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INTRODUCTION

A network of pipes and hydraulic elements (valves, pumps, reservoirs) is
considered solved when the heads and consumptions at all nodes inthe network
are known. Obtaining the solution, as defined herein, consists of finding the
values of the specified unknowns which satisfy the following physical laws of
thenetwork: (1) Preservation of mass continuity at each node; and (2) that for
each element there is a known relationship between discharge and energy
gradient.

The Hazen-Williams equation, commonly usedfor water distribution studies,
was selected as the law relating pipe discharge to energy loss. Other equiv-
alent equations can be selected if desired.

Whether for the analysis of an existing network or for the design of a new
one, the engineer needs the capability to solve for various combinations of
unknowns, under many loading conditions. The analytical tools which have
been developed to date make this task a lengthy and tedious process. The
present work takes full advantage of the Newton-Raphson method to solve
directly for combinations of unknowns which may include heads, consumptions,
and element resistances. The method incorporates pumps, valves and other
elements into the method of solution, without recourse to special external
procedures.

The generalized steady-state solutionof a water distributionnetwork is but
a small part of an over-all system analysis. Additional aspects such as ac-
quisition, processing, storing, and retrieval of data, control and operation of a
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network, economic and social implications, and the effective use of digital com-
puters will be described in another paper.

REVIEW OF PREVIOUS WORK

The oldest method for systematic solutionof distribution networks, and the
one still most commonly used, is the Hardy Cross method.® This method is
well suitedfor solution by hand, and is easily adaptedfor machine computation.
Computer programs written to perform the Hardy Cross analysis are de-
scribed by Hoag and Weinberg,* Graves and Branscome,® Adams,® and
Dillingham.”

Electronic network analyzers are discussed by MclIlroy,® McPherson and
Radziul,® and others. A summary of methods and techniques was presented
by McPherson.? .

Other methods of mathematical solution of networks resulted from work on
electrical networks. Warga'! applied Duffin’s'? work on nonlinear networks
to distribution networks. Warga proved the existence of a unique solution for
the heads at the nodes under steady state flows in a network whose elements
(an element is a link connecting two nodes) satisfy certain conditions. If the
general law relating flow and head loss in any element is given by

jS=fﬁ(Hi-Hj) P ¢ §)

then these conditionsare that: (1) f4; (x) = - £ (~x); (2) f; () is continuous
for all x; (3) for all couples (j, ), fj; (x) is nondecreasing as x increases;
(4) there exists a path between any twonodes in the network along which every
element has an f;; (x) which increases as x increases and takes on all values
(i.e., - <fj’t < °°).

Warga discusses! two iterative procedures for solving a network which
satisfies the above conditions. One procedure always converges, although
slowly, from any starting assumption. The other procedure, the Newton-
Raphson technique, converges rapidly from a reasonable assumption, but may
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not converge at all if the initial assumption is unreasonable.

The existence and uniqueness of the solution of a networkhas not been con-
sidered for cases when the unknowns include consumptions at nodes and ele-
ment resistances. The problem of existence and uniqueness is even more
complicated when elements such as pumps, for which condition (3) above does
not hold, are included in the network.

Martin and Peters!® used the Newton-Raphson method in a computer pro-
gram to solve for the unknown heads at the nodes of a network of pipes (no
pumps or valves). They reported no difficulty with convergence.

Shamir'* used the same method as one of a set of computer programs for
economic analysis of water distribution networks. These programs, which
were subsequently used by Lemieux® and Smith,'® solved for unknown heads,
and convergence was always achieved. Giudice!” added a sensitivity analysis
and considered the case of more than one fixed head.

Pitchai’® used the Newton-Raphson method and treated networks with pumps
as boundary conditions. The conditions at the pumps were satisfied outside

‘the general network solution (the pumps were not included directly in the
analysis as elements in the network). Pitchai does not present proof of the
convergence of the method, nor of the existence of a solution for a network
including pumps. He stresses, however, that when a solution is known to
exist (based on engineering judgment) the method converges rapidly.

In summary, previous studies of pipeline networks have extensively treated
the problem of solving for heads at the nodes, but little has been done to solve
for other types of unknowns. Studies were restricted to consideration of net-
works of pipes and included other elements (such as pumps) by special proce-
dures which were external to the basic method of network solution.

SOLUTION OF A PIPELINE NETWORK
Consider a network of NJ nodes and NL pipes. The statement of continuity
for all nodes is

NJ
Fj=ZjS+Cj=0 F=1 0 ., NS e (2)

i=1
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in which @ §i = the discharge from i to j (Qﬁ = (0 when no pipe connects nodes
j and i), and C; = the consumption at node’j (C is positive when it is an input
to the node). '

The Hazen-Williams equation can be written

0.54
Q = 6.2 X 10™% Cpyy D23 (%) .................... 3)

in which @ = discharge, in cfs; Cyyy = the Hazen-Williams coefficient of the
pipe; D = pipe diameter, in in.; AH = head loss along the pipe, in ft; and L =
pipe length, in ft.

Eq. 3 is used in the form

H; - H
Qi = sy e e e e e e (4)
Ji joﬂ [H; - H;

in which R, the resistance of the pipe connecting nodes ¢ andj', is given by

3= L (5)

C .85 D4-87

HWij i

Eq. 4 is written in a form which guarantees a consistent sign convention
for discharge (i.e., Qj; > 0 means flow from ¢ to j). Eq. 4 can now be used to
write Eq. 2 (the confinuity equation) in terms of heads and consumptions at
nodes and pipe resistances, as follows

NJ

- H; - Hy = i =
Fj“ZR‘;j‘le;i g G 0 i s b N e (8

i=1
The elements in the summation of Eq. 6 are non zero only if nodes ¢ and
j are connected by a network element. This will be implied in all subsequent
summations.
For a network, if F; = 0 is satisfied at all nodes, then the external balance
equation

ch=0""'° ......... P e s e e e e e e .............(7)

is satisfied.

Since there are NJ simultaneous equations one can solve for NJ unknowns.
They may be heads, consumptions, or resistances. For the network to be
solvable the combination of unknowns must satisfy the conditions outlined
subsequently. As the equations are non linear, the solution is achieved by
successive iterations, using a suitable method which achieves convergence.
The chosen method of solution, the Newton-Raphson technique, finds a new set
of improvements or corrections tothe values of the unknowns in eachiteration.
The improvements are computed from the first term of a Taylor expansion
about the present state of the solution.

The Newton-Raphson method may be conveniently illustrated for the one-
dimensional case shown in Fig. 1 as follows. The value x, is sought, such
that

F) kg =F (0) = 0 et ®)
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At the %D jteration the approximation for x, is denoted by x,. The next
approximation is given by

X b4y =xk+Axk=xk-L{f(sz) ...................... (9)
dx

in which df (x3)/dx is the derivative of f (x) evaluated at x,. The equation
for the kth improvement Ax, can then be written

Flx) + % AX = 0 e e e e (10)

in which it is understood that both f (x) and its derivative are evaluated using
the present value of x.

fix)

)I(kﬂ Xkt Xk
P 4

FIG. 1.—TLLUSTRATION OF THE NEWTON-RAPHSON METHOD
FOR THE ONE-DIMENSIONAL CASE

When there are » equations to be satisfied[f, (x,,...,x,) =0, ...,
fn(xy, o« ., %,) =0]and » unknowns (x,, ..., x,) to be solved for, the set
of » improvements (Ax,, ..., Ax,) are the solution of the set of # simul-
taneous linear equations

n
9 .
fj(xl,...,xn)+z-aij-Axi=0 =1 .00, Lo, (11)
Xq
i=1
Consider now the network having NJ nodes. The set of unknown heads is

denoted by H, the set of unknown consumptions by C, and the set of unknown
resistances by R. The NJ simultaneous equations for the corrections are
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FjR A0 + L L ary + ) 2D am
Rijel_? Y HiEI}- ¢
+ ) b AC; =0 j =1, ..., N ........... e (12)

CiE C
in which H; € H signifies “H; is in the set H” (i.e., H; is an unknown), and
04 is the Kroneker delta (0, =1wheni =j and 6; = 0 otherwise). At each
iterationthe set of equationsgiven by Eq.12may be solved for the corrections
ARy (Ry €R),AH; (H; € H) and AC; (C; € C). These corrections are then
added algebraically to the present values of the unknowns to obtaina new esti-
mate of the solution. A check is then made to determine if all equations given
by Eq. 6 are satisfied to within some specified error criterion. This error
criterion is the amount by which any F; may be different from zero, and
represents the maximum allowable unbalanced discharge at any node. If, in
checking the present solution, the error criterion is not met at any of the
nodes, a new iteration is begun. The magnitude of the error criterion has a
major influence on the number of iterations which will be required to reach
the accepted solution.
The partial derivatives in Eq. 12, obtained from Eq. 6, are given by

8F 0.54 S0 L. TR (13)
BHZ' jo'“ IHZ - Hjl 0.46 8H]
3F; _ _ Yy 3F
o7 BH; t o ttrrtetececeseceieiiines (14)
i#]
OF -0.54 (H; - H;)
and —L = L T (15)
aRij R;j54 |Hz - Hjl 0.46
Eq. 12 can be written in matrix form
9k 9F 9F N
By 7 pRREEE 5C - | |ARog -F,
. = . e.. . (16)
AH,
IS OFng g -
Ry Bl " aC, " A(;t Fyg
L g4 v - _| - .

The matrix of derivatives on the left side is called the Jacobian of the set
of equations. The numerical values in this matrix and on the right side vary
from one iteration to the next, as they are computed at each iteration with a
new set of values for the unknowns. The solution of Eq. 16 was readily ob-
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tained for each iteration by using the Gauss-Jordan elimination procedure.
To illustrate the structure of Eq. 186, it is written for the network shown in
Fig. 2, a sample network, with NJ =5 and NL =1,

FIG. 2.—SAMPLE NETWORK

The unknowns for this example are

H o= (Hy  Hg) ooeee ettt eeeeie et tnnaneaoneannns (17a)
Lo (o N o (175)
and R = (Ry) = (Ry) v ittt it e i ietineinaceennns (17¢)
and Eq. 16 takes the form
0 % 0o o ol|ar, -F
oF. aF, oF.
=2 =2 =2 -
3R, 9H, 0H, 0 0} aH Fy
0 0 %Fl—ft 1 0||am | = |-p| e (18)
3F. oF,
—~—4 —4 -
5N 0 5 0 1]||ac, F,
9F, 8F,
—5 —5 -
0 5H. oE 0 0](ac, Fy

in which the derivatives are given by Eqs. 13, 14, and 15.
Since the continuity equations involve only differences between heads, it is
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necessary to specify at least one head to establish a datum. If the problem is
to solve for all the heads in the network, given all the consumptions and re-
sistances, then it is necessary, to fix one head, consider one consumption or
resistance as unknown, and solve for it together with the (NJ - 1) unknown
heads.

SYSTEM ELEMENTS OTHER THAN PIPES

In addition to pipes, a water distribution system contains a variety of ele-
ments. These may be pumps, valves, elevated tanks, hydrants, and other
types of control and measuring devices. It is essential to be able to incorpo-
rate the special characteristics of these elements into the analysis, and to be
able to solve the system as it physically exists. The method presented herein
is ideally suited to perform such an analysis.

Consider the case for which the link connecting nodes 2 and ! of a network
is anelement other than a pipe, such as apump or valve. Then for the link 2/,

le =fE (Hk _Hl):'Qlk ..... PR R I (19)

in which fg is a given function. Eq. 19 may be the characteristic curve of a
pump, a loss curve for a valve, etc. In Eq. 16, the derivatives, with respect
to Hy and Hy, are given by

Fp _ _ 0.54 f g
3H), Z 054 P}'k_Hj]oags +3Hk c e S 1))
J#k
j#l
Fp _ ¥
BH, TBH. ctttttetetetescesseeeees e (21)
o - _YE
i PP RRRRRRRRE e (22)
oF; _ _ 0.54 _of
and g7k = - ) RO - B o rAREEEE e .. (23)
g1 U
J#k

all other derivatives in Eq. 16 remaining the same (given by Egs. 13, 14, and
15), The value of fi and its derivatives can be computed from measured data
taken from field tests of the element being considered. As an example, con-
sider the network shown in Fig, 2. We now replace the pipe connecting nodes
3 and 5 by a pump for which

=fp =Q,-a(H, -H)} Hy>Hy, ............. (24a)
and Qg =fp =0 Hy <Hg vuuvurrinunnnnn e (24b)

Eq. 24 implies that the pump operates only as long as the head at node 3 is
higher than that at node 5, i.e., it always pumps from node 5 to node 3. For
this case the terms OF, /0H,; 8F,/8H;; F, /8H, and 8F, /8H, are computed
from Eqs. 20—23, using fg from Eq. 24. Al other terms in the matrix of
derivatives are the same as in Eq. 18,

Eq. 24 can be used to illustrate the difficulties which may arise when ele-
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ments other than pipes are considered. In general, the characteristic equation
for each type of element considered (pump, valve, etc.) is different. Although
the function fz in Eq. 24 is continuous, its derivatives are not. This means
that when F;, F; or their derivatives with respect to H, or H, are computed
at any iterationof the_solution, a check must be made to determine whether H,
is larger or smaller than H,. A decision must then be made to use either
Eq. 24a or Eq. 24b—whichever applies. The convergence of the iterative
scheme can not be guaranteed when any of the characteristic functions of ele-
ments in the network do not have continuous derivatives. This will be con-
sidered subsequently.

Any type of element may be included in the network analysis as long asits
characteristic curve is available. A pipe can be considered as just one of
many types of elements, its characteristic curve being given by the Hazen-
Williams equation.

A set of programs to perform the analysis was developed and implemented
on a digital computer in a time sharing environment.

APPLICATIONS

The present method of analysis has broad application to water distribution
systems analysis. Pumps, valves, hydrant-pumper combinations, or other
network elements with known head-discharge characteristics, can be incor-
porated directly into the solution, without recourse to external ad hoc pro-
cedures. Alternatively, it is possible to calculate a required element
characteristic for specified system performance. For example, it is possible
to compute directly the pipe resistances required to produce specified pres-
sures and consumptions. Trial and error procedures are thereby eliminated.

Of major importance is the high degree of flexibility afforded in setting up
the data for a run or changing the basic network layout for subsequent runs.
Nodes or elements can be added or deleted from the basic data file without a
major reshuffle.

The location and types of unknowns can be freely interchanged, from run to
run, without any changes in the data or ordering of the computations. Conse-
quently, the method is extremely well suited to real time use for decision
making as part of a man-machine team. It is also well suited for use in the
control and operation of an existing network. This last application is a spe-
cialized topic and will be discussed in another paper.

SOLVABILITY OF NETWORKS

To demonstrate the fact that one cannot solve for any set of NJ unknowns
without exception in a network of NJ nodes, consider the extremely unfavorable
case for which the NJ unknowns (which include heads, consumptions, and
resistances) are all concentrated in one region of the network. It should be
intuitively obvious that even if the flows and heads at the pipes coming into
this area are all known, it is impossible to solve this part of the network.
Thus, the solvability of a network depends on the way inwhich the NJ unknowns
are distributed.

There do not seem to be any general rigorous rules for determining whether
a network which includes all types of unknowns is, or is not, solvable. There
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is, however, one simple rule which follows immediately from the method of
solution used, and is apparent from the examination of Eq. 16. Eq. 16 has a
unique solution for the NJ unknowns if, and only if, the rank of the matrix of
coefficientsis NJ. Thiswill obviously notbe the caseif any row of the matrix
contains only zeros. A row of zeros would result if there were no unknowns
appearing in the continuity equation of some node in the network. To avoid
this, one has to distribute the unknowns throughout the network in such a way
that there should be at least one unknown appearing in the continuity equation
of each node. Considering any node, at least one of the following should be
unknown: (1) The consumption at the node; (2) the heads at the node itself or
at adjacent nodes; or (3) the resistance of a pipe which connects to the node.
Observing this rule will eliminate the most common reason for making a net-
workunsolvable. This does not imply, however, that a solution willbe reached
by the Newton-Raphson method.

To establish the criteria for convergence of the Newton-Raphson method
for all possible combinations of unknowns appears to be impractical, if not
impossible. For the case of a network in which the elements are only pipes
and valves, and for which the unknowns are the heads at joints, Warga'® has
shown thatthe system of equations has a unique solution, and that this solution
isreached by the Newton-Raphson method provided that a reasonable starting
assumption is made. The conditions to which the characteristic functions of
the elements must conform in order to fit Warga’s analysis are not fulfilled
when the unknowns include pipe resistances, or when a pump isincluded in the
network; a solution is, therefore, not guaranteed. This theoretical difficulty
is overcome in practice by starting the solutionwith a good initialguess. For
example, one often has a fairly good knowledge of pipe resistances, and if
these are used as an initial guess, a solution is usually obtained.

If it is necessary to solve a network for anumber of slightly different con-
ditions, the amount of computation required may be greatly reduced by using
the solution of one condition as the initial guess for a proceeding problem.

It is useful to understand some of the difficulties which may arise in the
use of the Newton-Raphson method. Observe in Fig. 1 that, for the one-
dimensional case, if x' happens to be the present value of x, the procedure
would fail to yield a finite improvement Ax because the tangent of f (x) at
x' is parallel to the x-axis. Such singular points may exist in the multi-
dimensional case as well, and would result in a matrix of derivativesin Eq. 16
witha rank smaller than NJ. (The computer program will print out amessage
to indicate that this condition has occurred.) Another condition which may
arise is an oscillating correction at one or more nodes. Here, the correction
computed at the (¢ + 1)St iteration makes xp,, =x,—in other words, the path
indicatedin Fig.1 is a closedloop. This can be corrected by dividing the com-
puted correction by 2. A check for oscillating unknowns is included in the
computer programs, and each oscillating correction is divided by 2.

As the solvability of the network and the convergence of the Newton-Raphson
method from an arbitrary starting point cannot be proved, one has to anticipate
the possibility of getting a message from the computer program that a solution
can not be reached. As described, this message results from a singular ma-
trix of derivatives in Eq. 16. When the message is received, a check is made
to determine whether there was a node for which the continuity equation in-
cludes no unknowns. If this was not the case, a check of guesses for starting
values of the unknowns is then made. As outlined above, for theoretical rea-
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sons, it would be advisable initially to suspect assumed pipe resistances and
heads near pumps as the cause of trouble. After developing some experience
with the physical network, subsequent trouble can be readily avoided. Invari-
ably, a good initial guess will lead to the solution.

COMPARISON WITH THE HARDY CROSS METHOD

The Hardy Cross method is most commonly used for hand computations,
although many computer programs exist for its execution by digital com-
puters. The physical law governing the solution of the network is either con-
tinuity at all nodes (as used by the method presented above and by the Hardy
Cross method of balancing heads) or continuity of the head line around each
loop (as used by the Hardy Cross method of balancing flows). The equations
for all nodes (or loops) must be satisfied simultaneously for the network to be
“balanced”, or solved.

Both the Hardy Cross and the present method solve these equations by
iterations. The Hardy Cross performs iterations on separate equations, one
at a time, while the Newton-Raphson method iterates on the set of equations
simultaneously. The Hardy Cross method was developed to facilitate hand
computations, and has the advantage of simplicity. The equation for each node
(or loop) is formed and solved separately, independent of the other equations,
and has the advantage that the amount of information necessary to form each
equation is small, as it relates only to a small section of the network. The
simplicity of the method is of help in programming the method, but much
more important is the small amount of storage required by it. Because each
equation is formulatedusing data for only one node (or loop), secondary storage
(e.g., disk) can be used to advantage with only moderate increase in the time
required to obtain a solution.

The Hardy Cross method suffers from a problem of solvability and con-
vergence (Dillingham?). Various conditions, such as large pipe or very low
flows, cause the iterative scheme to converge very slowly, or even diverge.
Ad hoc procedures were developed (e.g., Dillingham”) to improve the con-
vergence under some of these conditions, but there is no guarantee of
convergence.

The general method of analysis developed herein requires the formulation
and solutionof the entire set of network equations. The large active computer
space requirement for these computations makes the maximum size of network
which can be handled by this method on any given computer smaller than what
can be handled by the Hardy Cross method.

The advantages gained by the new method are great enough to outweigh this
limitationfor nearly all practical problems. The new method makes possible
a direct solution for consumptions and resistances. Italso makes the inclusion
of elements other than pipes in the analysis a relatively simple and straight-
forward matter. To compute a set of unknown heads at joints, given all other
information, is a simple matter with a computer program using the Hardy
Cross method; but with the same program, to adjust the assumed resistances
to make the computed pressure map correspond to measured field data is a
tedious trial-and-error procedure.

Some computer programs using the Hardy Cross method require the bal-
ancing of flows initially before starting the iterations. If many solutions of a
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large network are required, this procedure can be excessively time-consuming.
The flexibility of the Newton-Raphson method imposes no such restriction as
long as the initial guesses are within reason. In a real-time environment,
changes to fixed consumptions, heads, resistances, or locations and types of
unknowns can be made rapidly and conveniently. In network design applica-
tions, the desirability of such flexibility is obvious. Moreover, for network
monitoring or control, an area of increasing interest, flexibility is essential
to compensate for temporary field sensor failures. When evaluating the two
methods of analysis, one has to weigh their relative capabilities against the
price paid for achieving them.

SENSITIVITY ANALYSIS

The study of a water distribution system includes investigating the effect
of changes in heads, flows, and pipe resistances on the behavior of the net-
work. When many such variables are changed simultaneously, such as the
changes in consumption at all nodes from one time of the day to another, a
complete new solution of the network has to be obtained.

There are, however, situations in which one is interested in the sensitivity
of the network to changes in a single variable. This situation arises when
adjusting network data to make the solution conform to field measurements,
and in evaluating proposed modifications or planning operating rules. ‘

If a network solution is available, a sensitivity analysis may be made with-
out additional network solutions. The sensitivity analysis yields the rate of
change of NJ selected variables with respect to changes in a single variable
of interest. The same results may be used to evaluate the sensitivity of the
variable of interest to changes in NJ other variables.

In a network with NJ nodes and NL pipes there are a total of (2NJ + NL)
variables (NJ heads, NJ consumptions, and NL resistances). The balanced
network satisfies

Fj=0  j=1..,N .iooiuiininnn... Chieeaees (25)

We are interested in derivatives of the form 8x;/8yp, in which x; and y,
can each be a head, consumption, or pipe resistance. For the variable to be
changed, yp, we select a set, X, of NJ “free” variables which are allowed to
change (X does not include y;). The variablesincluded in this set are denoted
by x,;. Taking the derivative of Eq. 25 with respect to yp,

d, .

ﬁiw G e NT e e (26)
Expansion of Eq. 26 yields

oF; OF; dx; =

e L e T 0 T L LN N 1)

xi€X

which may be written in matrix form

[Eadoef L booml @)

oy 1 (dyp oy ) T
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inwhich [] denotes a matrix and {} a column vector. The set of NJ equations
given by Eq. 28 includes NJ unknowns—the partial derivatives Bxi/ 3yp. The
partial derivatives 8F; /9y, and 8F;/dx; are evaluated using data for the
balanced network. The selection of the set of “free” variables, X, is subject
to the same restrictions as the selection of unknowns for the network analysis.

The sensitivity analysis yields the approximate variations of x; caused by
a unit change in y,, while all other x € X are allowed to change. The values
are approximate, as they are derivatives at a point, rather than finite changes.
They provide, however, a convenient and rapid way of comparing the effects
of all possible changes.

The two examples below illustrate the use of the sensitivity analysis using
the sample network of Fig. 2. Consider first the effect of a change in the
resistance of pipe 5 on C, and H, through H;. Thus y =R, =R, and X =
(Cy, H,, Hy, H,, Hy), and Eq. 28 takes on the form

— —

|

8F, 3F, 0 0 3 | |26, 0
8C, oH, 0Hg | | 8R;

0 8F, 8F, ©oF, 0 3H, 0
8H, 9H, oH, Ry

o 2F; B8F; OF; 8F; | |\B8Hy | | 8F | (29)

8H, ©oH, ©oH, ©0Hg || @R, R

0 oF, oF, 9F, 9F, 9H, 0
0H, ©8H, 8®H, 8H, 9R g

0 0 0F, oF;, oF; || 0H; _8F;

8H, ©0H, 0Hg || dR; R

The expressions for the derivatives are given in Eqs. 13, 14, and 15. Eq.29
is solved directly for the derivatives of all heads with respect toR;. These
derivatives give the change in heads due to a unit increase in Ry . A negative
value means the head will decrease when R; is increased. Implicit in this
solution is the assumption that H,, C, through C;, and all pipe resistances
(except R, of course) remain unchanged when R is changed.

Inthe next example, consider the problem of trying to increase the head at
node 3 (say for fire demand). We select X = (R,,R;,Rs, Cy, C,), assuming
that these variables may be controlled independently (for example by closing
valves in the pipes). For yj, = H,; Eq. 28 takes the form

_ o] — —
—a
0 0 0 0 0|3 i 0
0F, 0 0 OF, o || 2Rs _3F,
R, aC, 8H, 0H,
8Fy ®Fy 3F; o||&s o | 2B ., (30)
dR, ©®R, OR, oH, 0Hj
o 9Fs 0 0 8F4[| 3C; _oF,
3R , 9C,4|| 8H, 8H,
dF, 8C oF,
—=-5 —_— -—=35
0 0 R, 0 0 9H, 8H,
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which is solved for 8x;/8H,, x; € X. As we are interested in increasing H,,
we examine ‘the derivatives 8H,/6x;, given by the reciprocals of the solutions
of Eq. 30. A large positive 8H,/6R; means that closing a valve in pipe i
(increasing R ;) will be effective inincreasing H,. A large (in absolute magni-
tude) negative 8H, /0C; means that decreasing C; will be effective in increas-
ing Hy .

IMPLEMENTATION ON A COMPUTER

Implementation of the method proceededparallel with development. The set
of computer programs written for this study included input-output programs,
data organization programs, and analysis programs.

The input-output programs were required to minimize manual data handling.
These programs were initially writtenfor batch processing. Whencommercial
time-sharing became available, the system programs, whichwere provided as
part of the time-sharing service, eliminated the need for most of the special
input-output programs. The data files were originally structured according to
the uses which were forseen. As the study progressed and new uses for the
data arose, it was necessary to develop data organization programs. These
programs were used to temporarily restructure the data for specific uses.
Analysis programs were written to perform correlation and multiple regres-
sion analysis on the field data, to generate synthetic data for filling incomplete
records, to solve the steady-state network problem, and to investigate the
sensitivity of the network,

All programs were implemented on large, high-speed computers (e.g., IBM
7090 for batch processing or DEC PDP6 for time-sharing). Exceptfor the net-
work analysis program (SDP), all other programs required small core space
(less than 10K) and running time on the order of one minute.

The SDP program required approximately 15K for a network of 70 nodes
and 100 pipes. Running time per iteration is roughly proportional to (NJ)?.
For a network with NJ = 35 and NL = 53, running time per iteration was ap-
proximately 6 sec on a time-shared DEC PDP6. With NJ = 55 and NL = 80
running time per iteration was approximately 15 sec on the same computer.
These times include time spent on swapping in and out of core.

The number of iterations required to reach a solution, with a given allow-
able error, depends on the initial values of the unknowns. A maximum error
of 0.10 cfs unbalanced discharge at any node was used throughout this study.
With a goodinitial guess, the solution is usually reached in 10 to 15iterations.
Ina series of related runs, as in a 24-hr simulated network operation, one or
two iterations were often sufficient to achieve convergence after the first run
(each run used the solution of the previous run as a starting point).

The implementation of a general steady-state network analysis program
involves the development of a considerable number of smaller programs.
These programs are major engineering assets for the study of water distri-
bution systems. They provide the engineer with powerful tools for managing






