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Abstract. The partial differential equations that describe the motion of the seawater inter-
face and the free surface in a phreatic coastal aquifer (or the freshwater head replacing the
latter, in the confined case) are presented. They are based on the Dupuit approximation and
take into consideration the geometry of the vertical section through the aquifer, in whose
plane the flow takes place, as well as the spatial variation of properties of the porous medium
and the spatial and temporal distributions of accretion, recharge, and pumping. An implicit
numerical scheme is presented to solve the set of simultaneous partial differential equations.
The scheme is based on a linearization of the equations and employs a grid with one spacing
over the intrusion length and a different spacing in the remainder of the field. Efficient solu-
tion of the resulting set of simultaneous linear equations for each time step is achieved by
arranging them in a way that results in a 7 diagonal coefficient matrix. Examples are pre-
sented, for which the numerical solutions are compared with analytical solutions or laboratory
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experiments.

The use of coastal aquifers as operational
reservoirs in- water resource systems requires
the development of- tools that make it possible
to predict the behavior of the aquifer under
different conditions. One of the major problems
is the prediction of the motion of the saltwater
body in the aquifer, due to pumping, artificial
recharge, and the varying natural replenish-
ment,

The techniques used so0 far to solve the
problem of the unsteady flow-of fresh and salt
water in coastal aquifers were approximate
-analytical techniques and models, primarily the
‘Hele-Shaw model. The analytical methods de-
veloped 'to date apply only to very special,
simplified cases. Models are rather expensive
to construct and use, and tests made with the
models are time consuming.

Pinder and Cooper [1970] recently presented
a numerical solution for the moving interface
between fresh and salt water in. porous media.
They solved the two-dimensional” problem by
considering both the equation of motion and
the solute transport equation. Their solution
yielded the motion of the saltwater body and
the distribution of concentration of the solute
for a particular two-dimensional problem. In
general the numerical computations under the
Pinder-Cooper scheme will probably be lengthy
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because of the large number of grid points. We
also expect difficulties in a mnarrow transition
zone in which there are large concentration
gradients.

PROBLEM AND BASIC ASSUMPTIONS

The present work deals with the motion of
the interface between fresh and salt waters in a
coastal "aquifer, which may be either phreatic
(Figure' 1) or confined (Figure 2). We con-
sider 4 vertical section through the aquifer, at
right angles to the shoreline, and treat the
motion as two-dimensional in the plane of this
section.

We assume the interface is a well defined
line; i.e., we neglect the effect of dispersion be-
tween the moving fresh and salt waters that
creates a continuous transition over some width
from fresh to salt water.

We alse adopt the Dupuit assumptions; that
is, we assume the hydraulic. head along a verti-
cal line in the freshwater zone given by (¢’ =
p'/y" 4+ 2) is constant, and we. assume the
head along a vertical in the saltwater zone
given by (¢° = p"/y* + 2) is also constant.
These assumptions transform the two-dimen-
sional formulation into a one-dimensional one,
in which the dependent variables remain con-
stant in the vertical direction z and change only
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in z. These assumptions are justified as long as
vertical dimensions of the fresh and saltwater
flow fields are small when compared to horizon-
tal dimensions. Specifically, the Dupuit approx-
imation is valid as long as the intrusion length
L is much larger than the thickness of the
aquifer. Even with these simplifying assump-
tions, one cannot solve the motion of the inter-
face and the phreatic surface analytically,
except where the aquifer is confined and of
uniform thickness and the interface is a straight
line. This solution [Keulegan, 1954] is pre-
senfed in a lafer section and the results ob-
tained by the numerical scheme are compared
with the exact analytical solution. Approximate
analytical solutions also exist in a few other in-
stances [Dagan, 1964; Bear and Dagan, 1964].
However, in practical instances the thickness of
the aquifer and the properties of the porous
media may vary from point to point. The na-
tural recharge that reaches the freshwater body
through acecretion may vary both in space
and time and wells placed anywhere along the
length of the aquifer may follow any prescribed
pattern of pumping and recharge; the fresh-
water discharge that enters the coastal zone
from inland may vary in time. Under these gen-
eral conditions there seems little chance of
obtaining even an approximate analytical solu-
tion. We therefore resort to a numerical solu-
tion..

We retain the Dupuit assumption even
though a numerical scheme could be devised
to treat the exact two-dimensional formulation.
A numerical solution of the full two-dimen-
sional formulation would require a much more
complex numerical scheme and more computer
time, which do not seem justified because the
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flow is usually shallow under field conditions
and the Dupuit formulation leads to minor
errors only. Moregver, the inaccuracies in de-
termining the properties (hydraulic conduc-
tivity and effective porosity) of the porous
medium and the exact geometry of the bottom
layer overshadow the errors that result from
using the Dupuit assumptions.

We have used some laboratory experiments,
performed with a Hele-Shaw model, to test
the numerical scheme. In these experiments the
conditions were such that the Dupuit approxi-
mation was in appreciable error. Thus the
numerical results differed somewhat from the
experimental results. This difference will be
discussed later in more detail.

THE EQUATIONS

Development of the equations that govern
the motion of the phreatic surface and of the
interface between the fresh and salt waters in
a coastal aquifer has been given in many works
[Bear and Dagan, 1964].

We give here only the final form that results
from writing the continuity equations for each

‘region in which the Dupuit approximation is

used. Over the intrusion length 0 < z < L(%)
the equations for the fresh and salt water are
combined by requiring that the pressure in the
two regions be equal at the interface. The re-
sulting equations are:

For 0 < z < L(¢t)

Os .
7 8
an 6t+n

9 _ 9| 4 s _
at Oz [K € + as) ax] =R

(1
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For L(t) <z <B

ds &) ds
198 O s o8| _
an’ == — o [K (D + as) 8:0] R (3
where
s = s(.i, t), elevation of the phreatic surface
(or hydraulic grade line for a con-
fined aquifer) above sea level;
¢ = ¢(z, t), distance from sea level to the

interface;
nf, effective porosity for movement of
- the phreatic-surface;
n?, effective . porosity for movement of
the interface;

K/ = K/(z), hydraulic permeability in the fresh-
" water zone;
K* = K*(z), hydraulic permeability in the salt-
: water zone; :
D = D(x), thickness of the aquifer from sea
level down to the impervious layer;
R = R(z, t), net inflow into the aquifer from
above (natural replenishment plus
artificial recharge minus pumpage);
v/, v%, specific weight of fresh and salt
water, respectively;
Ay = y*—1f;

a, parameter used for generalizing the
formulation to include both the
phreatic (¢ = 1) and confined
(a = 0) cases. :

The setting of @ = 0 eliminates those terms
from the equations in which s denotes storage
or thickness of the flow region of the freshwater,
but retains the terms in which s stands for the
head in the freshwater.

INITIAL AND BOUNDARY CONDITIONS

As an initial condition we need the location
both of the interface { and of the phreatic sur-
face s (or, for the confined case, the distribu-
tion of the head) at some initial time, which is
denoted by ¢,

flo, ) 0 <2< L(t) 4

On the seashore (z = 0) the Dupuit ap-
proximation requires the conditions s(0, t) =
£(0,t) = O for all t. In reality there is a seep-
age face there; ie., s(0, t) and (0, t) have
some finite values, but these cannot be deter-

mined when the Dupuit approximation is used.
One can take them from approximate analytical
solutions or laboratory experiments. Thus we
assume for the numerical solution that we have
such values and write

s(0, &) = so(2) t >ty (6)
10,0 =5 24 ™

Under field conditions these distributions are
unknown. When the interface is shallow .one
may set §(0, t) = £(0, t) = 0 for all ¢ without
much error. Another possibility is to adopt the
steady solution [Bear and Dagan, 1964]

¢, ) = T{’?_Zq(ft/)'y_’) ®

where Q,'(t) is the freshwater discharge leav-

ing the aquifer into the sea (Figure 1). This

expression holds when @, remains constant,

and may be used as an approximation when
) = Qor (t)

The condition at the toe of the interface is

{L(9, 4 = DIL(Y)] O]

At the end of the aquifer z = B we may
either have an impermeable boundary or a
known freshwater discharge crossing it. The
boundary condition is

Q' = ‘—[K’(D + as) :—i] ! (10)

where Qs" <. 0 when the flow is toward the
Sea, i.e., entering the aquifer from inland. When
z = B is an impermeable boundary, @," = 0
and the following condition have to be satisfied:

z=

s

9z =0

z=B

1)

Boundary conditions 6 to 10 and initial con-
ditions 4 and 5 suffice to enable the solution
of equations 1, 2, and 3. An additional bound-
ary condition for equations 1 and 3 is ob-
tained by requiring that s[L(t), t] match from
both equations.

The distribution of B = R(z, t) both in time
and space is assumed known. For the numerical
solution the net result of accretion, pumping,
and recharge throughout an element are lumped
in R for that element.
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NUMERICAL SCHEME

The Grid

For the numerical solution” we divide the
length of the field into discrete elements (Fig-
ure 3). The intrusion length is divided into
short elements because a good definition of the
location of the interface is of prime importance,
and ¢ varies quite rapidly (as compared to s)
with z. Beyond the toe we tolerate much lar-
ger, and thus fewer, elements; therefore the
computation is made more efficient. We thus
have (n + 1) increments of length Az, each for
0 < 2 < L(t), and (m — n) increments of
length Az, each for L(t) < z < B.

After each time step the toe moves, which
establishes & new L(t). At this time a rezoning
of the grid is performed by dividing the new
intrusion length into (n 4 1) equal increments
and the remaining length (B — L(¢)) into
(m — n) equal increments, where n and m
are fixed. Thus the interface is always defined
by the same number of grid points. When the
intrusion length is small, and as a result the
interface is steep, the grid points are close to-
gether. When the position of the interface
varies more gradually the grid points are
farther apart. If during the solution the intru-
sion length undergoes major changes, the fixed
number of grid points in each zone could re-
sult in a very close grid spacing in one region
and a very large spacing in the other. We thus
limit both Az, and Az, to be between an upper
and lower bound. When they reach a bound the
number of grid points is ¢hanged for the next
rezoning.

We denote each grid point by an index i;
1=0,1,+»,(n+ 1) for0 <z < L(t) and
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Fig. 3. The grid.
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i=(m4+1), -, (m+1)for L(¢) <z <
B. The time interval is denoted by an index j,
j=1,2, ---. Thus s, ; and ¢ ; denote the
values of s and ¢ at the ith grid point, at the
end of the jth time interval.

The unknowns at each time step are

g‘i.i-i-l 1:=1y"')n
and
Si,i+1 1,= 1,...’m
for a total of (» 4+ m) unknowns. As we shall
show later there are also (n 4+ m) equations,
which makes the system of equations solvable.
To simplify the notation we abbreviate aver-
age values, for example

= %(Kif + Ki+1f)
Cimin = 3(Eicns + $ii)
R: i1 = 5(Ri; + Ri 1)

Note also that although no time index ap-
pears for D, K’ and K*, the locations at which
they are needed, i.e., the grid points, move with
each time step as a result of the rezoning. An
interpolation procedure is used after rezoning

to compute the above quantities, as well as s, ,
and R at the new grid points.

f
Ki+1/2

Implicit versus Explicit Scheme

The simplest way to write a difference
analog of the partial differential equations
would be to use an explicit formulation: In such
a formulation unknowns appear only in
time derivatives. For example, 8s/8t would be
written (8, ;4 — 84,5)/At. The spatial deriva-
tives would all be expressed in terms of
(known) values at the old time. For example,
8s/0x at the ith point could be expressed as
(41, 5 — Su.a, ;)/2Az. The equations that result
from an explicit formulation are solved one at
a time and are independent of the other equa-
tions; this leads to an extremely simple
algorithm, but has a major limitation. It can be
shown that such a scheme is unstable unless the
spatial and temporal increments satisfy a sta-
bility criterion.

The problem under consideration is not
linear, and therefore only an approximate sta-
bility criterion can be formulated. Consider
equation 2, in which the temporal derivative is
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of . If one neglects the change in K*(D — {)
with z we get

a§+K(D— ;)(16—5—-‘419—‘“) =0

(12)

The curvature of the free surface is usually
negligible when compared with that of ‘the
interface, If we drop it from the equation, we
are left with

% _|x(M@=-9 Av] ’t
at I: n'y* 9z* =0 (13)

If we assume the term in brackets is con-
stant we have the following stability criterion
from the well-known theory for linear equa-
tions:

K'(D — O Ay At
n'y* (Az)

3 < (19
The réstriction is most severe when (D —
&) is as large as possible. Let us take (D — {)
~= D/2, say, a reasonable average value in field
conditions. For the following data:

K® = 40 m/day n' = 0.2
Ay/y" = 0.03 D = 100 meters
we get
At 1 0.2 1
o’ <23 x25 %003 300 1Y

If we take Az = 50 meters(=D/2), which is
a rather large value, this requires

At < 8.3 days (16)

The motion of the interface over appreciable
distances is a matter of several years. Condi-
tion 16 would. lead to an impractical number of
time steps, even if we allowed a somewhat
higher value on the right-hand side of condition
14.

Consequently we adopt the implicit scheme,
which although more laborious at each step is
unconditionally stable.

Linearization
The differential equations are nonlinear be-
cause they include products of variables and
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their derivatives. One could write nonlinear im-
plicit difference equations in which the values
of 8 and ¢ both in the coefficients and in the
derivatives would appear at the new time, ie.,
as unknowns. One has then to solve at each
time step of (n + m) simultaneous nonlinear
algebraic equations. The solution, obtained by
some suitable iterative technique, would require
a prohibitively large amount of computer time.

We have thus elected to linearize the equa-.
tions as follows: in all spatial derivatives s and
¢ will appear at the new time (j + 1), ie, a8
unknowns, whereas in all other places they will
appear as known values from the old time j. We
have also provided for an iterative scheme in
the computer .program, which proceeds in the
following way. With the ‘old’ values of s;,; and
Z., ; one solves the unknowns s;, ;4 and &, ja.
Then for the same time step one updates the
values in the coefficients by using the most
recently calculated values of s and £, and re-
peats the solution. These iterations are con-
tinued until values of the unknowns on suc-
cessive iterations are within some prescribed
accuracy tolerance. The user can also specify
the number of iterations to be performed at
each time step, regardless .of the convergence
achieved.

DIFFERENCE EQUATIONS AND THEIR SOLUTIONS

The finite ‘difference scheme is based on
equation 1 (continuity in the freshwater above
the interface), equation 2 (continuity in the
salt water), and equation 3 (continuity in the
freshwater beyond. the toe).

Equation .1
For i = 2, --+, n. A linear equation in the
unknowns
r8ii+1 T 84 s fi,iu — $id
n
@ AL T At

) s
— K12 (fi+1/z.i + asi+1/2.:’)

Si+1,+41 T Si,i+1

2%
+ Ke-l/zf(fi—l/z.i + as-‘—;/z.i)

= Si—1,i+1

(Az,)?

may be written in the following form

Siiv1

(17)

= Ri,i+1/2
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Ai.isi—-l.ii-l + Bi,isi,i+1

-+ Ci.isi+l,1’v+l + P;iCiiv1 = M, ;
where the coefficients are

(18)

— At
4;; =77 €—1/2/(§i—1/2.i + as;Zy,;)
(Axl) (19)
Bi.i = a’nf - Ai,i - C.‘.,‘ (20)
— At
Cii = 7 Kivyd (Civrsni + @Sisryn.i)
Pi;=n" (22)
M; ;= AtR; is1/2 + anfsi.i -+ ‘n'?i,,- (23)

For ¢ = 1. At the sea ({ = 0) we have the
boundary condition

S T s""’} i=0,1,2 -
$ic1,i = $o.;
and thus

_ —At
i (A$1)2

-Kl/zf(fq'i —; {1 + @ %o.i -|2_ SI'i), (24)

The other coefficients are given by equations
20 to 22, where in equation 20 for B, , we use
the value for A, , from equation 24. As S, ju
is known (as a boundary condition) it does not
appear on the left-hand side of equation 18,
and the product A, ,-s ;. is transferred to
the right-hand side to yield

A

Ml',' = AtRl,i+l/2

+oan's; + 0t — Ao (25)

For i = n 4 1. Here the grid spacing

changes from Az, to Az, and also &,. , =
D

f 8+t i+l T Sny1.i ¢ $nrtiv1 +1
apf BFLIEL__TRRLd g anlodil | i

At At
- n+a/2f(Dn+3/2 + a8n+3/'z.i)

Sn+2,i+1 T Sna1 i+

) sz(Azl + Axg)/2

Dn n,1
+ Kﬂ’(ﬁzif— + asm,z,,-)
Spa1,i+1 " 8pi+1 (26)

.Azl(Axl + sz)/z = Lipe1,i+1/2

We again have a linear equation of the form
given by (18), this time with coefficients given
by

o —2At
’ Axl(Azl + A.Z'z)

Dn n,q
: Kn+1/2f(~_+l‘;__£"‘1 + asn+l/2.i)

An+1,

@7

Busi,j = on’ — Apir,i — Cuar (28)
Cory s = ———288
T Any(Az, + Axy)

. Kn+3/2f( D132 + 8p13/2,5) (29)

M’n+l'1’ = AtRn+1.i+l/2 + an,sn+l,i + nag-m-l_i
(30)

However, ¢ should not be an unknown at ¢
= n + 1. For reasons to be explained in the
next section, we express the unknown &ua, sa
in terms of the unknowns s, s a0d &, s by
using the following linear extrapolation:

Cnttiivr = 205,141 — $n-t1.i41
When this expression is inserted into equation
18 for { = n + 1 the following terms appear
~'Pn+l.i§‘n—1.i+1 + 2Pn+l.i§‘n.i+l

where

(31)

Pn+l.i = n.
Equation 2

Fori=2 -, (n — 1). A linear equation

2

in the unknowns

s g“i.' _ g"i i ¢
n _lilAt—_’— + Kiw12' (Divise — $ivrna,s)
s
v Ay
.?(sin.in—si.fﬂ)—?(fiﬂviﬂ_f""”)

(Azy)®
- Ki——l/z'(Di—l/z - 3‘.‘—1/2,1’)'

f
Y A
?(sf.i+1 ’_‘31‘—1,1'-1-"1) _;’%’G—d.iu "_f-i—l.i‘ﬂ)
. (Aﬂfl)2

=0
(32)
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can be put in the following form:
Eii8ic1,in + Fiisiin + GiiSisr,ia
4+ Hiiliri0 + Ll
+ Jiitienier = Nij
The coefficients are given by:

(33)

At . v

E.; =7 Ki- D, — Si-1/2,i) s

%] (Ax;)z 1/2( 1/2 g' 1/2 )7
(39
Fij=—E;; — Gi; (35)

A f

Gi.i = (Az )2 K;+1/2 (D.+1/2 e §i+1/2.i)$?
(36)

— At
H€.1 (Ax )2 Ki -1/2 (D: 1/2 — §' —1/2 ,)
A

= -‘E,',,' 77 (37)
I,",‘ = n' _ Hi,i _— J".i (38)

’ — At A
Ji,i = (Ax )2 K1+1/2 (D1+]/2 - g‘i+1/2.1‘) ':%l
Ay
= —G;,; —7 39
i (39)
N.,",' = nsfi'j (40)
Fori = 1. At thesea (i = 0) the boundary

conditions are

Si—1,i = 8o, .
! 0 } J = 05 11 2’ T (41)
$icii = o
and thus
At o+ & ,-> v
E, ; — K (D — ===t )
t, (A 1) 1/2 1/2 2 v

(42)

The other coefficients are given by equations
35 to 39 where in equation 35 for Fy, ; one uses
E, , from equation 42. Also, since &, ;. and
8o, 31-aTe given they do not appear as unknowns,
and the products By, j So, ya and Hy, 4 o, 5 are
transferred to the right-hand side to yield
— Ey,i8,i+1 — Hy,i$0.in1

Ny =n'¢; (43)

sea level

§n~1 j+1 gn,jﬂ €nn,j+1

e,
l\ ~ “~«jinterface at Ww‘

interface a}‘ %‘%Om
e ‘—AL~—'
;:.xl_._Ax]->Axl Xy 8x,
izn-2  n-1 n+1 n+2 n+3

Fig. 4. Motion of the toe (advancing inland).

For i = n. This is the toe of the interface,
where the saltwater wedge becomes very nar-
row. It was discovered that the method for
treating this zone has a major influence on the
resulting motion of the toe. Figure 4 describes
the zone under consideration. The grid shown
is the one established after having computed
the solution at time ¢, which is then used for
the computation during the next At. When writ-
ing the equation of continuity in the salt water
at.i = n the value of the unknown Z.a,su
appears in the equation..We could have assumed
that if the time step is not too large, no great
error is introduced if one neglects the change at
point (n + 1) with time, and writes {ua, ju =
&ns, 3 = Dniy. It turns out, however, that as the
whole saltwater zone is rather narrow, this sim-
plification does have a significant effect on the
movement of the toe, even though the rest of
the interface is- computed correctly. As the
exact location of the toe is of major practical
importance; a more refined method is adopted.
Even though the change in Zn.: is not neglected,
it "has to be expressed in terms of other un-
known values of ¢ to keep the number of un-
knowns equal to the number of available equa-
tions. The straight line extrapolation

;n—l.:’+1)
(44)

=v§'n,:i+1 + (g_n.i+1 -
= 2§‘n,i+1 -

proved satisfactory. When this expression is
introduced into equation 32 for ¢ = n, equation
33 takes on the form

g‘n+1.i+l

g‘n-—l,i+1

En.is‘n—l_.i+l + FuiSniv1 Tt GaliSnr1,in
+ (Hn.z' - Jn.i)g-n—l,i+1
+ (In.i + 2Jn.i)§-n.i+1 =

Nn.i (45)
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with the coefficients given by equation 34 t0
- equation 40. '

The New Position of the Toe

The movement of the toe AL during the
time interval At is computed by intersecting
two straight lines:

1. Through the points {a-, saand g, in

@) = o+ Bl

2. Through the points D, and Dy

(z — z,)

‘ D,.. — D,
D(z) = Dnii + ——”Axl (& < z,.)

which intersect at z = #wn + AL = gz, +
Az, + AL. Through the solution of AL one
obtains

Dn + g‘n—l - 2§‘n
AL = ( o1

g‘n - g_n—l + Dn D +1 Axl (46)
Equation 3

Fori = (n 4+ 2),
equation in the unknowns

, (m — 1) A lineat

— si,vi
At

f
— Kii1p (Di+1/2 + a$i+1/2,;)

on’ Sii+1

Sia1,7+1 T 8ii+1

(Azy)®
=+ K.i;l/zf(Dir-l/z + a8i~1/2};)
Sii+1 T Si-1,i+1
o = R;
(sz)
can be written in the form
A; 81,341 + By isi, i

_IL a‘,,b‘i'ﬂ',ﬁr = “Ml.." (‘28)
with the coefficients given by

(47)

i+l "

A;; (A:l: )z Ki_1se (D1—1/2+a3¢-,/2 ) (49
Bij=oan" — A, ; — Ci; (50)
Cos = B Kiis(D

i, (A.‘l: )2 i+1/2 ( 1+1/2+as|+1/2 1) (51)
M; ; = AtR; ;412 + anfs,»,i (52)

651

For i = n 4+ 1. One obtains equation 26,
where the unknowns are S, ju, Seea, su, and
Sme, 7. Equation 47 is then written for ¢ =
(n 4 2), +++, (m — 1). The solution of all the
equations is performed simultaneously, ag will
be explained later, and thus the solutions of
equations 26 and 47 for s are made to match
att=mn + 1.

For i = m. The continuity equation for the
last element of the field has to take into con-
sideration the freshwater discharge entering the
field from inland (—Q:").

The equation is

F8m,i+1 — Sm,i

At
+ Km—1/29-(Dm—l/2 T+ aSpm-1/2.i)

an

Smset — St .
. i+1 Ax 1,741 = Rm.i+1/2 _ QBf (53)
2
which can be written as
Am.i'gm—l,i+1 —I_ Bm.ism,i = Mm.i (54)

with the coefficients given by ~

Am.i‘= (_AAI; m— 1/2I(Dm—1/2 +»asm—1/2.i)
(55)

B,;,=an — 4,,; (56)

Mp; = AtR, i41s — AQs" + an's,..; (57)

The discharge Q5" can be expressed by Darey’s
law as

/ s
Qs = — K1 (Dm+1/2 + asm+1/2,z’)

Sma1,iv1 7 Smuj+1

Az,

One can thus compute Sms,ja, to be used in
the next time step, from

(58)

Sm+1,i+1 = Sm,i+1

!
Ar,Qp
TE
Koz (Dm+l/2 T+ Smi1s2.i

Solution of the Set of Simultaneous Linear
Equations

) (59)

The solution of the set ‘of simultaneous equa-
tions can be made most efficient by arranging
the (m 4+ n) unknowns in a way that yields a
compactly banded coefficient matrix. The ar-
rangement selected is seen in Figure 5. The
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resulting coefficient matrix is treated as a 7
diagonal matrix, and the fact that some of the
coefficients in this band are identically zero is
ignored. The solution of the resulting equations
was obtained with a standard computer pro-
gram.

The coefficient matrix is well behaved, and
roundoff errors do not present a problem, even
with standard accuracy operations.

Interpolation

After each time step a rezoning of the grid
is performed. For the new grid one has to
compute the values of D, K’, K*, R,{, and s at
the new grid points. This is done by interpola-
tion, using the values at the old grid points. A
simple three-point interpolation procedure was
used throughout, except near the toe and ab
ends of the field (x = 0 and z = B). Neaf
the toe the grid spacing changes, and a special
procedure was developed to ensure that thé
description of s in the mew grid was smooth
(i.e., more than three points  were used). Neaf
the ends of the field a two-point interpolation
was used. ‘

SAMPLE PROBLEMS

Linear Interface

Consider a confined aquifer of uniform thick~

ness, as shown in Figure 6. At time ¢ = 0
there is a vertical interface at = 0, with salt
water in the part ¢ < 0 and freshwater n
z > 0. This condition is maintained by a verti-
cal gate, say located at z = 0. At ¢t = 0, the
gate is removed, and the interface begins t0
move owing to the density difference.

Keulegan [1954] gave an analytical solutioft
for the motion of the interface

D .z
0 = 3 {1+ BT

\ X
f § =
4 =0
. -
interface
ts0] \1 Thl

p—L(\Z)——-(

Fig. 6. Linear interface.

o
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Fig. 7. Comparison between analytical and com-
puted shapes of the linear interface.

The location of the toe is given for { = D ~

’ 1/2
— (A'nyD) 72 = Atl/z (61)

where A is constant. The potential in the fresh-
water s is given by
<t>1

4K’ [

~—Ay D
Ty [1 + L(t)]

with L(t) given in equation 61. As can be
seen from equation 60, the interface remains
linear at all times, and always passes through
(z =0,z = -D/2). We thus applied the numer-
ical solution to the part z > 0 only, maintain-
ing £(0, t) = D/2 at all times.

The data used were:

s(z, t) =

(62)

B = 100 meters D = 10 meters

v = 1.0 K’

39.024 m/day

Il

v° = 1.025 K’ = 40 m/day
Ay = 0.025 n= 0.3

The solution was started with a linear inter-
face ending at L(f) = 20 meters, which was
then allowed to move. This value of L corre-
sponds to t, = 12.28 days, as computed from
equation 61. The At were computed by the pro-
gram, keeping the movement of L(t) during any
At to less than one spatial increment Az Grid
data for the numerical solution were n = 10,
m = 35, and the program was run unti
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t = t, = 20 days. Figure 7 shows the linear solu-
tion for a few times, and Figure 8 shows the
progress of the toe as compared with the exact
solution (equation 61).

The interface retains its exact linear form,
and the toe moves exactly at the theoretical
rate. An examination of the values of s com-
puted by the program with the values pre-
dicted by equation 62 shows the same degree
of agreement,

Hele-Shaw Experiments

The comparison between the numerical solu-
tion and the exact solution described in the

preceding section referred to the - extremely

simple case of a linear interface. Our next step
was the numerical computation of more com-
plex cases. For this purpose we have considered
two of the Hele-Shaw experiments reported by
Bear and Dagan [1964], which they labeled
experiment 1 and experiment 3. In these ex-
periments the interface began in a fixed posi-
tion maintained by a constant freshwater dis-
charge Q" (t = 0.). At ¢ = 0, the discharge
was abruptly changed to Q»"(¢ = 0,) and was
maintained constant afterward. Since the model
was confined, the same discharge change oc-
curred simultaneously at the interface toe. The
pertinent data are:

SHAMIR AND DAGAN

Experi- Experi-

ment 1 ment 3
D (cm) 27 27
K¢ (em/sec) 69 - 69
e — D/ 0.029 0.029
Qs (t = 0_) (cm?/sec) —19.1 -~ 3.9
Qs’(t = 0,) (cm?/sec) 0 —18.8

D(em) is aquifer thickness, K/(cm/sec) is hy-
draulic conductivity, and (y* — +7)/+7 is relative
density difference.

The additional input data for the numerical
procedure were the distributions of ¢ and s at
t = 0 as well as £(0, t) and s(0, ), which were
taken from Bear and Dagan [1964, Figure 7].

In the numerical solution of experiment 1
‘of an inland moving interface, we have taken
B = 200 em, m = 30, and n = 13. At was
varied as follows:

At, sec t, sec
5 3045

10 45-90
15 90-165
20 ‘ 165-225
30 225-525

In Figure 9 we give the curves L(t) of the
toe inland movement. The numerical solution

35 T 1 T T T
L{m)
Analytical, Eq. 61
30 - ®  Numerical Results ‘1
5 -
202 ] 1 I 1 1 ! 1
o} S 10 15 20

(t-to)ldays)

Fig. 8. Motion of the toe of the linear interface.
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Fig. 9. Motion of the interface toe (experiment
1, moving inland).

(curve 2) shows a lag of the computed toe be-

hind the measured one (curve 1). This distance
lag develops at the beginning of the motion
(0 < t < 80 sec) and remains constant after-
ward. The ratio (Lcomputed - Lexperi‘mental)/Lexp
becomes small as the time increases (0.8% for
t = 400 sec). )

Because the seepage face (0, t) was large
at the beginning of the motion, we suspected
a deviation from the Dupuit assumption as
being the cause of the discrepancy between the
numerical and' experimental results. For this
reason we took the interface at ¢ = 45 sec
as the initial interface position and reran the
program. The result, for L(t) (curve 3, Figure
9) showed a much better agreement. between
the “experiment and the computations. Ob-
viously, should we have started at a later stage
when the seepage face wasg negligible, the agree-
ment would have been even better.

In Figure 10 we give the shape of the computed
interface at a few times (dashed lines). The
striking result is the absence of the inflection
point of the computed interface profile.

In the numerical solution of experiment 3 of
3 seaward moving, interface, we have taken
B = 180 ecm, m = 25, and n = 20. At was
5 sec for t < 20 sec and Af = 10 sec for
t > 20 sec. A retreating interface needs special
care to select the space and time intervals, so
that the toe should not move more than Az, in
At; otherwise the mass balance in the nth
cell becomes inaccurate.
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In Figure 11 we give the graphs of the toe
motion from the experimental data (curve 1)
and from the computations.

At the beginning, when the interface slope
is mild, the agreement is good. As the inferface
moves toward the sea, the interface slope and

- the seepage face become large and the agree-

ment becomes poor. Ultimately, for very large
times, near equilibrium, the discrepancy de-
creages.

Some computed profiles are given in Figure
10. The order of magnitude of the time spent
in running each program on the Elliott 503
computer was a few minutes. This time includes
reading the program from paper tape, com-
piling it, reading in the data, and running
and printing all the results. The lack of an
internal timer made it impossible to measure
net running times.

DISCUSSION OF RESULTS

In the preceding sections we have given the
results of the numerical solution of a few ex-
amples of moving interfaces. In these examples
we have assigned the time intervals At for
reasonably selected space intervals Az, and
Az, so that the motion of the toe AL would
not be larger than Az during any Af. In
actual problems a special routine has to be
provided to enforce this condition. Because our
purpose was to test the program at this stage,
we took At according to the known rate of
advance of the toe.

The seepage face dimension £(0, ¢) has also
been borrowed from the experimental results.
Again, in applications one has to neglect the

" seepage face in the case of a large L (say

L > 2 D) or to take it from empirical results.

The numerical results were in very good
agreement with the exact solution of a linear
interface, which shows that the numerical pro-
cedure is essentially accurate.

The comparison between the numerical solu-
tions and the Hele-Shaw experiments reveals
a few facts that could not be discovered pre-
viously. First, it seems that the inflection point
of an inland moving interface, which appeared
in experiments, is a two-dimensional effect not
reproduced by a solution based on Dupuit
assumptions.

A second effect, that deserves further analysis
is the discrepancy between numerical and
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Fig. 10. Comparison between the measured and computed shapes of the moving interface
Hele-Shaw experiments.

experimental results when the seepage face is
relatively large, irrespective of the intrusion
length (experiment 3). The examination of
experiment 3 shows a very rapid. inerease of
the seepage face, much more than we should
expect from steady state results. This effect,
which is nonlinear and not considered by the
Dupuit assumptions, probably causes the dis--
crepancy between computations and experi-
ments.

It is probable, however, that in conditions of
a continuous, rather than an abrupt change of
the freshwater discharge and of a shallow inter-
face (L > D), the solution based on the

Dupuit assumption will produce accurate re-
sults.

CONCLUSIONS

The two-dimensional motion of a shallow
interface in a coastal aquifer of varying thick-
ness and properties, in the presence of any
pattern of recharge and pumping, has been
solved numerically. The numerical scheme is
stable and provides results in good agreement
with an exact solution of a simple case and
in fair agreement with experimental findings
on a Hele-Shaw model.

The sizes of the space cells and time intervals

180
L(cm)

150 \

- Experimental results (Hele-Shaw model)

(@~ Numerical  results

100

<
N

-
50 \\
obdl L1 | O I | I L 11

0 50 100 150 200 t (sec) 250

Fig. 11. Motion of the interface toe (experiment 3, moving seaward).
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in the program have to be selected so that the
interface toe remains within one cell during a
time interval. In the present work this con-
dition has been satisfied by an a priori estimate
of the toe motion. In a general case, if such an
estimate is missing, a trial and error procedure
can be used.

The height. of the seepage face, which appears
in the seaside boundary condition, is generally
unknown.

For a shallow interface the seepage face may
be taken zero.without much error. Another
possibility is to adopt the steady state value
[Bear and Dagan, 1964]

Q'(0, 9
K'(av/v)

Details on the computer program (written
in Algol for the Elliott 503 computer) and on
its use are given in Shamir and Dagan [1970].
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