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A methodology is developed for optimal design and/or operation of a water distribution
system that is to operate under one or several loading conditions. Decision variables may
be design variables, such as pipe diameters, or control variables, such as heads and flows.
The objective function may include the initial cost of the design, the cost of operation, the
physical measures of performance, and the penalties for violating constraints. Constraints may
be imposed on the decision variables and on the performance of the system under each
loading. Flow solutions are obtained by a modified Newton-Raphson method employing
sparse matrix techniques. Optimization is obtained by a combination of the generalized
reduced gradient and penalty methods. Implementation in a computer program and its
use on a test problem in both batch and time-sharing modes are described, and it is con-
cluded that the method is computationally feasible. The many different ways in which it
can be used to analyze, design, and operate water distribution systems are outlined.

Water distribution systems are interconnected networks
of closed conduits, valves of various types, pumps, and
reservoirs. The model of a network is made of links con-
nected at nodes. With each node we associate a head, which
is a measure of the hydraulic energy at the node, and a
consumption, which is the quantity of water withdrawn
from the network (or injected into it) at the node. With-
drawals in real networks are distributed along pipelines,
and the consumptions at nodes of the model represent the
aggregate of these withdrawals over an appropriate area.
Associated with each link is a resistance law, which relates
the flow through the link to the head loss (or gain, as is
the case for pumps) between the ends of the link. In this
law there is a numerical coefficient, called the resistance,
‘which depends on the physical properties of the link (e.g.,
length, diameter, and roughness for a pipe). Certain types
of links, such as pumps, may require more than one coeffi-
cient in their resistance law; for simplicity of presentation
we shall ignore such cases. Reservoirs are connected to the
gystem at cértain nodes. For each reservoir a relation is
given between the volume stored and the water level; from
it one can compute the changes in level due to flows into
or out of the reservoir. The water level in a reservoir is also
the head at the node to which it is connected.

We focus on looped networks; which are the common case
in urban systems. The methodology to be presented is
applicable to branching networks (tree shaped, with no
loops), but more efficient methods exist for such networks
that take advantage of their simple hydraulic solution.

This paper presents one aspect of work aimed at provid-
ing tools for analysis, design, and operation of water dis-
tribution systems. Some of the problems faced by designers,
analysts, and engineers are to design a new system, to
construct and calibrate a mathematical model of an existing
system; to analyze the performance of an existing system
with the aim of designing improvements and modifications,
and to operate an existing system. Often the task may be

10n leave from the Department of Civil Engineering, Tech-
nion-Israel Institute of Technology, Haifa, Israel.

Copyright © 1974 by the American Geophysical Union.

27

merely to find an acceptable, or feasible, solution to one
or more of the above problems, that is, to find a solution
that satisfies certain conditions without regard to achieving
any goal beyond feasibility. For such purposes one would
like to have tools, and by tools we mean computer programs,
which can efficiently analyze the behavior of the system.
The task would then be accomplished by successive analyses
of alternative solutions until an acceptable one is found.
The efficiency of programs used in this mode depends not
only on the computation time needed to perform one anal-
ysis but also to a great extent on the kind of information
that they generate and the ease with which one can make
modifications to the data and rerun the program. The use-

fulness of the results in advancing to the next alternative

to be examined will determine the total number of runs to
be made and the man and machine time that will have to
be spent in arriving at the final solution. This paper will
allude to these aspects of the work only briefly. We con-
centrate here on situations where the word optimize is
added in any one of the tasks mentioned above. In such
caseés one has in addition to the constraints, which define
what the feasible alternatives are, an -objective function,
which is a measure of the desirability of each alternative.

Thus within the overall framework of the development
of tools for analysis, design, and operation of water distri-
bution systems this paper concentrates on the optimization
and touches on the other aspects only to the degree neces-
sary to develop the optimization procedure and to put it
in perspective in the general scheme of the work.

ReviEw oF PreEvious WORK

Past work on optimization of water distribution systems
has concentrated on the design problem; i.e., the decision
variables are design parameters such as pipe diameters,
pump capacities, etc. The objective function commonly
used has been the sum of two parts: the initial cost and
the present value of operating costs for one or more repre-
sentative operating conditions. Each operating condi-
tion is a steady state hydraulic solution of the network, i.e.,
a situation in which heads, consumptions, and flows remain
constant. This represents one loading condition (also re-
ferred to simply as loading) that is given by a set of de-
mands to be supplied and the values of the fixed heads in



98 SaaMiR: Warer DIsTRIBUTION SYSTEMS

the system (such as those at some or all reservoirs). The
loading in real systems constantly changes with the time
of day, the day of the week, and the season. In optimization
models, one uses some representative or typical loadings,
for example, the maximum hourly demands to be expected
during a year, the average hourly demands of the peak day,
the average hourly demands over a year, ete. Each loading
is assumed to prevail during some portion of the time during
the design horizon. The attendant variable costs of operat-
ing the system under each loading, most of which are the
costs of energy for pumping, are a function of the design
parameters. These costs are converted into present value
and are added to the initial cost to yield the value of the
objective function of the design alternative.

In an early work on the optimization of the design
of water distribution systems [Shamir, 1964] the decision
variables were the diameters of all pipes in a system
to be designed. The objective function considered one
loading condition, and the operating cost was related to
the energy lost in the flow through all the pipes. The
consumptions were all given for the one loading, and
no constraints were imposed on the heads or flows. The
optimization was performed by a gradientlike technique.
Components of the gradient of the objective function were
computed, and the pipe whose diameter, when it was
changed, would give the largest improvement in the objee-
tive function was changed to the next commercially available
value. The flow solution, ie., obtaining the steady state
hydraulic solution (see next section), was obtained by a
Newton-Raphson method, and the Jacobian of this solution
was then used in computing the components of the gradient.
The work presented herein can be viewed as a descendant of
this early work, which was presented also by Lemieux
[1965]. The method for solving the flow problem was sub-
sequently generalized [Shamir and Howard, 1968], and a
sensitivity analysis was added that also used the Jacobian
of the flow solution. These features will be explained in
later sections. (Stoner [1972] has applied the same method
of solution and the sensitivity analysis to natural gas net-
works.) '

Pitchai [1966] used a random sampling technique to
search for the optimal diameters of a pipe network operat-
ing under a number of loadings. The objective function
contained the initial cost and one (the most costly) loading.
The flow solution was obtained by the Newton-Raphson
method, but no use was made of the Jacobian in seeking
the direction for improving the design. Constraints on heads
were taken into consideration by adding penalties on con-
straint violation to the objective function to be minimized.
Smith [1966] combined random search, steepest descent,
and linear programing to optimize the design in a formula-
tion similar to Pitchai’s.

Jacoby [1968] treated the same problem. He used a
numerical gradient technique; i.e., an approximate gradient
of the objective function was computed by making small
moves around the current design point and evaluating the
function at these points. Two more types of moves were also
used: a move in a direction selected at random and an
‘experience’ move determined by the relative success of
several previous moves. Diameters were considered con-
tinuous variables, and the values obtained in the optimiza-
tion were rounded to the nearest commercially available

size. This rounding may cause the design so obtained to be
infeasible, and some adjustment may be necessary.

Karmeli et al. [1968], Gupta [1969], and Gupta et ol.
[1972] dealt with optimal design of branching networks.
Once the consumptions are given, the flow in each link of
the branching network is known, and therefore the effect
of changing the resistance of links on heads at nodes can be
computed directly (i.e., with no iterations). Since the re-
sistance of a pipe and its cost are linear functions of its
length (but not of its diameter), if one selects pipe lengths
as decision variables, the optimization can be cast as a
linear program. Thus the decision variables were taken as
the lengths of the segments of pipes with given diameters
in each link, where the set of diameters for each link is
selected in advance. Constraints on heads at nodes appear
as linear inequalities imposed on the decision variables.
Since the selection of the admissible set of diameters -for
each link is done merely for computational feasibility (un-
less there is some real constraint on the available diameters),
one may have to change the sets of admissible diameters
and re-solve the problem until the implicit constraint in-
troduced by specifying the admissible diameters is not
binding (i.e., the solution does not contain a link made
entirely of one diameter that is at the limit of its admissible
set). These works considered only the initial cost in the
objective function, but it is not difficult to include operating
costs.

Kally [1972] extended the method to looped networks,
using the same decision variables (length of diameter in
link) and objective function (initial cost only). In looped
networks the effect of changes in these decision variables
on the heads at the nodes cannot be computed directly.
Kally used an approximate method as follows: each of the
decision variables in turn is changed by 1 unit (i.e., 1 unit
of length is added to it), the new network is solved, and
the changes in all heads recorded. These are then used as
the coefficients in the linear inequalities, even though the
changes in heads are only approximately linear for changes
in the decision variables. The network obtained as a solu-
tion of the linear program is again solved, newcoefficients
for head changes are computed, and a new linear program
is formulated. The process is repeated until it converges,
i.e., until the solution of the linear program does not change
on successive iterations.

Kohlhaas and Mattern [1971] used separable programing
to determine the optimal diameters, pumps, and reservoirs
in a looped system in which all heads were given in advance,
Linear constraints are obtained in this case if flows are used
as decision variables, and since the heads are known, one
can easily determine the diameters once the flows have been
fixed. The objective function is nonlinear in the flow deci-
sion variables and contains the cost of pipes, pumps, and
reservoirs, ‘ :

Deb and Sarkar [19717 used a special formulation, called
the equivalent diameter concept, to determine the optimal
diameters in a network once the pressure surface profile
(i.e., the heads) and the head at the inlet are known. They
then developed a method for determining the optimal pres-
sure surface profile and the inlet head. The objective func-
tion includes the initial cost and reflects the cost of one
loading condition through the cost of the reservoir and
pumps required to supply the prescribed demands.

In a systems analysis of proposed additions to the pri-
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mary water network of New York, de Neufville et ol. [1971]
did not solve an optimization problem. They formulated
several performance indices to evaluate each alternative:
the weighted average of the residual pressures above a
minimum fixed standard at several key points in the system
(where the weighting factor is the quantity supplied at
each point), the residual pressure at the extreme end of the
system, and a measure of the degradation in the first per-
formance index (weighted residual pressure) that would
result from outage of one major link in the network. Alterna-
‘tive designs were selected by the analysts, Each was solved
hydraulically, and the cost and performance indices for it
computed. All alternatives were displayed on plots for each
performance index versus the cost, and these data were
then used in the final selection process. This work relied
on results obtained by La: and Schaake [1969], where
linear programing was used to find the least costly network
satisfying given constraints. The formulation as a linear
program was based on two steps: variable transformation,
which linearized the constraints, and a linear approximation
of the objective function. The objective function considered
one loading condition, although the theoretical development
was extended to multiple loadings,

A rapid development has occurred in recent years in
optimizing the operation of power systems. Newton’s method
(the same as the Newton-Raphson method) was adopted
for solving the power flow problem, and it became the
accepted method after the development of methods for
taking advantage of the sparsity of the Jacobian [Tinney
and Walker, 1967]. Sensitivity analysis was added [Peschon
et al., 1968], and a method for obtaining optimal power
flow solutions was developed [Dommel and Tinney, 1968].
The methodology presented in this paper draws on the
experience gained in solving increasingly complex optimiza-
tion problems in power system operation [Dommel, 1969,
1972; Peschon et al., 1972q, b].

We have not found any previous work on optimization
of the operation of water systems besides a special purpose
procedure developed by Dreizin et al. [1971], and all the
work summarized above has dealt with the design. In power
systems, on the other hand, the work has concentrated on
optimal operation. The work reported herein has combined
the two.

Since the formulation and the solution of the optimization
problem use the flow solution, we devote the following sec-
tions to the flow solution and to some of its extensions.

Frow Sorutions

Mathematical models. It is an accepted and . justified
practice to use a schematic representation’ of the real system
in the mathematical model. The degree of schematization
should depend on the problem being solved. Past work,
however, has tended to use arbitrary schematization rules,
such as ignoring all pipes below some chosen size, and it is
proposed that substantial benefits can often be derived by
more extensive schematization, i.e., by reducing the number
of elements in the model, without adversely affecting the
quality of the results. A discussion of this point, which
would be complete only with specific examples and the like,
is beyond the scope of this paper, and can be found in a
report by the author [Shamir, 1973]. Here we merely
accept the mathematical model as a representation of the
real system. The representation of the steady state flow

problem in a water distribution system is a set of si-
multaneous nonlinear algebraic equations. There are sev-
eral ways in which the model can be set up, the most
common of which are (1) node equations, i.e., a continuity
{conservation of mass) equation. for each node, or (2) loop
equations, i.e., continuity of the hydraulic grade line (the
energy line) around each of a selected set of closed loops.

The model for the flow problem used in this work is based
on node equations. Consider a network made of NL links
connected at N nodes. When @), denotes the flow into node
j from node 7 (which is free to be positive or negative)
and C; denotes the external flow into node j (the consump-
tion, taken as being positive when it enters the node), the
set of continuity equations for all nodes is

;@Awﬁw j=1,+- N (1

The flow Q,;, is a function of the heads at nodes ¢ and j
and of the resistance R,; of the link between them. Ob-
viously, @;: = 0 when there is no link between nodes i
and j. Thus (1) can be written

N
;mwumwm+a=o i=1 -, N (2

There is a total of 2N + NL variables: a head and a
consumption at each node and a resistance for each link.
To be able to solve (2), which is the mathematical model
of the network, exactly N of the variables can be unknown.
The unknowns may be heads, consumptions, and resistances,
but their combination must be such that (2) is solvable
[Shamir and Howard, 1968; Shamir, 1973]. Denote by
x = (¢, ***, xy) the vector of unknowns (dependent
or basic variables) and by y the vector of all remaining
N + NL variables. Then (2) can be written

Gi(xr y)

or [G(z, ] = 0
Method of solution. A modified Newton-Raphson tech-
nique is used to solve (3). At iteration %k the values of

the unknown are z* = (z.%, **+, &4*). The residuals at this
point are

I
o

(3)

Gik = Gi(xky y) j=1---\N (4)
A check is performed for convergence. We use as a criterion
for terminating the iterations

max {|G;"[} < EPS (5)

where EPS is the maximum acceptable error in satisfying
the continuity equation at any node.

If (5) is not satisfied, a new iteration is started. A vector
Az* is computed from the set of simultaneous linear equa-
tions

(7°]-[a2"] = [—6'] (6)
where J* is the Jacobian
4G, /9z, 9G,/dxx
1=| - : )
Gy / 9z, Gy /0y

evaluated at some appropriate value of x. One possibility
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would be
J* = J( (8)

that is, to compute J-always at the current point z*, but
this is not necessarily the most efficient way. Since there is
really no meaning to the ‘accuracy’ of Az* obtained from
(6), it has been found to improve overall efficiency if J is
recomputed only every few iterations. The frequency of
recomputation can also be decreased as the solution pro-
gresses and the changes in x between successive iterations
become smaller.

At this point some consideration should be given to the
method for solving (6), which is a key issue in the
efficiency of the flow solution and also of the optimization
presented later. Typically, each node is connected to no
more than, say, four of five other nodes. Therefore there
are only in that order nonzero elements per row of J (note
that the number of nonzero entries in a row equals the
number of unknowns appearing in that node’s equation,
which depends on but need not be equal to the number of
nodes to which it is connected) ; J is thus sparse; for N =
100 it may have of the order of 59 nonzero entries. This
immediately indicates the desirability of using spare matrix
techniques in solving (6) to save both storage space and
computation time. Such techniques have been developed
and used very effectively in solving power flow problems by
Newton’s method. (See Tinney and Meyer [1972] for a
review; see Tinney and Walker [1967], Ogbuobiri et dl.
[1970], and Shamir [1973] for technical details.) The
method used is called ordered triangular factorization, in
which the Jacobian is factorized into a lower triangular
matrix L and a unit upper triangular matrix U:

(7] = [L}-[U] 9

The factorization, which in effect amounts to the operations
performed in a Gaussian elimination, is carried out in a
compact storage scheme. In this scheme, only nonzero en-
tries of the matrices are stored. Additional vectors contain
the positions of these entries in the matrices and information
on the sequence of operations performed in the factoriza-
tion. Once J has been factorized, the solution of (6) is
obtained in two steps:

(L[] = [—6G"] (10)

is solved for z by forward substitution; then, by means of
z from (10),

[U][A2*] = [2]

is solved for Az* by backward substitution.

The method results in substantial savings in computation
time, since only nontrivial operations are performed. The
pivoting strategy in the factorization is aimed at retaining
sparsity, i.e., at reducing the amount of fill-in that occurs
during the elimination process. Once J has been factorized,
it can be used very efficiently to solve with new right-hand-
side vectors in (6), hence the motivation not to recompute
the Jacobian on every - iteration. The same factorized
matrix is also used in solving several other equations that
arise in the sensitivity analysis and optimization presented
later, where the matrix is either J or its transpose.

To return to the iterative solution of (3), once Az* has
been computed, the new values of the unknowns are ob-

11

tained from

=24+ At i=1,--- N (12)
The multipliers « are obtained by observing the progress
of the solution over a few past iterations and using heuristic
rules to guide the solution to a quicker convergence. With
the new values, one returns to computing the residuals, as
defined by (4).

The above presentation lacks detail. A full discussion of

all aspects mentioned can be found in a report by Shamir
[1973].

SENSITIVITY ANALYSIS

Once (3) has been solved, one can investigate the sensi-
tivity of the solution to variations in the values of the
known variables y. If a variable y,, is perturbed, since (3)
has to hold for the new value, then

de/dym=0 j=1,---, N (13)
The total derivative is expanded: ‘
dG; _ 9G; | N~9Gi 9w _ o . _
Qg Oy ¥ Homoy, 0 I=L N (14)

and the resulting equation can be written in matrix form as

R R B

where [dx/0y.] is the vector of sensitivities of the N de-
pendent variables to changes in y,.; [0G/dz] is the Jacobian,
evaluated at the solution point of (3), i.e., the last
Jacobian of the flow solution; and [—8G/dy.] is a vector
of terms computed in the same way as those of the Jacobian
and is also sparse. For each variable y, to be considered,
one calculates a new right-hand-side vector in' (15) and
solves with the already factorized Jacobian, which, as was
stated above, requires very little computation.

The sensitivity analysis is useful in calibrating the mathe-
matical model of an existing system and in studying pro-
posed modifications in the design or operation of a system
[Shamir and Howard, 1968; Peschon et al., 1968; Stoner,
1972; Shamir, 1973]. It also appears as an implicit com-
ponent in the optimization.

ForMULATION OF THE OPTIMIZATION MODEL

The methodology to be presented in this and the follow-
ing section is applicable to a wide range of problems. It
enables the solution of problems in both design and opera-
tion. It can also be used in several other ways that will
be explained later. The general formulation considers the
cost of the design and the cost of operating the system
under one or several loadings. Some of the terms may be
missing from the objective function, depending on the
problem to be solved, and other special purpose terms
may be added, as will be explained later, to deal with
cases where the solution sought is optimal in a sense other
than economic.

Decision variables. Denote by d = (di, -, d,,) the
vector of design variables. These are the decision variables
associated with design, such as pipe diameters, pump capaci-
ties, ete. The design may encompass an entire new system or
may include only modifications and additions to an existing
system. Denote by u! = (%, - - -, u,,") the vector of control
variables associated with the Ilth loading. These are the
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decision variables for the operation of the system under the
Ith loading, such as heads at various points of the system,
quantities to be supplied, valve settings; pumps on/off
commands, etc. If a total of L loadings is being considered,
thenu = (!, ---; u, -+, uk) is a vector of vectors, each of
which may be a different size and may include different
control variables; (d, w) is the vector of all decision variables.

During . the optimization, wheri each flow problem is
being solved, the values of the decision variables are
(temporarily) fixed. Thus (d, u') is part of the vector y*
of known variables of the Ith flow problem. We denote by
s' the vector of fixed variables that are neither decision
variables nor dependent variables in the Ith flow problem.
Thus y* = (d, u', s*). The vector of dependent variables
of the /th flow probleni is denoted z’.

Objective function. The general form of the objective
function is

L
F(d, u, v, 8) = f(d) + 2 w'd'(d, ', 2, s)  (16)

where f(d) is the initial cost of the design, ¢' is the cost
of operating the system for 1 time unit (say, an hour) under
the /th loading, and w® is a weighting factor; ¢* depends
implicitly on the design variables d and the fixed variables
§', since they determine the values in z'; ¢' depends
explicitly on the control variables u* and the dependent
variables #', since they may include quantities of water to
be pumped and heads affecting the pumping costs; w'
reflects several factors: a present value factor for annual
costs, the number of time units (say, hours) per year that
the th loading is supposed to prevail, and possibly a
relative importance factor assigned subjectively by the
analyst to deal with special cases.

For a design problem, one includes the initial cost term
and the weighted costs of a few, say, one to a maximum
to five, loading conditions. For & control problem, ie., a
problem of operation, one drops the initial cost term and
includes the cost of operation with only one loading (the
weight can then obviously be made unity).

Constraints. There are three types of constraints:

1. The decision variables have to be chosen from an
admissible set of values.

2. The flow problems have to be satisfied.

3. The dependent variables of the flow problems have
to be within permissible ranges.

Optimization problem. The optimization problem may
be expressed as

L
min F(d, u, ,s) = f(d) + D> w'c'(d, «', ', s") (17)
d,u 1=1

subject to
de D (18)
o e U vi (19
(G'(d, u', 2',s)] = 0 Vi (20)
ot = {z|[¢"(d, v, z,8)] = 0} €X' VI (2)

Some or all of the design variables may be required to
take on only certain integer values, as is the case when
they are diameters of commercially available pipes. Most
of the control variables may be continuous (heads, con-

sumptions, pipe resistances affected by valve settings, ete.)
or may be treated as being continuots even though they
are discrete (e.g., take as the control variable the pump’s
outlet head in lieu of an on/off control variable for its
operation). All these cases can be handled by the optimiza-
tion technique. On/off control variables pase difficulties the
remedies for which will be investigated further.
Common forms for (18) and (19) are

d min, < d, < d max, (22)

and

(29)
an additional requirement being that pipe diameters be
even integers.

Equation 20 represents L separate flow problems, ie., L
sets of N simultaneous nonlinear equations; each set to be
solved separately. Equation 21, which actually includes
(20), represents the constraints on the dependent variables
of the flow problems and usually has the simple form

. 1 1 14
u min, < u,” < ¥ max,

¢ min;' € z;' € z max,’ (24)

METHOD OF SOLUTION

The soluition is based on the generalized reduced gradient
method [Abadie, 1970] and draws on some of its variants
used in optimal power flow solutions [Domimel and Tinney,
1968; Dommel, 1972; Peschon et al., 1972a, b; Velghe
and Peterson, 1972]. ’

A Lagrangian is formed by using the objective function
and the flow equations (20):

£(d, u, z, 8, \) = F(d, u, z, s)
L N
+ 2 2NG@ W e s (29)
=1 =1
which can be written as
L=F+ [\

where T is the sign for transpose. Now at any point (d, u)
the following has to hold:

- - [3+ T

Since the G and z can be separated into the independent
flow problems, (27) ean be decomposed into

5] o~ 2]+ [

l='1‘,"',L

(26)

(27)

(28)

Thus the Lagrange multipliers are made of L groups, N
values being in each group, which are the solution of

[J17IN] = [—9F/3z'] (29)

which is similar to. (6) or (15) except that the transpose of
the Jacobian appears. Once the Jacobian has been factorized,
solving (29) involves the same computational effort as one
repeat solution of (6) or (15) with a new right-hand side
and is therefore very efficient.

Once the Lagrange multipliers are available, the reduced
gradient of F is computed from

l=1,...,L



32 SaaMIR: Warer DistriBUuTION SYSTEMS

F

[‘7ﬁq E = =
oL JoF
Vou du, ou

N

In expanded form the components are given by

, aF | & & (BGH> .
Vd,—adp+m1_§=_‘{ 20, i (31)

p =1, y Mo

and
N
EYes
V' =au‘+ Z( ) (32)
q 1
q = 1) t o, My

At a (local) minimum, [V F] = 0. At any other point, the
vector [—V/ F] points in the direction of steepest descent of F
when the changes in the flow solutions due to a move in this
direction are taken into account. (Note that the vector
[0F/dd; dF/du] does not by itself satisfy this condition.)
When the constraints on the design and control variables
as given in (22) and (23) are taken into consideration, a
direction for a move is given by the vector

=0 Vd,>0 d, = d min,
r, =0 vVd, <0 d, = d max, (33)
r, = —V d, otherwise

and similarly for each u,’'. Expression 33 is the reduced
gradient projected into the feasible decision space. A move
is now made to a new point in the decision space given by

d,(new) = d,(old) + Ad, = d,(old) + B,r,
u (new) = u(old) + Au,’ = u,'(old) + B,'r.’

where the multipliers 8 are yet to be determined. If all
B are equal, the move is in the direction of the steepest
feasible descent. When # denotes the value of the B for
this case, the question remains how to select the best value
of #. We have used the following method:

1. Denote as point 1 (the base) the point at which the
value of F and the direction vector [r] have just been
computed.

2. Select a trial value for 6, dependent on the ‘size’
of the space of the decision variables (the ‘diagonal’ of the
hypercube defined by equations 22 and 23). Using this
value of 8, compute from (34) the location of point 2, and
compute the value of F there.

3. Using the values of the objective function at points
1 and 2 and the slope of the objective funection at point 1
(the derivative of F in the direction of [r]), fit a parabola
that is an approximation of the change of F along [7], and
find the point at which it reaches its minimum. This point
is called point 3, and it becomes point 1 for the next move.

The success of this procedure depends on several param-
eters selected heuristically and on the way that the parabola
is fitted and used. Further experimentation is being carried
out to improve this one-dimensional -search, and other

(34)

methods (eg., Fibonacei) will also be tried. Furthermore,
if one allows the B in (34) to be different, one can achieve
moves in improved directions, based either on simple
observations of the relative success of a few previous moves
(similar to the way the a were selected for equation 12)
or on the method of conjugate gradients [Fletcher and
Reeves, 1964].

To aid in the one-dimensional search, one can compute
an approximation to the changes in the dependent variables
that would result from the move. Denote by (Ad, Au)
the (trial) move in the direction [r]. Since the equations
of each flow problem will still have to be satisfied after the
move, one can equate the total derivative of each G' to
zero and obtain

o i [0 0o

l=1,---,L
where, again, [0G'/dz'] = [J'] is the Jacobian of the last
iteration of the /th flow problem. The other matrices have
also been computed before (equations 30, 31, and 32), and
so solving for Az' is again a single repeat solution with the
factorized Jacobian. Now the best value of 4, 6% is found
from the one-dimensional search:

min Fld + 0 Ad, uw + 0 Au, 2 + 6 Ax]

0<0<§

(36)

The maximum step that can be taken is given by 4,
which is the maximum € such that the constraints

d min, < d, + 6 Ad, < d max,
u min,' < u,' + 60 Au, < u max,’

z''+ 0 Azt

are still satisfied. The point thus reached can be designated
as point 2 for the one-dimensional search indicated by (36).

There are two ways in which the constraints (24) on the
dependent variables can be dealt with: penalty methods
and variable exchange. In the first way, use is made of
penalty functions, which are added to the objective function

(37)

. 1 l
Zz min;” < < z max;

- [Carroll, 1961; Dommel and Tinney, 1968, p. 1870; Peschon

et al., 1972a, p. 67]. We have used

P(z;") = p.'(z min,’ - z;)? ' < & min;’
P(x,-\i) = p.'(z;'! — z max;’)? ''> z max,t  (38)
P(z) = 0 otherwise

where the multipliers p,* are set initially to a relatively small
value and increased on successive iterations of the optimi-
zation 8o as to force the final solution to satisfy (24) exactly
or at least to some acceptable tolerance. Incidentally, there
may be a reason to allow (24) to be satisfied only approxi-
mately, as is the case when pressures are allowed to drop
somewhat below the standard in certain parts of the system,
if this helps improve the overall operation of the system.

- The initial (relatively small) values assigned to the penalty

multipliers, their increase on successive iterations, and their
maximum allowed values are all controlled by the user of the
program and require some degree of experience. Large-
values of the multipliers cause sharp and narrow valleys to
be formed in the response surface (objective function plus
penalties) ; such valleys hinder the progress of the optimiza-
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tion, since it proceeds along a sequence of straight-line
segments, and one needs a large number of relatively short
segments to follow a narrow valley. The penalties should
thetefore not be increased too rapidly. Alternative formula-
tions for penalty functions will be investigated, such as
the formulation proposed by Powell [1969], which is re-
ported to have improved computational properties. When
penalties are added to the objective function, it is the
combined function that is used wherever F or its derivatives
appear in the equations above.

The other method for dealing with constraints on the
dependent variables of the form given by (24) is to ex-
change variables between the vectors z and y. Whenever a
dependent variable reaches one of its bounds, it is fixed at
that bound for the next iteration. At the same time, one of
the previously fixed variables is released and is made into a
dependent variable. The exchange of variables must be
such that the flow problems are solvable with the new di-
vision of variables intec known and dependent. Also, the re-
leased variable should indeed be one that can be made
free to change in the real system. The exchange is performed
after the move indicated by (36) has been determined. If
¢* is such that one or more of the z reach the bound, as is
determined in (37), then these & have to be fixed at that
bound and exchanged with some.y [Abadie, 1970; Velghe
and Peterson, 1972].

To deal with integer requirements on decision variables,
one can either make every move in: the search such that
these requirements are met or proceed for a while as if
they did not exist and only toward the end of the search
impose this condition. The first method hds been used in
this study, but more experimentation is needed to determine
which method is better,

The search is terminated when any-one of the following
conditions is met: (1) [r] =2 0 (to within some specified
tolerance), indicating eithér a (local) minimum or a boundary
point that canniot be improved; (2) a small move indicated in
(36); and (3) the exceeding of a specified number of iterations.

IMPLEMENTATION.

The optimization procedure outlined -abave, using the
penalty functions given in (38)_and employing the parabola
fit for the one-dimensional search, has been implemerited in
a computer program, The program is essentially an extension
of the network solver, which obtains solutions to flow
problems with the modified Newton-Raphson method, (12)
being used as the correction formula and the Jacobian being
updated only after several iterations. Sparse matrix tech-
niques are used in factorizing the Jacobian and in solving
the equations where it or its transpose appears. The use of
the sparsity techniques is a major factor in determining
the overall efficiency of the optimization and its feasibility
with respect to computer storage.

The program is made of a number of subroutines. Most
are general purpose. Those defining the specific form of
the objective function and its derivatives have to be
supplied by the user. The main program merely defines
a sequence of tasks, and so by modifying it the analyst can
perform a desired sequence of tasks, such as obtaining one
or several flow solutions, performing sensitivity analyses,
or optimizing the design and/or operation.

The program can handle networks with up to- 100 nodes
and 180 links, can consider 5 loadings, and can deal with 50

design variables and 10 control variables for each of the 5
loadings. For this it requires approximately 179,200 bytes of
memory.

ExaMPLE

The 25-node 40-pipe network shown in Figure 1 has been
used to test the optimization procedure. This is a synthetic
network whose data (pipe lengths and diameters, heads and
consumptions) were selected at random over some specified
range and are given in Table 1. The consumptions shown
in the table are assumed to represent an average loading
condition that holds 509% of the time during the design
horizon. Another loading, whose consumptions are 1.5 times
those in Table 1, is assumed to oceur 109 of the time.
Under both loadings the unknowns in the flow problems
are the consumptions at the four corner nodes and the
heads at the 21 other nodes. The fixed heads at the four
corner nodes have for hoth loadings the values shown
in Table 1. For variables that are unknown in the flow
problems, Table 1 gives the initial values for the solution.

Two design variables were considered: the diameters of
pipes 1 and 21. Two control variables were considered: the
head at node 1 for each of the loadings. The decision
variables are

d = (dy, dy) = [diam(1), diam(21)]
u' = (') = (H,)
v = (') = (HY)
The initial cost part of the objective function is
0.5 % L*diam"® = 0.5 * L(1) * diam(1) ***
+ 0.5 * L(21) * diam(21)"®
= 0.5[1825 * diam(1)"'* 4 1055 * diam(21) "-*}

Operating costs are assumed to be related to pumping
certain quantities of water into and out of specified nodes
against the head difference between the node and some
fixed external head: The total operating cost is

> vt Y, ¢l AR
i=1,2 i=1,5,20
The coefficients w* are computed as follows: (unit weight
of water, 62.4 Ib/ft*) X (cost of energy, $1.85 x 10°*%/1b ft,

which i1s 5 mils/kWh) X (present value factor, 28.4 for
259 over 50 yr) X (number of seconds per year, 31.5 X

Fig. 1. Sample network,



34

SHAMIR: WATER DISTRIBUTION SYSTEMS

TABLE 1. Input Data for the Sample Network

Pipe No. Length, feet  Diameter, in. Node Head, feet Consumption, gpm

1 1825 28 1 146.45 22,244
2 1544 34 2 140.65 —16,469
3 1843 18 3 148.33 24,250
4 1998 26 4 141.52 —32,523
5 1671 36 5 145.22 6,735
6 1711 22 6 141.40 —31,694
7 1169 24 7 145.93 24,443
8 1900 28 8 143.19 —31,493
9 1950 22 9 148.09 21,730

10 1628 32 10 143.94 —6,622

11 1173 24 11 148.22 16,459

12 1521 36 12 148.89 11,742

13 1884 24 13 144 .47 13,125

14 1432 32 14 149.14 28,817

15 1266 28 15 148.64 2,859

16 1128 18 16 146.11 —6,102

17 1963 24 17 145.15 10,305

18 1933 18 18 140.23 —46,894

19 1557 24 19 143 .45 —6,426

20 1532 36 20 140.27 —14,650

21 1055 18 21 140.97 —9,671

22 1759 22 22 147.30 10,646

23 1763 20 23 143.56 11,000

24 1529 36 24 143.26 —10,702

25 1691 32 25 147.90 9,939

26 1169 36

27 1599 18

28 1621 16

29 1593 20

30 1007 34

31 1207 20

32 1892 22

33 1807 36

34 1606 32

35 1438 24

36 1089 16

37 1284 22

38 1205 20

39 1039 30

40 1100 26

10°) = $103 s/ft*. The result is multiplied by 0.5 for the
first loading and by 0.1 for the second; ie., w' = 515

$s/ftt; w® = 10.3 $ s/ft".

These variables appear in the flow problems as

Known

The consumptions to be pumped and the heads to or
from which they are to be delivered are: C,’, pumped from

a head of 50 feet into node 1; Cs', pumped from a head of

50 feet into node 5; and Cy', pumped to a head of 250

Unknown

1 [ ol
Hl)H5)CZO

1 1 1
C1;057 H20

Of these, the H,', I = 1, 2, are decision variables.

At the initial design point the data are diam(1l) = 28
in,, diam(21) = 18 in.; and H} = H;® = 146.45 feet. The
initial cost part for these data is $92,027. Table 2 includes
the data for computing the operating cost part at the
initial design point.

feet from node 20.
Thus the specific form of the second part of the objective
function is

51.5[C.(H,' — 50) + C5'(Hs' — 50)
+ Ca0'(Hayo' — 250)] + 10.3[C*(H,* — 50)
+ C(HS® — 50) + Ca’(Ha' — 250)]

TABLE 2. Data for Computing the Operating Cost Part at the Initial Design Point

l=1 l=2
C, C: H, AH: q, . C’y H, AH,
gpm ft3/s feet fget CAH gpm ft3/s feet feet CAH
Node 1 21,110 48.0 146.45 96.45 4360 30,790 68.5 146.45 96.45 6,700
Node 5 .6,611 14.8 145.22 95.22 1410 10;250 22.9 145.22 95.22 2,175
Node 20 —14,650 —32.7 141.58 —108.42 3650 —21,970 —48.8 136.33 —113.67 5,530
Total 9420 14,405
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The operating cost for these data is 51.5 X 9420 +
103 x 14,405 = $636,000 (the program actually com-
puted $635,757). The total cost for the initial design point
is $727,784, about 139, of which is initial cost.

The constraints on the decision variables were: diam(1),
equal to even integers between 10 and 40 in. ; diam (21), equal
to even integers between 10 and 30 in.; and H,', equal
to continuous variables between 138 and 150 feet.

The constraints on the dependent variables were that
all heads were to be above 138 feet. No upper bounds
were given on the heads, nor any limitations on the con-
sumptions (the four that were dependent variables).

The initial value given to the penalty multipliers was
10, and they were multiplied by a factor of 10 on successive
iterations. Since the number of iterations was small, the
penalties -did not grow to an appreciable percent of the
objective function. For this reason the final solution was
quite far from satisfying the constraints on the dependent
variables. Most heads were very close to 138 feet or above
it, but one was as low as 121.25 feet (at node 2 for the
second loading). Higher initial values of the penalties were
used, and the result was improved.

For the problem posed, the optimum was found at a
corner point of the feasible design region: diam(1) = 10 in.,
diam(21) = 10 in,, and H,;" = H;® = 138 in. The final
value of the objective function was $588,320, of which
$28,732, or 59, was the initial cost. The overall improve-
ment from $727,784 to $588,320 should not be viewed as
being typical in any sense, since the example is a purely
hypothetical one.

The optimum was reached in a small number of iterations,
always under 10. The same optimum was reached from
several starting points. The whole solution took less than
10 s (execution only) on the 360/91.

The same program has also been implemented and run
under the time-sharing system on an IBM 360/67. In this
mode the self-guiding search of the optimization procedure
has been supplemented by user-controlled moves. Data are
displayed on the terminal, showing the current point, the
value -of the objective function and its reduced gradient,
the penalty functions, the move to be made, etc. The
analyst can then decide either to let the program proceed
to the next step in the optimization or first to modify some
of the data (various parameters, penalty multipliers, the
next point to be tried, etc.) and only then to proceed. He
can thus investigate a few .alternative designs around the
optimum, can test the effect of various terms, and can in
" general gain a lot of insight into the behavior of the net-
work with respect to the objective function and other as-
pects.

PoSSIBLE APPLICATIONS

As was stated in the introductory section, the aim of the
overall work has been to provide tools for analysis, de-
sign, and operation of water distribution networks. The
methodology for optimization presented -in this paper and
the way in which it has been implemented in' the computer
program should be viewed in this general context. This
becomes clear when one considers the many different. prob-
lems that can be tackled with the use of the program:

1. Solve a flow problem.

2. Perform sensitivity analyses of a flow solution.

3. Simulate the behavior of a system over time when it

has storage (reservoirs). Steady state solutions, each
representing some period of time (say, one to several hours)
during which conditions do not change much, are linked
via the changes in water levels in reservoirs. The levels are
assumed to remain constant for the duration of the time
period, at the end of which the levels are updated by con-
verting the flows into or out of the reservoirs into changes
in levels. Simulation over time is important in studying the
role of storage in balancing the loads on the sources and
on the network.

4. Find a feasible design, given one or several loadings
and constraints on the decision and dependent variables.
The objective - function would contain only penalties - for
violating constraints on the dependent variables. Once a
feasible design is reached, the value of the objective function
is zero, and any design satisfying this condition is acceptable.

5. Find designs that are optimal with respect to physical
functions, such as the weighted residual pressure criterion
used by de Neufuville et al. [1970].

6. Optimize the design of a new system or of additions
to an existing one, disregarding costs of operation. The
decision variables are all design parameters, and the ob-
jective function contains only the initial cost.

7. Optimize the operation of an existing system for one
loading. Decision variables may be heads, consumptions,
and also link resistances (representing valve settings). The
objective function is the cost of operating under the given
loading for 1 unit of time.

8. Optimize the design and operation for several load-
ings. This is the general problem dealt with in this paper.

9. Calibrate the mathematical model of an existing sys-
tem. The decision variables are usually link resistances
(say, the roughness coefficients of some or all pipes) but
may in certain cases also include heads or consumptions.
The objective function to be minimized is some measure
of the difference (say, the sum of the squares of the devia-
tions) between the computed values of some or all dependent
variables for one or several loadings and the measured
values of the same variables. The optimization would then
yield the model’s parameter values that give the best fit.
Note, by the way, that a good calibration should be based
on more than one loading, preferably loadings that are
quite different in magnitude and pattern.
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