1) the geometry of the
aquifer’s boundaries, e.g., F = F(x, ), (2) the initial conditions
for ¢ in the aquifer, e.g., ¢ = ¢(x, y, 0) = g(x, ¥), and (3) the
boundary conditions which ¢ has to satisfy on F, e.g., ¢ =
const, ¢ = fi(x, y, 1), d¢/dn = fy(x, y, t), etc. Once the prob-.
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Jlem is thus stated and the values of p = p(x, y, 1), ¥ = Hx, y, 1),

T = T(x, y), and § = S(x, y) are specified, we seek ¢ = ¢(x, y,
1), i.e., the future water levéls resulting from p and r.

Equation (1) is solved numerically by the noniterative alter-
nating direction implicit method, given by the following set of
two equations:
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The computer programs which were developed for solving
these equations are included in a report by Hefez et al. [1972].
To examine computation time and memory requirements for
the alternating direction implicit (ADI) method, we have per-
formed tests on models of sizes varying between 100 and 2500
cells. Runs were made on two computers. Results are shown in
Figure 1 (it is interesting to note the tenfold reduction in com-
putation time in going from the IBM 360/50 to the 370/165).

These results of the ADI method were used for comparison
with the results of a semihybrid method, to be presented next.

ITERATIVE SOLUTION WITH A SEMIHYBRID COMPUTER

The hybrid solution is essentially a method for solving the
implicit equation: '
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The hybrid computer combines an electric network of
resistors with a digital computer and solves the discrete time
water level forecasting problem. The solution is obtained by
iterations in each time step. The hybrid approach was

developed by Karplus (1964, 1965, 1966], with the stability -

conditions given by Karplus and Kanus [1965). Vemuri and
Dracup [1967] used the hybrid approach for forecasting water
levels in a phreatic aquifer. They, as well as Brandt [1969],
claim that the hybrid computer can compete with a pure
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numerical solution on a digital computer. To investigate this
claim, we have used a simulated hybrid computer and have
compared its performance with that of a numerical solution by
the ADI method. We describe next the basic principles of the
hybrid computation and then present results and draw conclu-
sions on the comparison between the two methods.

The hybrid method. The hybrid computer is used to solve
(4) for the water levels ¢**! at thie end of the time interval.
First, multiply (4) by Ax;Ay, and rewrite it in the form
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and W is the ‘resistance’ between adjacent cells, e.g.,
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Equation (5) is solved by an iterative procedure. For con-
vergence one must add to each side of (5) the quantity
— ¢,/ wi; [Karplus and Kanus, 1965], resulting in
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The iteration procedure is based on (6), written in the fol-
lowing form, in which k is the iteration counter for computirig
¢n+l:
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The equation has been arranged so that the five unknowns
appear on the left and the entire right-hand side is known. The
iterations proceed as follows:

1. Assume the values of ¢, at the end of the time interval,
and introduce them as ¢, * in the right-hand side.

2. Compute ¢; ' in all cells by using the electric analogy
to be explained below.

3. Introduce the new values in the right-hand side of (7) as
#:,%, and compute new values of ¢, *+*.
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Fig. 1. Memory requifements and computation time per time step as a function of model size.

4. Repeat (2) and (3) until the valués obtained in successive
iterations differ by no more than’ some preset tolerance.

The value W, ; which was introduced above is chosen such
that the following condition holds:

Wi,j < 2At"+1/2/S;;j'Axt'AYJ (8)

The resistor network.  1f the known right-hand side of (7) is
denoted as —®, */W, ,, the equation can be rewritten as fol-
lows
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Equation (9) is solved by an electric analog made of
resistors. Each grid resistor represents the resistance between
adjacent cells of the model. An additional resistor is connected
to each node, the other end being maintained at a voltage U, .
A typical node is shown in Figure 2.

k+1 k+1 i k+1
Giriit — i + biiri = big The voltages at the nodes ¥, are the analogs of water levels
Wi isa.i Wiiisali in the aquifer ¢, ;. Kirchhoff’s law for a typical node is
Yi,5m
i+l . .
9
14z, v
5 —A r\}\/\___, i+1, 3
i—i,j s s
j-1 . *
i-1 i i+l

Fig. 2. A typical node of the electric resistor network.
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Fig. 3. Components of the hybrid computer.
Vierin = Vo i Vi 70— v, M R.; < 2A1V2R, /S, - Ax,+ Ay, (13)
Ri 1/, Risiya,i If it is desired that all R, ; be equal (for convenience in con-
N Vi D~ v, ! + Vit — v struction), then their values should be selected such that
R; i—vye Ri 12 Ri; < {2[min (AR} / [max(S;;- Ax,-Ay;)]  (14)
k . .
+ U, ;" = v, . (10) The ratio (i.e., scale) V. enables one to convert voltages
R; ; measured in the resistor network into water levels for the

The analogy between the water levels and the voltages is ob-
vious when (9) and (10) are compared. Thus if U,/ is set
properly, the values of ¢; /! can be obtained by measuring
the values of ¥ /#+! in the resistor network.

It can be shown [Hefez, 1972, Appendix A] that the
resistance ratio

R. = Ri,i R,:—1/2,j Ri+1/2.7’
, = = =
Wi,v' Wi-l/z,;‘ Wi+1/2,i
_ Riicip _ l&;iﬂl& (11)
Wi.i~1/2 Wi,j+1/2

can be chosen arbitrarily. Also, if one selects some typical
difference in water levels A¢ and a corresponding voltage
difference AV, then the ratio

V, = AV/Ap = U, /%, (12)

can also be selected arbitrarily. There is, however, a restriction
on the input resistors R,;, which stems from a convergence
condition of the iterative procedure. It is

aquifer. Information transfer from the network to the digital
computer (the distribution of ¥) and back (the distribution of
U) can be performed automatically if the two are linked by
suitable equipment and made into a single hybrid computer.

The hybrid computer. The principle components of the
hybrid computer are shown in Figure 3.

The roles of the various components may be summarized as
follows. The roles of the resistor network are representation of
the aquifer’s shape, representation of the aquifer’s boundary
conditions, representation of the transmissivities, and solution
of a set of simultaneous linear equations for each iteration,
within each time step. The roles of the digital computer are
control and management of the computation process,
representation of the storativity, representation of the initial
conditions, representation of inputs (recharge) and outputs
(pumping) for each time interval, computation of the input
voltages U to be supplied to the network, and transformation
of voltages to water levels and vice versa. The roles of the in-
termediate equipment are conversion of signals from analog to
digital and from digital to analog; setting of voltage values for

¢ = 0.0m
0.238 0.047 0.015 0.047 0.238 ?
0.277 0.060 0.021 0.060 0.277
¢ = 1.0m 0.282 0.062 0.022 0.062 0.282 ¢ = 1.0m
0.277 0.060 0.02L . 0.060 0.277
0.238 0.047 0.015 0.047 0.238
¢ = 0.0m

Fig. 4. Model shape, boundary conditions, and final heads.
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TABLE 1. Results for the (Simulated) Hybrid Computer

Maximum Difference
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TABLE 3. Comparison of Computation Time (Seconds) for the ADI
Method and the Digital Tasks of the Hybrid Solution -

Time in Water Levels, Numerical Solution Digital Tasks of the
Interval Iterations mm Time Interval by ADI Hybrid Solution
1 5 0.5 1 0.09 0.22
4 04 2 0.04 0.18
3 4 0.4 3 0.04 0.16

the network, as determined by computations in the digital
computer; and sampling of voltages in the network.

The hybrid computer as described above may be used as a
general device for solving five-diagonal equations of the same
form as (4). This was done by Vemuri and Karplus (1969] for
identifying model parameters. Brandt [1969] suggests a binary
method for fixing the input voltages U, which simplifies the in-
termediate equipment.

COMPARISON OF THE METHODS

For the purpose of this investigation we have simulated the
hybrid computer by a program on the digital computer. The
program was constructed so that it enabled us to examine the
performance of each component, without having actually to
construct and assemble expensive equipment. The items ex-
amined included the number of iterations, the times rieeded for
each task, and their comparison to a pure numerical solution.
The following is one of the examples which were used.

The model employed is shown in Figure 4, where the aquifer
shape, boundary conditions, and final heads are indicated.
Other data are Ax; = Ax = 1000 m, Ay; = Ay = 1000 m, T}, =
T = 1000 m?/d, S,; = § = 0.2, Ar* = At = 30 days, p,,* = 0,
and r,,* = 0. Initial conditions are ¢,,° = 0 m. The computa-
tions were performed for N = 3 time steps. For the resistor
network the following data were used: R, = [0° 0 mm/d, V', =
1 V/m, and R;; = 10 Q.

Table 1 summarizes results obtained for the (simulated)
hybrid computer: the number of iterations per time step and
the maximum difference between values of ¢ in the last two
iteratioris (where the tolerance allowed was 1 mm).

Table 2 shows the split of computation time between the
simulation of the resistor network and the digital tasks, Some
75% of the total time was spent on the simulation. Not all this
time could be saved if the hybrid computer were indeed con-

structed, since this time included computation of the voltages

U and some time would be needed for sampling the voltages ¥
and setting up the voltages U. A more meaningful compatison
is between the time needed for the pure digital tasks in the

simulation of the hybrid computer and the total computation

time by the ADI method, as shown in Table 3.

Thus even if all other tasks of the hybrid solution are instan-
taneous, the ADI numerical solution is far superior, at least
for this size model. This should be examined for larger
problems, a difficuit task because the simulation program re-
quires much computer memory and considerable computation

TABLE 2.  Split of Computation Time for Simulation and for Digital

Tasks
Time for Time for
Digital Computations, Simulation,
Time Interval % %
1 24.5 75.5
2 254 74.6
3 28.0 720

time. At any rate, since using a hybrid computer would also
entail a considerable construction cost, there is little to war-
rant it as a substitute for a straight numericdl solution.

DiscussioN AND CONCLUSIONS

Finite difference models for forecasting water levels in
aquifers have been presented by Pinder and Bredehoeft [1968),
Prickett and Lonnguist (1971], Blank [1971], and the authors
[Hefez et al., 1972]. The last three works include the compiuter
programs and instructions for their use.

We have examined the noniterative ADI method and have
determined the size of memory required and computation time
(on two computers) as a function of the number of cells in the
model. The results are shown in Figure 3, An investigation was
also carried out on the performance of the semihybrid com-
puter proposed by Karplus [1964, 1965]. This investigation,
performed with the use of a program simulating the
semihybrid computer, shows that the pure numerical solution
is superior from all points of view, at least for models of the
size investigated. Further work in this area is required for
larger models.
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