Optimal Route for Pipelines in Two-Phase Flow

URI SHAMIR

ABSTRACT

A technique is described, which makes it possible
to select the optimal route for a pipeline designed
to carry oil and gas in two-phase flow. The pipeline
is assumed to operate under the pressure differential
naturally available between the source and the
point of delivery.

A discrete grid is established to describe the
corridor through which the pipeline is to pass.
Topographic and terrain data are given for all grid
points. Cost data is given for all factors which
affect the capital cost of the pipeline. The equation
for the two-phase flow becomes a global constraint,
to be satisfied by the selected route. Dynamic
programming is then used to solve the minimization
problem.

A computer program is described, with which a
sample problem was solved, and the results that
were obtained are also presented.

INTRODUCTION

Great sums of money are spent annually on the
construction of pipelines for the oil industry. Many
of these pipelines are designed to carry gas and
oil in simultaneous two-phase flow from wells to
various collecting and processing facilities. The
procedures for selecting the route for such pipelines
have followed the traditional approach of engineering
judgment and selection of the cheapest among a
few alternative routes laid out by hand on maps
and aerial photos.

Aerial photo interpretation, to yield soil types,
tree cover, existence of swamps and muskeg, and
other factors affecting costs, is being used in
route selection. Geologists and soil engineers are
brought in to evaluate soil conditions on the basis
of aerial photos, as well as by examination of the
route itself and soil samples.

This data is then used to select a route and to
design the pipeline. The present project was
undertaken with the objective of improving the
engineering practice. We sought to proceed beyond

Original manuscript received in Society of Petroleum Engineers
office Nov. 10, 1969. Revised manuscript of paper (SPE 2836)
received March 25, 1971. (©) Copyright 1971 American Institute
of Mining, Metallurgical, and Petroleum Engineers, Inc.

IReferences given at end of paper.

¥This work was undertaken while the author was staff
consultant at Underwood McLellan & Associates Ltd., Calgary,
Alta.

SEPTEMBER, 1971

ISRAEL INSTITUTE OF TECHNOLOGY*
HAIFA, ISRAEL

the stage of mere trial and error and to develop a
rigorous method for determining the optimal route
by using the techniques of systems engineering.

The over-all problem of conveying fluids in one-
and two-phase flow pipelines was reviewed. It
ranges from a single pipe carrying a single-phase
fluid, through two-phase flow lines, to gathering
systems containing networks of pipes and other
equipment, such as valves and compressors, to
collect the products of a large number of wells and
deliver the mixed product to processing plants. All
these were considered part of the over-all project,
which deals with optimal design of pipeline systems.

Initially, one aspect of the over-all project had
to be selected. It was decided to tackle the problem
of optimizing the route for a single pipeline
carrying two-phase flow. This problem presents
some complications, and it was felt that if it could
be solved, single-phase pipelines would present no
added difficulties.

TWO-PHASE FLOW PIPELINES

It is common practice in the oil industry to use a
single pipe to carry both oil and gas from producing
wells to collecting facilities and plants. The
alternative is to separate the two phases at the
source and carry them in separate pipelines.
Economics of the two alternatives should be the
basis for a choice between them. The present work
is therefore a useful tool for making a better choice
possible by yielding the optimal solution for the
two-phase line alternative. As will be shown later,
the method, as well as the computer programs, can
also be used to determine the optimal route for a
pipeline carrying flow of a single fluid.

COMPUTING SIMULTANEOUS FLOW OF
LIQUID AND GAS IN A PIPELINE

The regime of flow in a pipeline carrying both
liquid and gas depends on many parameters. The
regime, in turn, determines the pressure losses
along the pipeline. The procedures for computing
the two-phase flow are both elaborate and rather
inaccurate. No attempt is made in the present work
to change or to improve the existing methods, as
this is beyond its scope. We do need, however, to
modify the sequence of the computations to suit the
requirements of the optimization problem.

As will be explained later, the two-phase flow
equation will constitute a constraint in the
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optimization problem. The constraint has to be
specified before the route is selected. Therefore,
it has to be formulated before the length of the
pipeline and the ‘‘sum of the ups’’* in it are known.
It will be shown that the two-phase flow constraint
can be written in the form

Qpp)L+ Bp )b <Dy, . .o . . L. (D
where L = length of the pipeline, ft
b = sum of the ups, ft
Ap = available pressure difference between
the ends of the pipeline
Apj, = pressure loss per foot of length, due to

friction
Ap, = pressure loss per foot of ‘‘hills’’, due to
hills

There are in use several procedures for computing
Apy, and Apy. In the present study, we have used
the Flanigan method!l to compute the coefficients
Apy, and Ap), (see Appendix).

Flanigan’s method is admittedly simple. Never-
theless, it is widely used, probably because of its
simplicity. In the present work another method, that
of Baker,? was also used. In some cases the two
methods gave results that were significantly
different. This indicated that more work has to be
done to improve the state of our knowledge about
pipelines carrying gas and liquid in two-phase flow
under field conditions. This aspect of the problem
was not, however, the one dealt with in the present
work. All we need is to be able to state that the
coefficients Apy and Ap, of Eq. 1 can be computed
before a route is selected, and there is some
accepted procedure for computing them. Thus, for
the present we accept Ap; from Eq. A-5 and Ap,
from Eq. A-6 as the coefficients needed to formulate
the two-phase flow constraint for the optimization
problem. Note again that the length of the pipeline
and the sum of the ups were not used in obtaining
these values. This is a crucial point for the
formulation of the optimization problem.

At this point, it should be noted that single-phase
flow is but a special case of the two-phase flow.
The head losses are due only to friction, and it is
a relatively simple problem to compute Apj .

A computer program was written to compute Apy
and Ap, for two-phase flow by Flanigan’s method.
Its use made it easy to examine many design
conditions, i.e., various flow rates, diameters, etc.

ECONOMIC CONSIDERATIONS

In the present work we will be comparing
alternative routes on the basis of capital costs
alone. We are assuming that the pipeline will
operate under the pressure differential naturally
available between the source (well) and the point
of delivery (refinery). There is, however, no
difficulty in taking into consideration operating

*¢Sum of the ups’’, alternately called ‘‘hills’’, is the sum of
the vertical rises of all uphill sections along the pipe (facing
downstream),
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costs as well. For example, if compressors are
used to provide the pressure at the inlet, the capital
cost of this equipment, plus operating (power,
manpower, maintenance) costs for the period for
which the pipeline is designed are to be included
in the objective function. The annual operating
costs have to be converted into present cash
value, using the unit costs and the interest rate.
The objective function will still be separable (a
term to be explained later), thus making it possible
to use the same optimization technique.

It is also realized that unit prices depend on the
time of the year, the region in which the pipeline
is located, the accessibility of the route, etc. For
any specific project a cost file has to be set up
reflecting these factors; and it will be used in the
optimization. The method of analysis is not altered
by the actual cost figures or the inclusion of
operating costs, even though the optimal route
may be.

CONSTRAINTS

Often the route is forced to pass through certain
points, or prevented from passing through others,
prior to the route selection. This is sometimes due
to valid constraints. Too often, however, it is done
for what seems an overriding consideration which
is assumed to be unavoidable. Such dictates then
become constraints in the optimization problem. An
example of such a consideration might be: ‘‘The
pipe has to cross the river at this point, as the
cost of the crossing there is much less than it
would be at any other point.”’ If this consideration
is accepted as a constraint, and the route forced to
go through the specified point, we are not sure that
the resulting route is indeed the economically
optimal one. The correct way of taking this
condition into account is to assign to each point
along the river the cost of making the crossing
there, and then let the algorithm pick the cheapest
over-all route. When comparing two routes for
over-all cost, the cheaper of the two may well be
the one having the higher cost of crossing the river.
This is because the savings along the rest of the
route more than make up for the difference in the
cost of the two crossings.

The same applies to other constraints. Whenever
a condition has an economic value, it should be
included in the objective function and not taken as
a constraint.

THE OPTIMIZATION PROBLEM

The optimization problem dealt with here includes
the following given facts: the discharges of gas and
oil; the necessary properties of the gas and the oil;
the inlet and outlet sections; the inlet and outlet
pressures; the corridor through which the pipe has
to pass; the terrain in the corridor; soil types, tree
cover, water courses and rivers, roads and railways,
and other factors in the corridor which affect the
cost of the pipeline; cost data for materials and
labor used in the construction; legal, technical,
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practical, and any other types of constraints to be
satisfied by the route to be selected; an objective
function, which is a measure of the desirability of
the line (e.g., the capital cost); and the diameter
of the pipe.

We are asked to find that route through the
corridor, from the inlet section to the outlet
section, along which the pipeline satisfies the
two-phase flow constraint and all other specified
constraints and for which the objective function has
an extremal value (minimum cost in our case).

As a first step, a corridor is selected through
which the line has to pass, connecting the inlet
and outlet sections. Based on engineering judgment,
the choice of the corridor, its location and width,
is made by hand. The wider the corridor, the more
certain we are not to have eliminated the global
optimal route. But at the same time, the wider the
corridor, the more computation time is required to
solve the optimization problem with a fixed degree
of accuracy.

For solving the optimization problem, the
continuous two-dimensional area of the corridor is
replaced with a finite grid, roughly at right angles
to the longitudinal direction of the corridor section.
These are lines cutting the corridor from one
boundary to the other, as shown in Fig. 1.

Along each section grid points are selected. The
pipeline will pass through one point on each
section. The length of pipe connecting two grid
points on adjacent sections is called a segment.
The sections and associated grid points have to be
selected judiciously. They should constitute an
adequate representation of the terrain, the soil
types and tree cover, as well as all topographic
and other factors relevant to the pipeline’s
construction, operation and cost. The finer the grid,
the more accurate the representation. But, on the
other hand, the computational requirement for the
optimization increases as well. It is thus a problem
of balancing the desired accuracy and the
associated cost of performing the analysis. Rough
guidelines might be }4 to 2 miles between sections
and a few hundred to a thousand feet between grid
points.

DYNAMIC PROGRAMMING

After formulating the optimization problem, its
structure was reviewed to determine the most
suitable optimization technique. The objective
function is separable, which means that it can be
written as a sum of terms, each representing the
cost of a single segment of the pipe. There is only
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FIG. 1 — ESTABLISHING A GRID.
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one global constraint, the two-phase flow equation.
A global constraint is a condition to be satisfied
by the entire route. All other constraints are local,
i.e., conditions to be satisfied by an individual
segment.

This structure suggests that dynamic programming
is the most suitable technique. The technique was
developed by Bellman3 and is given in detail in
many books. The best reference for the present
work is of Hadley.4

NOTATION
i=1,...,n; = index of the sections
j=1,...,n(i) = index of the points on the section,
n;(i) is the number of points on
the ith section
Xl-']- = X-coordinate of Point (i,7)
Y;,; = Y-coordinate of Point (i)
X,Y = local Cartesian coordinates
selected in any convenient manner
Zi,j = elevation of Point (i,j) relative to

to any selected datum
&(i,7) = length of pipe available from the
inlet to Point (4,j), k =1, ...,K

ny(i,j) = hills available from the inlet to
Point (7,7),€ =1, ..., L

Em’] = length of the segment from Point
(i—1,m) to Point (i,7)
b,,; = hills in the segment from Point

(i—1,m) to Point (i,7)
Using this notation, the objective function is:

minG=Zi flG-1m); G, ... .. (@
=2

where f[(i—1,m); (i, j)] is the cost of the segment
from Point (i-1,m) to Point (4,7), and where m for
the next segment takes on the value that j had, to
make the segments belong to a continuous line.

The recursive equation of the dynamic programming
algorithm is:

f;:].[(i,j) | &G Gl =

min {/[G-1,m); GOl + f*  [G-1,m)| &(.7)
(i~1,m) =1,m
meM

L L ) | I )

where fi’f]-[(i,j) | &G, ; nz(i,j)] is the cost of the

optimal route from the inlet to Point (4,7), given the

available length (4, /) and the available hills 1o 1)-
The two-phase flow constraint is

(App)- £+ Mp) i) S Do o o . (&)

Other constraints may be imposed on the segment
from (i—1,m) to (4,j). The length of the segment is

A (O T T R AT AP b N 6)

i-1,m
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as the vertical component (Zi,j = Zi_1,m) has a

negligible effect. The hills in the segment are

b =(Z,~Z, 0 ) (6
where (@)t = @ when @ is positive and (&)t = 0
otherwise.

The minimization is performed on all meM (m is a
member of the group M), where M denotes the group
of points on Section (i~1), which may be connected
to Point (7,7) by a pipe segment. The group M may
include all points on Section (i-1). Constraints may
eliminate some of the points. The smaller the Group
M, the less computations are required. Thus, one
should try to reduce the size of M. One may achieve
this by eliminating those points on Section (i-1)
from which a segment to Point (7,7) is highly
unlikely to be part of an optimal route. This
arbitrary elimination of segments should be done
carefully, as by a wrong selection one may eliminate
a perfectly good route. The elimination is done for
the sake of efficiency. Thus, once again, one
should weigh the added efficiency against the
possibility of eliminating a good route. This point
will be illustrated in the sample problem.

Let us now elaborate on the notion of the
available resources: &, the available length of pipe,
and 7), the available hills from the inlet to the point
in question, (Z,7).

These are values of total length and hills which
make it possible to select one or more routes from
the point under consideration to the inlet section.
The total length of the line, L, and the total hills
in it, b, have to satisfy the two-phase flow constraint

Ao )L+ (Ap) b < Ap .

For a given corridor, various routes satisfying
this constraint can be selected. One may be shorter,
but have more hills, whereas the other avoids some
of the high points and is longer. The optimal route,
which must also satisfy the two-phase flow con-
straint, uses the two resources—length and hills—in
such a way that the objective function is minimized,
while the constraint is satisfied. These two
resources have to be allocated among the various
segments so that they are best used.

Consider the following hypothetical example. The
cost of laying the pipe is.the same throughout the
corridor, and a straight-line pipe from inlet to outlet
is not feasible. There are too many ‘‘ups’’ along
this route and the two-phase flow constraint cannot
be satisfied. What one should do is find that hill
along the straight-line route for which one obtains
the maximum decrease in ‘‘ups’’ per unit increase
in pipe length (and therefore over-all cost) by
moving the pipe from the straight line. If the
resulting route is feasible, it is optimal. If not, one
has to find the next best reduction in hills and
proceed until a feasible route is found. It is the
desired optimal route. Matters are complicated when
the cost is not uniform throughout the corridor. The
dynamic programming algorithm ensures that these
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resources, length and hills, are allocated to the
segments in a way which results in the over-all
cost being minimized.

Note that if we were dealing with a single-phase
pipeline with an available head difference of Ap,
the constraint would be

(Ap, )L < Ap

and the only resource to be allocated would be
length, as hills do not affect the losses. Thus,
the single-phase case is essentially the same as
the two-phase case with Ap, = 0.

For each Point (i), a table has to be set up,
ranging over the possible values of ¢ and 7, the
available length and hills. To do this, one must
determine the lower and upper limits of both
resources at the point and then divide each range
into finite increments. The number of increments,
and thus the size of the table, is fixed in the
computer program for all points (for convenience)
and is given by the user of the program. The limits
are computed as follows:

€ in @) = min [& , G-1,m) +C 7.]
meM '

Snaxlil) = max[g  G-1,m) +L[, ]

meM
, (7)
Nyiq G7) = min [n . G-1,m) + b, i]
meM !
T]max(i,j) = max [nmax(i—l,m) +h, A
meM &
with
fmin(l’j) = fmax(l’j) = T’min(l’j) = ﬂmax(l’j) =0
(8)
for all j, where i = 1 denotes the inlet section. meM
has the same meaning as before — m belongs to

the group of points on Section (i-1) which may be
connected by a pipe segment to Point (7,7). Thus
the table at (i,j) covers the entire range of the
Points (i~1,m), plus the additional length and hills
required for the segment from them to Point (),
for all meM.

While performing the minimization of the recursive
equation for a fixed value of £ and 7, one also
determines that m (meM) for which the minimum is
achieved. This point, denoted by

CHPIEACH IR FICY ) I )

is stored in the table together with the minimum
value of the function

f;‘j].[(i,j) | & @l . (10)
It is the point on Section (i-1) from which, given
the available & (7,7) and ng(i,j) at Point (7,j), one

should connect a segment to Point (7,7), and it is
part of the suboptimal route from the inlet to Point
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(i,j). That is, if (i,j) were the outlet point, this
segment would be part of the optimal route. The
global optimal route, however, cannot be determined
until the recursive equation is used for all Sections
i=l, ..., n;. Then, at the outlet section, one finds
the Point j*(n;), which has the minimal value of
fa,,j» by petforming the minimization

];fl]i}; [ IR R ACH) R FET | SRR T

over all k and [ for all j. j*(n,;) is the index of the
point on the outlet section which is the end point
of the optimal route. The values of & and 7, for
which this minimum was achieved, are the total
length £* and hills n* of the optimal route. For
these values one also finds the back-pointer

m:i'j*[f*;n*],. B ¢ V)

which is the point on the (7;-1)-st section through
which the optimal route passes. Denoting this
value for the moment simply as m* one can find
the location in the table for that Point (i-1,m*),
which led to the optimal route as being

E(i-1,m*) = f*-ﬂm* .

']

nli=1,m*) = n*- - (13)

bm,,,].,. .

The entries in the table for (i-1, m*) at these
values of £ and 7 are the cost of that part of the
optimal route from the inlet to Point (i-1,m*) and
the back-pointer. The back-pointer is the value of
m on Section (i~2), which is on the optimal route.
Again, one subtracts the length of the segment of
the optimal route from Section. (i-2) to (i-1) and
enters the table of the optimal point on Section
(i-2) with the new, reduced values of £ and 7. This
procedure is followed all the way back to the inlet
section. There the procedure will yield the point
from which the route is to start for it to be optimal.
During this part of backtracking, one also determines
the contribution of each segment to the over-all
cost, as well as to the over-all lengths and hills.

The dynamic programming problem has a single
global constraint and, therefore, can be solved as
having a single scarce resource — the pressure
differential Ap. Doing this, the recursive equation
is

flf"‘j[(i,j) | Ap,l= min

i—1,m), meM

{flG-1,m); G, D]

+ fF 1, HLG=1,m) | Ap, - (Apy - 0 it Ap, bm,j)]}
Apy, k=1, ..., K ranges over all possible values that

satisfy the two-phase flow constraint for the Point
(@)

The pressure differential available at Point
(i-1,m) is whatever was available at Point (4,])
minus the pressure drop along the segment. This
approach results in a one-dimensional formulation
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(as it should be, for a single constraint) and will
be tried at a later stage. The two -resource
formulation' was easier conceptually and was
therefore used in the present work.

INTERPOLATION

Recall that at each Point (4,7) a table was set up
having entries of [* and m™ for discrete values of £
and 7 over some range. In determining fl for some
values of £ and 7, one has to use values of X,
for computed values of the two resources: (& ~ ”5
and (n — b). These values, however, usually do not
coincide with one of the discrete values of £and g
used to construct the table at Point (-1,m). In such
cases, the value of
[(i-1 m)| fk(z,])

s ) ~ b, ]

lem 7

m, ]
has to be found in the table for Point (i-1,m) by a
two-dimensional interpolation. As this interpolation
is done many times, it has to be simple and involve
few computations.

If the discrete values of £ and 7 used in a table
are closely spaced, one can use the simplest
interpolation procedure without much loss of
accuracy. This procedure amounts to taking the
table entry at the highest possible values of £ and
n that do not exceed the available amounts. For
example, at (i-1,m) for some &,(4,7) and 7y(i,f), use
the discrete values of £(i-1,m) and 7(i-1,m) that
satisfy

EG-1,m) < &G, - ¢

and

m,j

1G-1,m) < 7,67 ~ b, ..

Other interpolation procedures call for fitting a
three-dimensional surface through the known values
at the vertices of a rectangle (which correspond to
table entries) and using the resulting equation of
the surface to determine the value at any interior
point.

The interpolation procedure has to be used
twice: once in the ‘‘forward’’ stage of minimization
performed in the recursive equation and the other
in the ‘*‘backward’’ determination of the optimal
route.

Using any interpolation procedure, other than the
one outlined in this section, another problem arises.
Whereas the value of the function f* is continuous
over the space of & and 7, the associated value of
the optimal Point m* (the back-pointer) is not. Each
one of the vertices of the rectangle mentioned
above may have a different valuve of m* In the
forward phase of constructing the tables one may
store in the table for Point (i,j) all the values of
m* (1 to 4) appearing at the vertices of the rectangle
of the table for Point (i-1,m).

In the backward stage one uses the four values
of m* (of which two or more may be equal) to
determine the interpolated point on the previous
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section through which the optimal route passes. If
this is indeed an interpolated point rather than one
of the grid points, one does not have tables for it,
as the point was not used in the forward phase. In
this case one has to use the tables for the two
adjacent grid points to construct an interpolated
table for the new point.

These interpolation procedures are rather
cumbersome and require a lot of computations. We
have, therefore, adopted for the present work the
first approach, that of always using an actual table
entry from the previous section in performing the
minimization of the forward stage. This results in a
very simple procedure, and provided ¢ and 7
increments are not too large, the accuracy is
adequate.

SUBOPTIMAL ROUTES

Dynamic programming provides much useful
information besides the optimal route. After the
original problem has been solved, one may determine
other routes, which are optimal under some added
conditions. For example, say the outlet section has
a number of points, and the algorithm picked the
outlet point as that resulting in the lowest over-all
cost. We may now impose the condition that the
outlet be at some other point on the outlet section.
The tables constructed for the original solution may
be used.to determine the optimal route for this new
condition that, in the global sense, is called
suboptimal. Moreover, the extra cost of this
suboptimal route, over the cost of the optimal
route, is the cost of the constraint that was
imposed, namely, forcing the route to terminate at
the specified point.

If after having the solution for the original
problem we want to force the route to pass through
some internal grid point, i.e., a point on a section
other than the outlet section, some additional work
has to be performed. The tables for the section
from the inlet to the section in question are all
valid, but the subsequent ones have to be
recalculated with the new restriction.

In summary, the forward dynamic programming
algorithm provides the optimal routes from the inlet
section to every point on the grid for all possible
values of the available resources. However, it does
not provide the optimal route from each point to the
outlet section. This is because we have selected a
dynamic programming procedure which starts from
the inlet section. The same procedure can be used
starting from the outlet section. It would yield
optimal routes from every point in the grid to the
outlet section for all possible values of the
available resources, but not the optimal routes from
the inlet to the point. The computer program can be
used twice, solving once from inlet to outlet and
once in reverse. The two sets of tables would then
provide directly the answers for all subsequent
conditions being imposed on the route.

OPTIMAL PIPE DIAMETER

The objective of the optimal pipeline is to convey
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the required quantities of gas and oil at a minimum
cost. One should therefore determine the most
economical pipe diameter, as well as its optimal
route. One might even consider changing the pipe
diameter along the way if it proves economical. In
two-phase flow lines, it is common procedure to
have ‘a uniform diameter throughout sections in
which the discharges do not change. This is done
for the purpose of ‘‘pigging’’, a procedure where
“‘pigs’’ —cylindrical or spherical bodies—are sent
with the flow down the line to clean the pipe walls
from deposits, as well as to move fluid slugs over
hills. For the time being, we shall consider only
lines with a uniform diameter throughout.

Unfortunately, the two-phase flow constraint
cannot be written as an explicit function of pipe
diameter. The influence of the diameter is embodied
in Ap; and Ap,. The diameter is an important
parameter in the optimization problem, as the cost
of the pipe is a very significant contribution to the
over-all cost, and it varies greatly with diameter.
The only way to select the most economical diameter
is to run the same problem for a few diameters
which seem reasonable, determine for each the
optimal route (which will be different for each
diameter), and then select that diameter that has
the lowest over-all (optimal) cost.

SENSITIVITY ANALYSIS

The results of the optimization are only as good
as the input data. There are inaccuracies and
uncertainties in both the physical and the economic
data. These are due to the use of a finite grid, to
interpolation and, more than anything €lse, to the
uncertainty in determining the unit prices before a
route is selected. It is important to determine how
sensitive the answers are to variations in the input
data.

By the sensitivity of the results, we mean
primarily changing of the optimal route due to a
change in input data. It also means the change in
the optimal value due to such changes.

To perform a sensitivity analysis, one has to
rerun the program a number of times, vary one or a
few parameters in each run, and compare the
results. One thing can be done with respect to cost
data, which eliminates the need to make many
separate runs. During the original solution, one can
easily divide the costs of the segments into the
various components, such as the cost of pipe,
clearing, ditching, etc., and add these separately
along the route. In this way it is possible to tell
which are the governing factors in the over-all cost,
to which the optimal solution will probably be most
sensitive.

A computer program was developed, using a
time-sharing computer, for selecting the optimal
route by dynamic programming.

DATA COLLECTION AND USE

Much thought was given to the questions of how
to obtain the physical data needed in selecting the
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optimal route and how to transform it to computer-
acceptable data. Automatic digitization of the
topography from stereo aerial photographs on any
convenient grid is now available at moderate cost.
Aerial-photo interpretation, to yield soil types and
tree cover, has to be done manually by experts.
The areas delineated on the photos by the interpreter
can be described digitally by the same equipment
which is used for digitizing the topographic data.
With the proper format, punched cards produced by
digitizing equipment can be fed directly into the
computer.

Initially we did not link this capability with the
optimization program. It is intended that when the
program is transferred from time-sharing to batch
processing, the physical data will be supplied by
the digitizing process.

Cost data will be assembled as it becomes
available and incorporated in a cost file, which can
be used as a reference. The actual cost data should
be assembled for each project and included in the
cost file. It is this specific data which will be used
to find the optimal route.

SAMPLE PROBLEM

We have used an existing pipeline as an example
for selecting an optimal route. The data used was
for the pipeline as it operates today. The pipeline
was designed, however, for a much larger discharge.
The data are given in Table 1.

The coefficients for the two-phase flow constraint
were computed by Flanigan’s method,! using the
computer program. The results, computed as
outlined in the Appendix, are: F = 847.50 psia;
u =15.729 ft/sec; F =0.8832; C =800.27; Apgy, =6.26
psi/mile = 0.00119 psi/ft; and Apj = 0.058 psi/ft
of ups. '

A system of local coordinates was chosen for
convenience. The origin is at the inlet, Point A.
The X-axis passes through the outlet, Point B, and
the Y-axis is perpendicular to it. Terrain data was
read from the topographical map. Aided by aerial
photos of the area, soil types and tree cover were
determined. These are shown in Fig. 2. A corridor
was selected and a grid was established, as shown
in Fig. 3. Note that the sections follow the major
topographic features of the corridor, and the grid
points are close enough to adequately represent the
terrain and soil types. (We were restricted to a
maximum of 10 sections and 10 points per section
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TABLE 1 — DATA FOR SAMPLE PROBLEM

Pipe diameter, in. 12.170
Distance from source to point of delivery, miles 5.8
Inlet pressure, psia 880
Outlet pressure, psia 815
Gas discharge, MMcf/D 73

Qil gravity, 1b/cu ft 51.2
Gas gravity, air = 1 0.70
Average temperature, °F 90
Gas compressibility factor 0.867

because of the limited capacity of the computer
used in time-sharing. For the sample problem,
however, this appears to provide sufficient accuracy.)

To reduce computation time, we have restricted
the number of segments which can be connected to
each grid point. For example, for Point (5,4), which
is Point 4 on the fifth section, only segments
originating at Points (4,2), (4,3) and (4,4) were
considered. It was considered unlikely that segments
originating at other points on Section 4, and leading
to Point (5,4), would be part of the optimal route,
as they deviate greatly from the longitudinal
direction of the corridor. The same was done at all
other grid points; this was based entirely on
intuition. Output from the program for one diameter
and one set of cost data is shown in Table 2.

The program was run on CGE Time-Sharing Mark
II. The cost of making a run and listing all the
output is approximately $20. The cost of the same
run using batch should be approximately $1.

The existing pipeline and the optimal route
determined by the program are shown on Fig. 3. In
this example, the cost of the optimal pipeline is
$199,359, while the cost of the existing pipeline
is $210,422. “

CONCLUSIONS

Dynamic programming can be used to select the
optimal route for pipelines designed to carry
two-phase flow. Length and ups are treated as
separate resources, although it is possible to view
them as components of a single resource-pressure
drop. When all the necessary physical and economic
data are available, a computer program can be used
to select the optimal route. For the sample problem
presented, the optimal pipeline is about 5 percent
cheaper than the actual pipeline which was
constructed, based on the unit costs used in this

paper.
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FIG. 3 — GRID, EXISTING AND OPTIMAL ROUTES.
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TABLE 2—PROGRAM OUTPUT, TELETYPED INFORMATION
Sample Problem

Ten Sections. (4 X 4) Tables ot Each Point
Diameter = 12,2 in.
Two-Phase Flow Constraint:

0.00119L + 0,05800h < 65.00

Four Soil Types. Two Tree Types.
Cost of Ditch in Different Soils in dollars/ft:
1=rock, 2= soft soil, 3= muskeg or swamp, 4= water
Cost (1) = 2.50
Cost (2) = 0.20
Cost (3) = 0.80
Cost (4) = 1.50
Cost of Clearing Trees in dollars/ft:
1=no trees, 2= small trees, 3 = large trees

Cost (1)=0
Cost (2) = 0.55
Cost of pipe = $6.00/ft
Optimal Route Table

Cost to
1 Je X (ft) Y (#) Z (ft) Point ($)
10 1 30,500.0 0 - 10.0 199,359, 1
9 5 26,000.0 374.0 120.0 170,121.2
8 5 23,800.0 ~249.0 70.0 155,258.8
7 5 20,200.0 -498.0 170.0 131,802.9
6 5 16,900.0 -581.0 110.0 110,428.7
5 5 12,800.0 -415.0 300.0 82,731.0
4 4 10,400.0 -995.0 200.0 66,743.7
3 3 7,395.0 -1,050,0 318.0 47,283.0
2 4 4,560.0 -332,0 413.0 28,346.8
1 1 0 0 395.0 0
Total length = 30,786.2 ft
Total hills =  228.0 ft

Total cost = $199,359.10
0.00119 x 30,786.2 + 0.05800 X 228.0 = 49.9

NOMENCLATURE

d = pipe diameter, in.

F = friction loss efficiency factor

b = sum of ups
pl = inlet pressure, psia
p2 = outlet pressure, psia

p = average pressure, psia
p = pressure, psia

qg = rate of gas flow, MMcf/D

R = gas-oil ratio, bbl/MMcf

T = average temperature along the line, °F
u = superficial gas velocity

z = gas compressibility factor (from tables)
Yg = 83S gravity (air = 1.0)
pr. = liquid gravity, Ib/cu ft
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APPENDIX

FLANIGAN’S METHOD

Flanigan! outlined a simple procedure for
computing pressure losses in two-phase flow

pipelines. His procedures are used in this work, as
follows.

Compute the average pressure in the line,

F=@l+p2)/2. .. .. .. .... (A]

Compute the superficial velocity of the gas (ft/sec)

(qg) ()
® (?

Compute the friction loss efficiency factor,

2
F = exp {-— 0.07464 [log ( 0u32)]
RO.

+ 0.4772 log (gu37) —0.8003}. . (A-3)

u = 31,194 (A-2)

This is a curve fit for Fig. 5 of Ref. 1.
Compute the friction factor for pressure loss,

20,500
C = ? e e e e e e -
)/2.46 (T+ 460)0. 54 (A 4)

Compute the pressure drop per unit length due to
friction (psia/mile)*,

1.853
1 qulo6
APL*?{[W SR

Compute the pressure drop per foot of hills
(psia/ft),

eL (_3.06
App =—|————=). .. .. .... (A6
Pk a4 (u ¥ 3.06) —

* % %

*¥The term in brackets (Eq. A-5) is a curve fit of Fig. 6 of
Ref. 1.
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