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ABSTRACT: A methodology which integrates the optimal design and reliability of a multiquality water-supply
system is presented and demonstrated. The system designed is able to sustain prescribed failure scenarios, such
as any single random component failure, and still maintain a desired level of service in terms of the quantities,
qualities, and pressures supplied to the consumers. In formulating and solving the model, decomposition is used.
The decomposition results in an *‘outer’” nonsmooth problem in the domain of the circular flows, and an ‘‘inner’’
convex quadratic problem. The method of solution includes the use of a nonsmooth optimization technique for
minimizing the outer problem, for which a member of the subgradient group is calculated in each iteration. The
method allows reversal of flows in pipes, relative to the direction initially assigned. The methodology is applied
to a system with 33 pipes, five pumps, and 16 nodes (two source nodes with treatment facilities and 14 consumer
nodes) for a single loading condition and one quality parameter.

INTRODUCTION

This paper deals with three aspects of water-supply systems
that are incorporated into a single framework for designing
optimal reliable multiquality water-supply systems: reliability,
optimal design, and quality.

Reliability is a measure of performance. A system is said to
be reliable if it functions properly for a specified time interval
under prescribed conditions. The conditions and the time in-
terval define the boundaries of the system, while the word
‘“‘properly’’ is translated into reliability measures.

Reliability analysis of water-distribution systems is not yet
adequately developed, nor accepted in practice. At present,
reliability of water-distribution systems is provided in most
cases by following prescribed heuristic guidelines, like ensur-
ing more than one path between the system nodes, or having
all the pipe diameters greater than some minimum value. It is
implicitly assumed that by following these guidelines reliabil-
ity will be assured, but the level of reliability is neither quan-
tified nor measured. Therefore, only limited confidence can be
placed on these guidelines, since reliability is not considered
explicitly. The challenge is to define meaningful reliability
measures that can be computed, so they can be used in design.

Design is the phase in which the sizes and characteristics
of the components are determined for a given system layout.
The optimal design problem is to find the component char-
acteristics (e.g., pipe diameters, pump heads and maximum
power, reservoir volumes) that minimize the total system cost,
such that constraints at the consumer nodes are fulfilled and
hydraulic laws are satisfied.

Four different approaches have been taken in optimization
algorithms to incorporate reliability: (1) techniques which link
simulation with a general optimization algorithm; (2) methods
based on the decomposition approach of Alperovits and
Shamir (1977); (3) methods relying on graph theory proce-
dures; and (4) methods relying on entropy as a surrogate for
reliability. An extensive literature review on the inclusion of
reliability considerations in the management and simulation of
water-distribution systems can be found in Ostfeld (1994).
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If reliability is to be incorporated into models for the opti-
mal design of water distribution systems, we must first define
reliability and make sure that the definition is such that it can
be accommodated in an efficient algorithm. Previous work has
mostly used measures defined on the system itself—such as
connectivity and reachability (Wagner et al. 1988a)—and did
not consider the perspective of the consumers affected by the
system’s failure to meet their demands.

Multiquality water-supply systems are distribution systems
in which waters of different qualities are taken from sources,
possibly treated, conveyed, and supplied to consumers. Such
systems can be described as a graph with the links representing
the pipes, and the nodes representing connections between
pipes, hydraulic control elements, consumers, and sources.

Ostfeld and Shamir (1993) classified the problems of mul-
tiquality water-distribution systems according to the physical
laws that are considered explicitly as constraints: (1) Dis-
charge-head (QH) models—quality is not considered. The net-
work is described only by its hydraulic behavior; (2) Dis-
charge-quality (QC) models—the physics of the system are
included only as continuity of water and of pollutant mass at
nodes. Quality is described essentially as a transportation prob-
lem, in which pollutants are carried in the pipes and mass
conservation is maintained at the nodes. Such a model can
account for the decay of pollutants within the pipes and even
chemical reactions, but does not satisfy the continuity of en-
ergy law (Kirchoff’s law No. 2), and therefore there is no
guarantee of hydraulic feasibility and of maintaining head con-
straints at nodes; (3) Discharge-quality-head (QCH) models—
quality constraints and the hydraulic laws that govern the sys-
tem behavior are all considered.

The methodology presented here is for the design of optimal
reliable multiquality water-supply systems in which reliability
is cast as an inherent property of the system. The system we
construct is able to sustain prescribed failure scenarios—in
our case any single random component failure—and still
maintain a desired level of service in terms of the quantities,
qualities, and pressures supplied to the consumers.

METHODOLOGY

When a system component fails (e.g., pump, pipe) there are
two results: (1) isolation of the failed component by valve
closure to allow its repair or replacement; and (2) redistribu-
tion of the flows in the remaining system (and perhaps other
changes in pump operation or in the removal ratios at the
treatment facilities). The ability of the system to meet its con-
sumers demands after a component failure has occurred de-
pends on two interrelated system attributes: its inherent redun-
dancy (i.e., the existence of more than one way to fulfill the
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consumers requirements), and the hydraulic capacity of its re-
maining components. Our approach takes these two attributes
into account explicitly.

Four major stages constitute the methodology for the opti-
mal design of reliable multiquality water-supply systems:

1. Formulation of an optimal design problem of a multi-
quality water-distribution system under a number of
loadings (i.e., demand patterns), in which the objective
function is minimization of system cost. The constraints
are on the continuity of flow and energy; pressure heads
at consumption nodes; length of each pipeline [this is a
result of the mathematical formulation of the model, in
which each pipe is made of a number of segments, see
Alperovits and Shamir (1977)]; power of pumping sta-
tions; and threshold concentrations at consumption
nodes. The decision variables are the vector of flows in
all pipes for each loading condition; pumping heads for
each pumping station and loading condition; the pipe
segment lengths; the maximum power of each pumping
station; and the treatment facilities capacities and re-
moval ratios.

2. Identification of backup subsystems, which will maintain
a prescribed level of service, under each of the loadings,
when a failure occurs. A backup is a subset of links of
the full system; two backups can be defined such that if
any one link in the full network fails, then one of these
two backups ‘‘survives,’’ i.e., remains intact. More than
two backups may have to be defined if one wishes to
consider failures of more than one link at a time. Since
this has a much lower probability of occurrence, we re-
strict our analysis to single-link failures and, therefore,
require two backups.

3. The hydraulic laws and consumer demands are formu-
lated separately for each of the backups and loading con-
ditions, to define for each the level of service required.

4. The models for the backups are added to the model of
the complete system, and the optimization model is
solved.

This formulation creates an expanded design model that
minimizes the total system cost, subject to explicit constraints
on residual system performance. Explicit inclusion of the re-
quired redundancy of the system is addressed by inclusion of
the backup subsystems as part of the constraints.

This approach raises two main issues: how to select the
backup subsystems, and how to examine the trade-offs be-
tween cost and reliability.

A set of backups is ‘‘good’’ if it has the following proper-
ties:

1. It gives a proper meaning to reliability, i.e., the backups
are able to supply the required service to the consumers
for the prescribed set of failure scenarios.

2. The optimal solution of the design model with this set
of backups is competitive (with respect to cost) to other
sets of backups that satisfy property 1.

The selection of a good set of backups is analogous to the
selection of a good system layout, for which there is to date
no quantitative model, and is thus based on engineering judge-
ment and experience.

The method we have used to select the backups in the case
study presented later is based on topological considerations. It
defines two backups with the following properties:

1. The set of nodes for each of the backups equals the set
of the system nodes.

2. The union of the sets of arcs of the two backups equals
the set of the system arcs.

3. Each of the backups is a connected graph.

4. The number of common arcs of the two backups is min-
imal.

The backups are found by: (1) Searching for two spanning
trees in the system whose distance is maximum. The distance
between two trees is defined as the number of arcs contained
in one tree but not in the other. These are found by using the
algorithm of Kishi and Kajitani (1969), or the algorithm of
Kameda (1976); (2) addition of other arcs, if such exist, which
were not used in the aforementioned first step, to either of the
spanning trees, creating the two backups.

The tradeoff between cost and reliability can be evaluated
by changing the selection of the backup subsystems for given
consumers demands, or by reducing the consumers require-
ments for a given set of backups. The case study presented
later describes the trade-offs between cost and reliability for a
set of two backups and one loading condition, by reducing the
consumers requirements and by changing the time the backups
are designed to operate.

MATHEMATICAL FORMULATION

In formulating the optimal design problem of a multiquality
water-supply system, we adopt the decomposition idea of Al-
perovits and Shamir (1977), and expand it to multiquality wa-
ter-supply systems. The decomposition principle is based on
the following reasoning. Given the flows throughout a looped
multiquality water-supply system, its optimal design is the so-
lution of a QCH quadratic convex programming formulation,
which can be separated into two problems: a QH and a QC
problem. The QH is a linear programming problem, similar to
that of Kessler and Shamir (1989), and the QC has a quadratic
convex objective function subject to a set of linear inequality
constraints,

The system includes: pipes, pumps, treatment facilities,
sources, and consumers. It has N pipes, NSO source nodes (all
with treatment facilities), NNC internal nodes, NEI inter-
nal pipes (all the pipes, excluding the pipes connected to
the sources), and NPUMP pumping stations. NL loops and NP
paths are considered. ND commercial pipe diameters are as-
signed to each link so the total number of pipe segments is NS
=ND X N.

The QCH problem formulation (termed the P1 formulation),
for NLO loading conditions (indexed k) is

(P1) minimize {d)(q) = we(q)
qEQ

1

+ e s T + =
e [a,(q)x,, 3 RR’H(q)RR] } (N
subject to: [L; I, JiqHIX,=b* V& )
P I, JHQYIX, = AH!,, V& 3

IX, =3 A@X,=0; B(@RR = (q) (4-6)

All terms will be explained and detailed later, but first we
decompose the P1 formulation into two independent models:
P1-QH and P1-QC, whose union is termed the inner problem.
This is done with the assumption that the quality distribution
in the system has no influence on the hydraulics.

The resulting models are

(P1-QH) minimize a}(q)X, )
X, =0
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subject to: (L2 I, JXqHIX,=b* V& 8)
P; I, JigHIX, = AH:,, V& &)

IX,=a; A@X,=<0 (10, 11)

and
(P1-QC) we(q) + minimize l RRTH(q)RR (12)
RR=0 2

subject to: B(@)RR = &(q) 13)

where q'(N X NLO) = (q', q, ¢**°) = vector of flows in the
network pipes for all the loading conditions; q* = vector of
flows in the network pipes for loading condition k; and &(q)
= optimal value function.

The vector q belongs to Q, the set of all the flows for all
the loading conditions which maintain continuity (Kirchoff’s
law No. 1) at all system nodes. The minimization of ¢(q) over
Q is termed the outer problem. We shall show later that the
dimension of the decision vector can be reduced significantly
by using the circular flows (flows in loops and pseudoloops)
instead of the flows in all links, q.

The P1-QH Model

The purpose of the P1-QH model is to determine the least
cost pipes and pumping stations and their operation, while
satisfying the consumers requirements for quantities and pres-
sures, in compliance with the physical laws that govern the
system.

The decision variables (dimensions of vectors and matrices
given in parentheses) are X,[NS + NPUMP X (NLO + 1)] =
vector (size NS) of lengths of all the candidate segments,
where each pipe is allowed to be made of segments from all
the possible diameters (Karmeli et al. 1968); the pumping sta-
tions pressure heads (size NPUMP X NLO), and their maxi-
mum power (size NPUMP).

The constraints are divided into four blocks, as follows:

Eq. (8)—continuity of energy constraints (Kirchoff’s law No.
2) for each loading condition, where L,’j[NL, N + NPUMP X
(NLO + D] = (L L% 0):

L(NL, N) = the loop matrix. The term ‘‘loops’’ also in-
cludes open paths between two nodes at which the heads
are fixed. The rows and columns correspond to the loops
and pipes, respectively. Defining a positive direction of
circulation for each loop, its (i, j) term is +1 if pipe j is
in loop i, same direction; —1 if pipe j is in loop i, opposite
direction; O otherwise.

L:(NL, NPUMP X NLO) = a matrix defining the pump-
ing station locations with respect to each loop and loading
condition k. The rows correspond to the loops, and the
columns to the pumping stations heads. Its (i, j) term is
—1 if pump j is in loop i and loading condition k, same
direction; +1 if pump j is in loop i and loading condition
k, opposite direction; 0 otherwise. The remaining terms,
which do not belong to L or L% (sizes NL, NPUMP) are
Zeros.

LIN + NPUMP X (NLO + 1), NS

P

0 I

I(N, NS) = a matrix representing the internal arrangement
of the pipe segments (j) within the set of links (i). Its
(i, ) term is +1 for (i — 1) X ND <j =< (i) X ND, and
0 otherwise.

+ NPUMP X (NLO X 1)] = [I 0]

IINPUMP X (NLO + 1), NPUMP X (NLO + 1)] =
an identity matrix.

Y@YHINS + NPUMP X (NLO + 1), NS

+ NPUMP X (NLO + 1)] = [J"E)q*) (I)]

JHqYWNS X NS) = a diagonal matrix which attaches, for
a given loading condition %, a hydraulic gradient to each
pipe segment. The hydraulic gradients are calculated using
the Hazen Williams headloss equation.

b*(WL) = a vector of the head differences for the loop
equations, for loading condition k. b* = 0 for closed loops,
and b* = the known head difference between the end nodes
of an open path. Eq. (8) generates for each loading con-
dition, NL equality constraints.

Eq. (9)—constraints on minimum pressure heads at selected
internal nodes (usually at consumer nodes) for each loading
condition, where P,’ﬁ[NP, N + NPUMP X (NLO + 1)] =
(P P:, 0); P(NP, N) = the path matrix. The rows and col-
umns correspond to the paths and pipes, respectively. Defining
a positive direction for each path, its (i, j) term is +1 if pipe
Jj is in path i, same direction; —1 if pipe j is in path i, opposite
direction; O otherwise.

PLINP, NPUMP X NLO) = a matrix defining the pump-
ing station locations with respect to each path and loading
condition k. The rows correspond to the paths, and the
columns to the pumping stations heads. Its (i, j) term is
—1 if pump j is in path i and loading condition k, same
direction; +1 if pump j is in path i and loading condition
k, opposite direction; O otherwise. The remaining terms,
which do not belong to P or P}, (sizes NP, NPUMP) are
Zeros.

AH* (NP) = a vector of the maximum admissible head-
losses for loading condition k, along (NP) paths which
connect reference nodes with the internal nodes. Eq. (9)
generates for each loading condition one inequality con-
straint for every path over which a hydraulic energy loss
restriction is imposed.

Eq. (10)—link length constraints, where L[N, NS + NPUMP
X (NLO + 1] =d0)

a(N) = a vector of the link lengths. Eq. (10) has N equa-
tions, each corresponding to one link. The ith equation is
the sum of the candidate pipe segment lengths, which
must equal the link length.

Eq. (11)—power constraints, where

A(q)[INPUMP X NLO, NS + NPUMP X (NLO + 1)]

-1
=10 A.q -I
|

The first WNPUMP X NLO, NS) terms of A(q) are zeros,
the others are

A, (Q)(NPUMP X NLO, NPUMP X NLO) = a diagonal
matrix, which assigns the power per unit head coefficients
for each pumping station and loading condition, given a
flow distribution q.

—I(NPUMP, NPUMP) = identity matrix multiplied by
—1. The ith equation of (11) states that the maximum
power of pump j under loading condition & is bounded by
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the maximum power of the station, which itself is a de-
cision variable.

The objective of the P1-QH model is to minimize the
overall cost of the system components (pipes and pumping
stations) and operation, where a,(qQ)[NS + NPUMP X
(NLO + 1)] = the vector of costs per unit of length of
the pipe segments (size NS); the energy cost per unit head
of operating the pumping stations (size NPUMP X NLO),
and the cost per unit power of installing the pumping sta-
tions (size NPUMP).

The P1-QC Model

The purpose of the P1-QC model is to determine the least
treatment costs of the system (capital and operation), while
fulfilling the consumers requirements for qualities, and the
physical laws describing the water-quality distributions.

The decision variables are RR[NSO X (NLO + 1)] = the
vector of the removal ratios (size NSO X NLO), and the max-
imum removal ratios at the treatment facilities (size NSO).

The constraints are made of three blocks, included in (13):
The first block (NNC X NLO constraints) are restrictions on
maximum allowable concentrations at the internal nodes (usu-
ally consumer nodes) for steady-state quality conditions.

The second block (NSO X NLO constraints) are restrictions
on the removal ratios. The ith equation states that the maxi-
mum removal ratio at treatment facility j and loading condition
k is bounded by the maximum removal ratio of the treatment
facility, which is itself a decision variable.

The third block (NSO constraints) are restrictions on the
maximum possible removal ratios at the treatment facilities.
In our model we assume that the maximum removal ratio can
reach 100% (or 1.0), i.e., the concentrations of the quality
parameters can be lowered to zero.

The definitions of B(q) and &(q) are

B (@) [NNC x NLO + NSO X (NLO + 1), NSO Xx(NLO+1)] =

[ JRRY(q") ]
. 0
JRR*(¢") 0
0 .
JRRNLO(qNLO)
“IRRmax
IRr [
“IRRmax
L 0 IRRmax

where JRRYq")(NNC, NSO) = Jacobian matrix, for loading
condition k, of the concentrations at the internal nodes with
respect to the removal ratios; Ixg(NSO X NLO, NSO X NLO),
Lirmex(NSO, NSO) = identity matrices; and the remaining
terms, which do not belong to JRRY(q") (k= 1, ..., NLO),
Ing, and Igmex, are zeros.

& (Q[NNC X NLO + NSO X (NLO + 1)} = [e b — €'(q"), . . .,
Chae — (gD, ..., M2 — M9 0, ..., 0; 1.0]

where c¢f..(WNNC) = vector of the maximum admissible con-
centrations, for loading condition k, at the internal nodes;
ct(g"(VNC) = vector of the concentrations, at the internal
nodes, for loading condition k, steady-state quality conditions,
and zero removal ratios.

The difference between the vector of the maximum admis-
sible concentrations and the vector of the concentrations at the
internal nodes, for all the loading conditions, comprises the
first (NNC X NLO) terms of €(q). The remaining terms are
NSO X NLO zeros, and NSO terms of 1.0.

The objective of the P1-QC model [(12)] is to minimize the
cost of purchasing the water at the sources, plus the capital
and operating costs of treating these waters.

The cost of water (before treatment) at the sources may not
be equal due to differences in quality, or other reasons. The
total cost of purchasing the water is

NLo NSO
we(q) = PV [2 AT (2 wc,qf)] (14)
=1

fml

where PV = present value factor; wc; (3/m?) = cost of water
at source i; AT* (h/yr) = duration of loading condition & in a
year; and ¢} (m*/h) = discharge supplied from treatment facil-
ity i, during loading condition k.

Since we(q) is a constant for a given q, it does not appear
explicitly as part of the optimization model P1-QC or P1-QH.
However, the flows q are altered during the solution process
and, therefore, wc(q) influences the solution of the QCH
model. This will be considered in the section on solution tech-
nique.

The capital and operating costs of the treatment plants, for
a single quality parameter, are approximated by quadratic
functions of the removal ratios. The capital cost is

TCC, = eZ¥(q}RRmax,)* = v{q)(RRmax,)’ (15)

where TCC,; ($) = construction cost of treatment facility i; &,
($/m®) = construction cost coefficient of treatment facility i,
which is determined from analysis of cost data; Z¥(q) (m*) =
optimal volume of treatment facility i for a given flow distri-
bution q: Z¥(q) = max(Atg/, ..., Atgl, ..., Aug®), where
At; (h) = minimum detention time required in treatment facility
i; RRmax; = designed (maximum) removal ratio at treatment
facility i; and y,(q) ($) = construction treatment cost coefficient
at treatment facility ¢ for a given flow q.
The operation cost of the treatment plants is

TOC] = (AT'q;PVa,)(RR;)’ = BI(RR}) (16)

where TOC? ($) = operation cost at treatment facility i and
loading condition k; g} (m*h) = the discharge supplied from
treatment facility i, during loading condition k; a; ($/m*) = a
treatment cost coefficient at treatment facility i, which is de-
termined from analysis of cost data; RRf = removal ratio at
treatment facility ¢ and loading condition k; and B} ($) = op-
eration cost coefficient at treatment facility i for loading con-
dition k.

The capital and operation cost coefficients are put in the
positive definite diagonal matrix H(qQ)[NSO X (NLO + 1),
NSO X (NLO + 1)] whose first NSO X NLO diagonal terms
are 2B; (i=1,...,NSO; k=1, ..., NLO), and the remaining
NSO terms are 2v(q) (i = 1, ..., NSO).

After formulating the optimal design model, reliability is
incorporated through the following stages: (1) identification of
the backup subsystems for each of the loading conditions con-
sidered, which will be responsible for retaining the desired
level of service for the prescribed failure scenarios; (2) spec-
ifications of the blocks (i.e., the expressions of) (8), (9), (11),
(13) for each of the backup subsystems; and (3) addition of
the blocks so defined to the optimal design model.

MODEL PROPERTIES

1. The inner problem is convex.

2. The optimal value function is nonconvex and nonsmooth
(Ben-Tal et al. 1992). This will require the use of a non-
differentiable optimization technique to handle minimi-
zation of the outer problem.

3. The dimension of the outer problem is much smaller than
that of the inner one.
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4. For a given flow distribution, the solution of the inner
problem is a global minimum.

5. There is always a feasible solution of the P1-QC model
since we assume treatment facilities at all the sources,
and a maximum removal ratio of 100%. This requires
the designer to decide whether the solution is physically
possible, and, if necessary, to change the system layout
and/or consumers’ requirements.

6. The final solution is a local minimum.

SOLUTION TECHNIQUE

The minimization of the optimal value function requires the
use of a nonsmooth technique, which in turn depends on the
ability to compute for a given flow distribution an arbitrary
member of the subgradient group of the optimal value func-
tion.

The computation of a member of the subgradient group at
each iteration is based on the gradient of the Lagrangian of
the problem with respect to the circular flows. The nonsmooth
technique adopted to minimize the outer problem is the r-
algorithm of Shor (1985).

The theoretical background and mathematical conditions
needed for calculating a subgradient of the optimal value func-
tion, using the following, were developed by Ben-Tal et al.
(1992) for inner problems that are linear or convex quadratic.
We use their essential result [theorem 2.3 in Ben-Tal et al.
(1992)] and apply it to P1

Volg@o; X}, RR*; pX¥, Ma) € 9d(q0) an

This is the gradient of the Lagrangian of the P1 formulation
with respect to g, at the point (qo; X, RR*; ¥, A¥g), where
Lg = Lagrangian; q, = a given feasible flow distribution in the
pipes; X ¥, RR* = optimal primal values of the decision var-
iables of the P1-QH and P1-QC models, respectively; and
B ¥, A §x = optimal dual values of the decision variables of the
P1-QH and P1-QC models, respectively.

A substantial reduction in the dimension of the outer prob-
lem can be achieved by using the circular flows (Alperovits
and Shamir (1977), i.e., flows in loops, instead of the flows in
all pipes. This allows any flow distribution to be written

qg-=qf+ L'Aq" V& (18)

where q§(N) = any (initial or subsequent) flow distribution,
which satisfies node continuity; and Aq*WL) = circular flow
changes. Eq. (18) holds for each loading k, and guarantees that

If qf € Qthen also qf + L'Aq* € Q V &k (19)

where Q = set of feasible flow distributions, in the sense that
they maintain node continuity.

The r-algorithm of Shor (1985) is based on successive space
dilations in the direction of the difference between two suc-
cessive subgradients, and the use of the subgradient in the
transformed space as the search direction. This idea overcomes
the main difficulty of the subgradient method, in which at each
iteration the subgradient is almost perpendicular to the direc-
tion towards the minimum, resulting in a poor rate of conver-
gence.

Tailoring the r-algorithm to our problem yields an iterative
procedure for minimizing the outer problem. To simplify the
presentation we show the algorithm for one loading condition.
The generalization for multiple loading conditions is straight-
forward.

Initialization

1. Set: m = 0, where m is the iteration counter.
2. Given an initial feasible flow distribution q, € Q, com-
pute &(qo) and the subgradient g, € @d(qo) using (17).

3. Choose a Step Size k] > 0 Such that
h L, —_— 20
1 ” " qO,J ( )

where L, = rows of the fundamental loop matrix, which
correspond to the pipes leaving the sources; and qq, =
vector of flows from the sources. Eq. (20) ensures that
the direction of the outgoing flows from the sources re-
mains positive (i.e., the flow will not reverse). The di-
rection of flow in all other pipes is nor restricted; this is
an important property of our methodology.
4. Compute

Aq, = —h ﬁ Q@

where Aq,; = vector of changes of the circular flows.
5. Compute

a,=q + L'Aq;; ¢(q,); g € ad(q,) (22)

6. Set a matrix denoted B, to be an identity matrix.

Main Scheme

For m = 1 the m + 1 iteration is

1. Compute the direction vector
I = B.[0d(q,) — 8¢(q.-1)] 23)
2. Compute the unit direction vector

By = 2 24)
m+ 1 ” rm"

3. Compute the updated matrix
Bm+l = Bm [I + (% - 1) §m+l§:+l] (25)

where 8 = space dilation parameter of the r-algorithm;
and I = an identity matrix.

4. Compute a step size
Choose hn+1 > 0 such that

Ry = hoB™ (26)

where h, = a prescribed step size; and 8 = a coefficient
between zero and 1. Check if A,,,; violates (27)

B :+la¢(qm)

hns LBy —F——— < q,,, 27
LB 1T (el - 9 @
then
Qs .
Rmyr = min [LTB . Bé*‘la‘b(qm) ] (28)
! o "Bm+la¢(qm)"

Ims
[LZB-:+1 Bm+la¢(qm)]

for all i such that A4,., >

1B s 19d(ga)l

where ¢.., = outgoing flow from source i; and the de-
nominator of (28) is the ith component of the vector
L7B,...[B}.100(q. )| B..0d(q.)].

Do an approximate line search.

Set n., where n.,, is the maximum number of iter-
ations for the approximate line search, and set an internal
iteration counter denoted n = 1.

Compute
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If &(qms1) < &(Q,,) OF 1 > Ny, then go to the next step.
Otherwise reduce the step size h,., by a prescribed co-
efficient, and go back to step leading to (29).

. Compute dd(q,.+1).
. Check optimality. If at least two of the following three

criteria are met, stop:
|&(@ns) — (@) = & |Gnsr — gall = &3
B:l+la¢(qm)

B+ 0@l €2))

where §,, €, € = prescribed small values. Declare g, as
the optimal flow, and ¢¥q,) as the optimal value of the
objective function. Otherwise set

N L

= &

m-om+1, g, Quii; B, « B, (32a)
3d(g,-1) « 9d(q,); 9d(g.) — Fb(q..1);
&(Q.) — d(Qn); (32b)
and go back to step 1.

CASE STUDY

The optimization model was applied to the system shown
in Fig. 1, which is based on Walski et al. (1987). The system

(@

© Backup 2
Legend : 2 ® pump
~———» flow direction in pipe 2
FIG. 1. Multiquality Water-Supply System with Two Backup
Subsystems
TABLE 1. Consumers Data
Elevation | Consumption | Threshold concentration
Node (m) (m®h) (mg/L)
(1) 2 (3) (4)
2 +140 400 250
3 +155 300 400
4 +160 200 300
5 +120 200 400
6 +130 500 200
7 +130 200 400
8 +130 300 450
9 +140 300 400
10 +150 400 200
11 +110 200 350
12 +100 200 250
13 +120 200 400
14 +145 200 300
15 +130 300 400
B:+13¢(q )
Ag, i = —Hmsi By ————0 29)
! T 1B 100 (@a)
Compute
qm+l = qm + LTAqm+l (30)

Compute ¢d(q,,.;) and setn=n + 1.

()

©

30
Legend : —350—> initial flow in pipe 30 of 300 m* / pr

consumption at node 10 of 400 m 3 / hr

FIG. 2. Initial Flows and Consumptions for Base Run
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TABLE 2. Base Run: Optimal Pipe Lengths and Diameters for
Initial Flow Distribution

Flow
3
(m'/h) Lengths and Diameters
Pipe | System | Backup 1 |Backup 2 [m (in.)]
(1 @) (3) 4 (5)

1 200.0 637.0 — 3,000 (16)

2 125.0 — 154.0 | 3,000 (10)

3 75.0 324.0 — 3,000 (14)

4 85.0 447.0 — 155.29 (16), 844.71 (20)

5 235.0 — 96.0 | 1,000 (20)

6 110.0 195.0 — 778.6 (14), 221.4 (16)

7 40.0 — 289.0 | 12.72 (6), 987.28 (10)

8 20.0 246.0 — 1,000 (20)

9 300.0 — 443.0 | 878.39 (10), 121.61 (12)
10 300.0 —_ 558.0 {878.77 (10), 121.23 (12)
11 200.0 672.0 — 756.14 (10), 243.86 (12)
12 1100 — 327.0 | 1,000 (20)

13 200.0 1,134.0 — 775.34 (10), 224.66 (12)
14 50.0 308.0 — 32.8 (4), 967.2 (6)

15 40.0 92.0 — 29.06 (6), 970.94 (10)
16 100.0 231.0 — 252.34 (6), 747.66 (10)
17 50.0 — 154.0 | 200.66 (4), 799.34 (6)
18 400.0 — 231.0 | 412.3 (12), 587.7 (14)
19 100.0 154.0 — 407.72 (14), 592.28 (16)
20 750.0 —_— 1,155.0 | 49.65 (16), 950.35 (20)
21 750.0 — 1,001.0 | 347.32 (14), 652.68 (16)
22 200.0 — 847.0 | 604.76 (10), 395.24 (12)
23 300.0 1,503.0 — 196.14 (16), 803.86 (20)
24 100.0 — 308.0 | 110.25 (10), 889.75 (12)
25 75.0 138.0 — 1,000 (14)

26 150.0 154.0 — 1,000 (16)

27 300.0 — 308.0 | 1,000 (20)

28 50.0 — 154.0 | 963.5 (10), 36.5 (12)

29 50.0 1,888.0 — 1,000 (20)

30 300.0 2,040.0 — 3,000 (20)

31 750.0 154.0 — 26.45 (12), 973.55 (14)
32 3,200.0 — 2,849.0 | 3,000 (20)

33 750.0 — 539.0 | 1,000 (20)

TABLE 3. Base Run: Optimal Heads and Power of Pumps for
Initial Flow Distribution

Optimal Head
(m) Maximum power

Pump | System | Backup 1 | Backup 2 {hp)

(1) (2 (3) “4) (5)
1 101.41 240.09 — 708.03
2 106.02 — 99.02 70.60
3 100.46 379.43 — 569.14
30 121.72 450.31 — 4,257.13
32 216.95 — 260.85 3,440.60

is optimized for a single loading condition and one quality
parameter with two backups. It contains 33 pipes, five pumps
and 16 nodes: two source nodes with treatment facilities
(S1, S2), and 14 consumer nodes (2, ..., 15). The first sub-
system (backup 1) consists of a spanning tree plus two addi-
tional pipes, 4 and 6, and the second subsystem (backup 2)
consists of another spanning tree, with the additional pipe 5
(see Fig. 1).

Table 1 shows the consumers data: elevation, consumption,
and threshold concentration. The minimum pressure head re-
quired at each consumption node is 30 (m). The initial con-
centrations at sources S1 and S2 are 300 and 600 (mg/L),
respectively. The total head at source S1 is 80 (m) and at
source S2 it is 60 (m).

The length of all the pipes is 1,000 (m), excluding the pipes
connected to the sources (1, 2, 3, 30, 32) whose length is 3,000
(m). The Hazen-Williams coefficient for all the pipes is 130,
and each pipe is allowed to be made from the candidate di-

ameters (in in.): 4, 6, 10, 12, 14, 16, 20, whose associated unit
costs ($/m) are 11, 16, 32, 50, 60, 90, 170.
In addition, we used the following data:

Water costs ($/m?) (before treatment) at sources S1 and

S2 are 0.05, 0.03, respectively.

Detention times (h) at the treatment facilities at sources

S1 and S2 are 8, 7, respectively.

+ Treatment cost coefficients ($/m®) at the treatment facili-
ties at sources S1 and S2 are 0.03, 0.02, respectively.

« Construction cost coefficients ($/m?®) for the treatment fa-

cilities at sources S1 and S2 are 30, 20, respectively.

Energy cost ($/kW-h): 0.1.

Cost of installing the pumping stations ($/hp): 3,200.

Pump efficiency: 0.8.

Present value coefficient: 10.04 (for an annual interest of

5.5% and planning horizon of 15 years).

* The system is expected to operate without failure 90% of

the time, while each of the backups operates 5% of the

time.

BASE RUN

As a detailed illustrative example we present the solution
from the initial flow distribution shown in Fig. 2. This distri-
bution has provided the least cost solution.

The total consumption of the system (3,900 m*/h) is reduced
uniformly by 23% for each of the backups at all the consumer
nodes, giving a total demand of 3,003 (m*h). The consumers’
requirements for pressure and quality are the same for the
system and the backups. The system is optimized with the
parameters h, = 30; 6 = 0.85, and 8 = 2.0 on a CONVEX
computer. The routines EO4AMBF and E04NCF from the NAG
library are used to solve the P1-QH and P1-QC models,
respectively, at each iteration. The average central process-
ing unit (CPU) time for an inner iteration of the P1 model is
18 (s).

TABLE 4. Base Run: Optimal Concentrations at Consumer
Nodes for Initial Flow Distribution

Optimal Concentration
(mg/L)
Node System Backup 1 Backup 2

{1 2) 3 4)
2 194.82 204.73 250.0
20491 204.73 200.0
4 20491 250.00 200.0
5 204 .91 250.00 200.0
6 195.95 195.41 200.0
7 20491 250.00 200.0
8 20491 250.00 200.0
9 204 .91 250.00 200.0
10 200.00 200.00 200.0
11 20491 200.00 200.0
12 20491 250.00 200.0
13 204.91 250.00 200.0
14 204.91 250.00 200.0
15 204.91 250.00 200.0

TABLE 5. Base Run: Optimal Removal Ratios and Volumes of
Treatment Facllities for Initial Flow Distribution

. . Maximum |Optimal volume
Optimal Removal Ratio removal gf treatment
O ratio facility
Source| System [Backup 1|Backup 2 ) (m°)
(1) (2) (3) (4) ) (6)
S1 0.4043 | 0.4043 0 0.4043 7,688
S2 0.6585 | 0.5833 0.6667 0.6667 24,500
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FIG. 3. Cost versus lteration for Base Run

TABLE 6. Base Run: Optimal Pipe Lengths and Diameters for
Optimal Flows

Flow
3
(m*/h) Lengths and Diameters
Pipe | System | Backup 1 |Backup 2 [m (in.)]

(1) @ (3 @ (5)

1 184.46 633.98 — 3,000 (16)

2 113.87 — 170.67 | 3,000 (10)

3 141.75 339.26 —_ 3,000 (14)

4 111.53 445.43 — 1,000 (16)

5 186.27 — 93.47 | 599.76 (12), 400.24 (14)

6 87.37 196.46 — 31.7 (6), 968.3 (10)

7 153.44 — 291.53 | 115.14 (10), 884.86 (12)

8 14.35 2417.57 — 457.95 (12), 542.05 (14)

9 411.95 —_ 445,53 | 1,000 20)
10 21248 — 555.47 | 184.81 (14), 815.19 (16)
11 206.46 675.02 — 718.14 (16), 281.86 (20)
12 45.92 — 324.47 | 1,000 (16)
13 181.49 1,137.02 — 121.03 (14), 878.97 (16)
14 67.95 308.00 — 640.87 (12), 359.13 (14)
15 47.17 93.57 — 396.47 (6), 603.53 (10)
16 90.71 231.00 - 1,000 (14)

17 39.73 — 137.33 | 124.64 (4), 875.36 (6)
18 390.71 — 231.00 | 470.43 (12), 529.57 (14)
19 130.86 154.00 — 30.93 (6), 969.07 (10)
20 761.52 — 1,155.00 | 764.85 (16), 235.15 (20)
21 643.80 — 1,001.00 | 221.85 (14), 778.15 (16)
22 123.80 — 847.00 | 1,000 (20)
23 316.50 1,490.76 — 1,000 (20)
24 51.22 — 308.00 | 160.8 (6), 839.2 (10)
25 57.64 122.74 — 38.81 (6), 961.19 (10)
26 149.39 154.00 — 1,000 (16)
27 258.94 — 308.00 | 1,000 (16)
28 90.44 —_ 154.00 | 533.66 (10), 466.34 (12)
29 56.63 1,875.76 —_ 1,000 (20)
30 347.07 2,029.76 —_ 3,000 (20)
31 746.24 154.00 —_ 890.53 (16), 109.47 (20)
32 | 3,112.85 — 2,832.33 | 3,000 (20)
33 761.29 — 522.33 | 1,000 (20)

TABLE 7. Base Run: Optimal Heads and Power of Pumps for
Optimal Fiow Distribution

Optimal Head
(m) Maximum power

Pump | System | Backup 1 | Backup 2 (hp)

M | @ @) @ ®)
1 106.23 120.99 —_ 355.11
2 109.94 — 102.3 80.83
3 107.14 137.10 — 215.33
30 128.13 206.37 —_ 1,939.26
32 211.77 —_ 232.11 3,066.30

The optimal solution of the inner problem, in the first iter-
ation, is shown in Tables 2-5. The optimal total cost of the
QCH problem in the first iteration is; $70,417,923. It is made
of $56,626,479 (80.4%) from the QH problem, and of

$13,791,444 (19.6%) from the QC problem (including the
costs of purchasing the water at the sources).

The heads at nodes 3, 4, 10, for the system; node 4 for
backup 1; and nodes 2, 10, for backup 2 are at their minimum
level. The concentrations at nodes: 10 for the system; 10, 12
for backup 1; and 2 for backup 2 reach their maximum limit.

The objective function values of the P1 model, as a function
of the iteration number, are shown in Fig. 3. The optimal so-
lution of the P1 model, at the final iteration is shown in Tables
6-9. Fig. 4 shows the optimal flow distribution in the system
and the backups (note that the accurate values of the flows are
listed in Table 6).

The optimal total cost of the QCH problem at the final it-
eration is 57,885,884 ($). It is made up of $44,140.781
(76.3%) from the QH problem, and of $13,745,103 (23.7%)
from the QC problem (including the costs of purchasing the
water at the sources).

The heads at nodes 3, 4 for the system; node 3 for backup
1; and node 10 for backup 2 are at their minimum level. The
concentrations at node 6 for the system; nodes 10, 12 for
backup 1; and nodes 2, 6, 10 for backup 2 reach their maxi-
mum limit.

Both the QH and QC problems are improved at the final
solution. The QH is reduced by $12,485,698 (22.0%) and the
QC by $46,341 (0.34%), relative to their costs in the optimal
solution for the initial flows.

The major improvement in system cost is due to the reduc-
tion in the required heads for operating backup 1, which yields
a significant decrease in the maximum power needed for the
pumps (compare Table 3 to Table 7). This is because the cost
of constructing the system (pipes and pumps) is three to four
times higher than the cost of purchasing and treating the water,
Therefore, the major reduction is governed by the QH prob-
lem.

TJABLE 8. Base Run: Optimal Concentrations at Consumer
Nodes for Optimat Flow Distribution

Optimal Concentration
(mg/L)
Node System Backup 1 Backup 2
(1) 2) (3 “4)
2 193.19 207.04 250.0
3 230.61 207.04 200.0
4 230.61 250.00 200.0
5 230.61 250.00 200.0
6 200.00 198.02 200.0
7 230.61 250.00 200.0
8 230.61 250.00 200.0
9 230.61 250.00 200.0
10 194.65 200.00 200.0
11 230.61 200.00 200.0
12 230.61 250.00 200.0
13 230.61 250.00 200.0
14 230.61 250.00 200.0
15 230.61 250.00 200.0

TABLE 9. Base Run: Optimal Removal Ratios and Volumes of
Treatment Facilities for Optimal Flow Distribution

Optimal Removal Ratio Maximum |Optimal volume
() removal of treatment
ratio facility
Source | System |Backup 1|Backup 2 () (m%)
(1) () (3) {4) (5) (6)
S1 0.5695 | 0.3936 0.0326 0.5695 7,786
S2 0.6157 | 0.5833 0.6667 0.6667 24,219
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FIG. 4. Optimal Flows and Consumptions for Base Run

TRADE-OFF BETWEEN COST AND RELIABILITY

The trade-off between cost and reliability is examined by
changing the consumers requirements in the cases of failure
scenarios in which backup 1 or backup 2 operate.

The trade-off is evaluated with respect to the requirements
of the consumers for flow, quality, and pressure, and to the
percentage of time during which the backups operate. The re-
sulting trade-off curves can be used to determine the system
cost associated with a desired system service.

The trade-off between total supply and cost is investigated
by uniformly reducing the total system consumption (3,900
m®/h) for the backups, while keeping the demands for quality
and pressure unchanged. The resulting curve is shown in Fig.
5 (note that the base run is at the point where 77% of the full
demand is supplied).

The trade-off between quality and cost is investigated by
uniformly increasing the threshold concentration requirements
for the backups, while keeping the demands for flow and pres-
sure unchanged. The resulting curve is shown in Fig. 6. There
is almost no reduction in system cost due to the increase in
the threshold concentration requirements for the backups. This
is because the capacities (volumes and maximum removal ra-
tios) of the treatment facilities are determined by the system.
The saving in system cost is achieved by reduction of the

Cost($)
7.00e+7

6.80e+7 ]
6.60e+7

6.40¢e+7

6.00e+7 ] l

5.80e+7 1

7 ] T L} 1 v T LI T T T v
0.750 0.775 0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.0
Fraction of supply

FIG. 5. Trade-Off between Supply and Cost for the Same Head
and Quality Constraints at the System and the Backups

treatment needed for the backups, which is negligible in com-
parison to total cost. The lower bound of the cost, with no
quality constraints for the backups, is $68,697,752.

In analyzing the system behavior with respect to changes in
consumption, and with respect to quality, we assumed that a
consumer demand for flow is met if its pressure head is at
least 30 (m). In examining the trade-off between pressure and
cost we relax this assumption by using the supply response
head relationship suggested by Wagner et al. (1988b), which
has the following parts: (1) consumption is zero when the pres-
sure is below 20 (m); (2) for pressures between 20 and 30 (m)
the reduction in consumption is given by

F,=1 — 0.01(P, — 307 (33)

where F, = fraction of full consumption at a node; and P, (m)
= pressure head at a node; and (3) full consumption for pres-
sures above 30 (m). The trade-off between pressure and cost
is shown in Fig. 7. The shape of the curve is concave. This is
because the reduction in system cost is dominated by the re-
duction of supply to the consumers, and not by the saving in
energy cost.

The trade-off between the fraction of time during which the
backups operate and system cost is shown in Fig. 8, for flow
and quality at the system and the backups as listed in Table
1, and for minimum pressure head at all the consumer nodes
of 30 (m).

CONCLUSIONS

A methodology which integrates the optimal design and re-
liability of a multiquality water-supply system was developed
and applied to a system based on Walski et al. (1987).

Reliability is incorporated directly into the design phase.
The system is required to sustain prescribed failure scenarios,
in our case any single random component failure, and still
maintain a desired level of service to the consumers in terms
of the quantities, qualities, and pressures.

The decomposition idea of Alperovits and Shamir (1977)
for the design of optimal water-distribution systems is ex-
panded for the design of multiquality water-supply systems.
The formulation of the model (i.e., the P1 for formulation)
results in an outer nonsmooth problem in the circular flow
domain, and an inner convex quadratic problem. The inner
problem can be further split into a linear programming QH
part (the P1-QH) and a convex quadratic QC part (the P1-
QQ). This is an inherent attribute of a multiquality water-sup-
ply system that can be used in other formulations, such as the
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straints at the System and the Backups

optimal operation problem. The solution is obtained using the
nonsmooth r-algorithm of Shor (1985).

The backup subsystems are determined for a given set of
prescribed failure scenarios. As such, their selection is basi-
cally part of the planning phase, in which the system layout
is determined. There is no quantitative model for selection of

Quality, and Head Con-

the *‘best’” layout, nor of the backup subsystems. The layout
selection is heuristic and is based on engineering judgement
and experience.

The selection of the set of backups in our work has only
considered the connectivity of the system. A suggestion for
further research is the development of a screening model
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aimed at grading given candidate sets of backups. This grading
can be a tool to assist the designer in selecting backups for
the optimization model. The screening model can be based on
the following stages:

1. Selection of candidate sets of backups, following topo-
logical considerations. A possible way of selecting can-
didate sets can be by the use of a matrix whose elements
describe the frequency of the pipes appearing in the paths
that connect sources to consumers. To build this matrix,
the paths between the sources and consumers should be
scanned. This can be determined by using path enumer-
ation algorithms like those of Misra (1970) or Aggarwal
et al. (1973).

2. Definitions of a goal programming model in which the
objective function is the minimization of the damages
incurred to the consumers for not supplying their re-
quired demands, and the constraints are simplifications
of the constraints of the P1-QH and P1-QC models.

3. Solution of the model defined in stage 2 for each of the
sets defined in stage 1.

The value of the optimal solution will be used for grading the
sets.
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APPENDIX Il

NOTATION

The following symbols are used in this paper:

A(q)

IRR’ IRRmn
A NCY)

KCy)

JRRY(q")

T=z3

LV || T | | O 1 A

N,
NEI

NL
NLO
NNC
NP
NPUMP
NS

NSQ

W W n

W

I

a matrix defined as

s |
0 A@ -If;

|
diagonal matrix made of the power per unit head
coefficients;
vector of the link lengths;
vector of unit costs of the objective function of the
P1-QH model;
matrix in Egs. (6) and (13) that is made of
JRRk(qk), Irr, and Ipgmass
identity matrix for the initial iteration;
matrix at the mth iteration computed by Eq. (25);
vector of the head differences for the loop equa-
tions for loading condition k;
vector of the differences between the threshold
concentrations and the concentrations at the inter-
nal nodes, for zero removal ratios at the treatment
plants;
vector of the concentrations at the internal nodes
for loading condition k and zero removal ratios;
vector of the maximum admissible concentrations
for loading condition & at the internal nodes;
fraction of full consumption at a node;
subgradient at the mth iteration;
positive definite diagonal matrix made of B} and
Yis
step size at the mth iteration;
a prescribed step size;
identity matrix;
matrix of the internal arrangement of the pipe seg-
ments;
matrix defined as [T 0];
matrix defined as

o i

identity matrices in B(q);

diagonal matrix which attaches for a given loading
condition k the hydraulic gradient to each pipe
segment;

matrix defined as

JgH of
0 I

Jacobian matrix for loading condition k of the con-
centrations at the internal nodes with respect to the
removal ratios;

loading conditions index;

loop matrix;

Lagrangian of the P1 formulation;

matrix defined as [L. L}, 0];

matrix defining the pumping station locations with
respect to each loop and loading condition k;
rows of the loop matrix which correspond to the
pipes leaving the sources;

main scheme iteration counter;

number of pipes;

number of commercial pipe diameters;

number of internal pipes;

number of loops;

number of loading conditions;

number of internal nodes;

number of paths;

number of pumping stations;

number of pipe segments;

number of source nodes;
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RR*
RRmax;
RR!

TCC,
TOC}

oo nnon

iteration counter for the approximate line search;
maximum number of iterations or the approximate
line search;

path matrix;

matrix defined as [P Pi, 0];

matrix defining the pumping station locations with
respect to each path and loading condition k;
pressure head at a node;

present value factor;

set of flows that maintain continuity at the system
nodes;

vector of flows in the network pipes;

given feasible flow distribution in the pipes;
given feasible flow distribution for loading con-
dition k;

vector of flows in the network pipes for loading
condition k;

outgoing flow from source i in Eq. (28);

vector of flows at the mth iteration;

vector of the outgoing flows from the sources at
the mth iteration;

vector made of the removal ratios, and the maxi-
mum removal ratios at the treatment plants;
vector of the optimal primal values of the P1-QC
model;

designed (maximum) removal ratio at the ith treat-
ment plant;

removal ratio at the ith treatment plant and loading
condition k;

direction vector at the mth iteration;

construction cost of the ith treatment plant;
treatment operational cost of the ith treatment plant

Aq,,

AT

At

él; Ely €3
€;

and loading condition k;

total cost of purchasing the water at the sources;
cost of water at source i;

vector of the decision variables of the P1-QH
model;

vector of the optimal primal values of the P1-QH
model;

optimal volume of the ith treatment plant;
treatment cost coefficient at the ith treatment plant;
operational treatment cost coefficient at the ith
treatment plant for loading condition k;
construction treatment cost coefficient at the ith
treatment plant;

space dilation parameter of the r-algorithm;
vector of the maximum admissible headlosses for
loading condition k;

circular flow changes vector for loading condi-
tion k;

vector of changes of the circular flows at the mth
iteration;

duration of loading condition k in a year;
minimum detention time at the ith treatment plant;
prescribed small values;

construction cost coefficient at the ith treatment
plant;

unit direction vector at the mth iteration;
coefficient between zero and 1;

vector of the optimal dual values of the P1-QC
model;

vector of the optimal dual values of the P1-QH
model; and

optimal value function.
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