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Abstract: This study introduces a new search method for box-constrained optimization problems called the search method for box opti-
mization (SMBO). SMBO is a population heuristic-based search methodology that solves global optimization problems. SMBO represents
the population as a probability density function (PDF) inside the problem bounds. The PDF shape is dynamically adapted during the process
to guide to a “good” search domain. The applicability and the efficiency of the method are demonstrated using two benchmark sets, which
include unimodal, multimodal, expanded, and hybrid composition functions. The performance of SMBO is compared with several genetic
algorithms (GAs); the first benchmark compares it with nine codes of traditional/classic GAs, and the second compares SMBO with two
recent variants of genetic algorithms. The results show that SMBO performs as well as or better than the GAs in both comparisons. The
method is demonstrated on a nonlinear model for management of a water supply system (WSS), and the results are compared with the
commercial GA toolbox of matrix laboratory (MATLAB). DOI: 10.1061/(ASCE)WR.1943-5452.0000229. © 2012 American Society
of Civil Engineers.
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Introduction

Many heuristic techniques were proposed to solve multidimen-
sional global optimization problems (Ahrari et al. 2009; Georgieva
and Jordanov 2009; Regis and Shoemaker 2007), among them ge-
netic algorithms (GAs) (Harik et al. 1999; Holland 1975; Tu and Lu
2004) developed from the genetic evolution of biological organ-
isms. Essentially, each variable is represented as a gene, whereas
the vector of variables is represented as a chromosome that com-
bines all genes.

The GA starts with an initial population in which each individ-
ual has its own chromosome. The population evolves over gener-
ations using random selection of the fitness of the individuals. Pairs
of individuals are selected out of the current generation and a cross-
over operation recombined their chromosomes. To ensure diversity,
mutation is applied to some individuals. Generally, the efficiency of
GAs depends on the values of the algorithm parameters, such as
population size, initial population, selection scheme, mutation
fraction, and retention of elite members for the next generation
(Tvrdík 2009). Identifying good parameter values for any search
method is time-consuming and difficult. However, for some appli-
cations, such as optimal design of water distribution networks, a

parameter-setting-free search method may be useful and was re-
cently proposed by Geem and Cho (2011).

This work presents a search method for global optimization
of box-constrained problems. The search method for box optimiza-
tion (SMBO) represents the population of each generation as a
probability density function (PDF) defined within the problem
bounds in which each gene has its own triangular-shape PDF.

The details of this method and performance comparison using
two benchmark sets are given in the next sections. In section 2, the
method and its algorithm are presented, including a 2D example to
demonstrate its propagation toward the optimal solution. Section 3
contains comparisons with results obtained by other search meth-
ods and section 4 demonstrates the application of SMBO for a
WSS model.

Searching Method for Box Optimization

Method Outline

The following optimization problem is considered:

min
x

fðxÞ subject to LB ≤ x ≤ UB (1)

where x ∈ Rm = variables vector, f = objective function, and LB ∈
Rm;UB ∈ Rm = lower and the upper bounds, respectively.

Population-based search methods are defined as follows:

Pnew ¼ GðPold; fðPoldÞÞ (2)

where Pold = a subset of solutions inside the search domain that we
call population, f = objective function that returns the fitness for
each population member, and G = manipulation function that cre-
ates a new population evolved from the previous one.

For instance, in GAs the manipulation function is defined by the
operators applied to the old population to create the new one, such
as, for example, selection, mutation, and crossover.

1Ph.D. Student, Faculty of Civil and Environmental Engineering,
Technion—Israel Institute of Technology, Haifa 32000, Israel. E-mail:
mashor@tx.technion.ac.il

2Associate Professor, Faculty of Civil and Environmental Engineering,
Technion—Israel Institute of Technology, Haifa 32000, Israel (correspond-
ing author). E-mail: ostfeld@tx.technion.ac.il

3Emeritus Professor, Faculty of Civil and Environmental Engineering,
Technion—Israel Institute of Technology, Haifa 32000, Israel. E-mail:
shamir@tx.technion.ac.il

Note. This manuscript was submitted on July 14, 2011; approved on
January 5, 2012; published online on January 12, 2012. Discussion period
open until April 1, 2013; separate discussions must be submitted for
individual papers. This paper is part of the Journal of Water Resources
Planning andManagement, Vol. 138, No. 6, November 1, 2012. © ASCE,
ISSN 0733-9496/2012/6-651-659/$25.00.

JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT © ASCE / NOVEMBER/DECEMBER 2012 / 651

J. Water Resour. Plann. Manage. 2012.138:651-659.

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

E
L

Y
A

C
H

A
R

 C
E

N
T

R
A

L
 L

IB
R

A
R

Y
 o

n 
05

/0
4/

13
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000229
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000229
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000229
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000229


SMBO is a population heuristics-based search method in the
form of Eq. (2) in which a PDF represents each gene of a pop-
ulation member. For each gene, the PDF is represented as an
isosceles triangle inside the problem bounds, which is defined
by a center point and base length. With regard to the manipula-
tion function, SMBO draws n independent samples taken from
the previous PDF, evaluates these samples, and defines the new
population (PDF).

To define the new population: (1) the new center points of
the triangular PDFs are calculated as a mean of the elite members
of the previous population sample and (2) the new bases lengths of
the triangles are reduced to achieve convergence.

Because SMBO deals with box optimization problems, the
manipulation function must guarantee that all new population
members are within the feasible domain. Therefore, when the ver-
tices of the triangle are outside the problem bounds, the triangle is
truncated at the bounds and normalized again to ensure a new pop-
ulation within the given bounds. Fig. 1 shows the shape of the PDF

and Fig. 2 contains the pseudo code of the sampling algorithm from
the triangular shape PDF.

Base Reduction Scheme

To achieve convergence, the base lengths of the triangles are re-
duced during each iteration. The base reduction rate is a key issue
for the algorithms: rapid base reduction limits the ability to explore
the feasible region whereas slow base reduction decreases the over-
all performance of the algorithms.

Four parameters are considered when controlling the base re-
duction:Warming, Refining, Bmin-minimum half base, and α-linear
reduction factor.

The base reduction rate does not have to be constant; a changing
rate during the search process may be defined by choos-
ing 0 ≤ α < 1.

The base length cannot be zero because the triangles represent a
PDF. Hence, a minimum half base Bmin has to be defined.

(a) (b)

Fig. 1. PDF of variable i at iteration t: (a) the triangular shape is inside the bounds (b) part of the triangular shape is outside the bounds

Fig. 2. Sampling algorithm
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Warming and Refining are control parameters that are fractions
of the total generations in which there is no base reduction. Warm-
ing is defined for the first generations, e.g., the first 10% of the total
generations, and Refining is defined for the last generations, e.g., the
last 5% of the total generations.

The parameter Warming is used when the feasible region is
large; keeping the first iterations without base reduction helps in
exploring the solution space.

The parameter Refining is used when an accurate solution is de-
sired; keeping the last iterations without base reduction (at the mini-
mum value) helps the method refine the final solution through more
sampling in the vicinity of the optimal solution.

Fig. 3 shows the pseudo code of the SMBO algorithm.

Bt
i ¼

8>><
>>:

B0
i t ≥ W · TG

Bmin t ≥ ð1 − REÞ · TG
αg1 þ ð1 − αÞg2 else

g1 ¼ B0
i − ðB0

i − Bmin Þ
RG

· ðt −W · TGÞ

g2 ¼ B0
i ·

�
Bmin

B0
i

�ðt−W·TGÞ
RG

(3)

where TG = Total Generation, RE = Refining, W = Warming,
RG ¼ ð1 −W − REÞ · TG and B0

i ¼ UBi−LBi
2

.

Propagation to the Optimal Solution (2D Example)

Consider the optimization problem

min
x;y

x · eð−x2−y2Þ þ ðx2 þ y2Þ
20

subject to

− 10 ≤ x ≤ 10 − 10 ≤ y ≤ 10

(4)

The optimal solution of (4) is xmin ¼ −0:67, ymin ¼ 0. SMBO
starts from an initial population defined by a triangular PDF with
centers C0

x ¼ −9.2, C0
y ¼ −7.8, and B0 ¼ 10 for both variables.

Fig. 4 shows the propagation of the algorithm toward the optimal
solution, and Fig. 4a shows the first and second PDFs representing
the initial and the second populations during the solution process.
Fig. 4b shows all of the PDFs during the search process. The final
PDFs are concentrated on the optimal solution because the base of
the triangles at the final iteration is 0.02. After normalization, they
have a height of 100 whereas the triangle heights during the pre-
vious iterations have relativity low heights that are represented by
the flat part along axes x and y in Fig. 4b.

Fig. 3. SMBO algorithm
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The parameter set considered in this small example is defined
in Table 1.

Comparison of Test Results with GAs

To test the ability of the proposed method in efficiently finding the
global or at least local minimum, two suits of benchmark functions
are optimized by SMBO using the parameters given in Table 1.

De Jong’s Test Suite

De Jong’s suite contains five test functions (De Jong 1975), listed in
the Appendix. F1 is a unimodal function. F2 is a multimodal func-
tion. F3 is a discontinuous function. F4 is a unimodal function
padded with noise. F5 is a function with many local optima.
The performance of SMBO is compared with that obtained in
Colorado et al. (1993), which used nine GA codes. For comparison

purposes, our algorithm was executed 30 times on all the test func-
tions, each time we used 400 evaluations at each generation and
total generations TG ¼ 1000, as in Colorado et al. (1993).

The stopping criterion ðfobtained − foptimalÞ ≤ ε was set as in
Colorado et al. (1993), where ε ¼ 0.01 except for the function
F3 in which ε ¼ 0 and F4 in which ε ¼ −2.5. Table 2 reports
the average number of function evaluations and the standard
deviation that each algorithm takes to solve De Jong’s functions.

CEC-05 Test Suite

In this section, SMBO is applied to a subset of the benchmark
functions provided by a CEC-05 special session on real param-
eter optimization (Suganthan et al. 2005). The chosen subset in-
cludes four groups: unimodal, multimodal, expanded, and hybrid
composition functions. All of the test functions are listed in
the Appendix.

The performance of SMBO is compared with that obtained in
Hsieh et al. (2009) using two recent variants of GAs on eighteen
test functions with 30 dimensions. For comparison purposes, the
number of function evaluations was set to 150,000 and each of
the test functions was run 30 times. In SMBO, the evaluations
at each generation are set to 150 and the total generations are
set to 1,000. Table 3 reports the mean value and the standard
deviation of the objective function that each algorithm obtained
after 150,000 evaluations. In each function, the algorithm with min-
imum mean value is shown in bold.

The results show that SMBO obtained better results (lower
mean value) than HTGA (Tsai et al. 2004) for all of the test
functions except for functions f8 and f11. Moreover, SMBO out-
performed SEGA (Hsieh et al. 2009) in fourteen out of the eighteen
functions considered, i.e., 78% of the test set.

With regard to function f12, although SMBO obtained a lower
mean value in the third decimal place, both SMBO and SEGA are
shown in bold. However, one can argue that SEGA obtained a
better result because of the lower standard deviation.

Solving a Water Supply System (WSS) problem

A seasonal multiyear model for management of water quantities
and salinity for the WSS shown in Fig. 5 was solved. Water is taken
from sources including aquifers, reservoirs, and desalination plants
and conveyed through a distribution system to consumers who re-
quire certain quantities of water under specified salinity constraints.

The objective is to operate the system with minimum total cost
of desalination, pumping, delivery, and an extraction levy in the
aquifers. The objective function and some of the constraints in

Fig. 4. 2D example: (a) PDFs at the first (left) the second (right)
iterations (b) PDFs at the end of the search process

Table 1. SMBO Parameters

Parameter
2D

example De Jong’s test suite CEC’05 test suite

TG 50 NA 1000
RE 0 fF1;F2;F3;F4 ¼ 0.95g,

fF5 ¼ 0g
0.1

W 0 0 0
α 0 0.5 0
Bmin 0.01 0.01 0.01
n 100 397a 147
EC 10 min½d0.1 · ðnþ 3Þe; 10� min½d0.1 · ðnþ 3Þe; 10�
aTotal number of evaluations is 400, 397 from sampling and 3 from the
triangle vertices; see Fig. 3, step 3.
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the model are nonlinear, leading to a nonlinear optimization
problem.

The objective is to minimize the operation cost over five years,
where each year has two seasons. The optimization problem is

min cost ¼
X5
Y¼1

X2
S¼1

�X8
p¼1

wS;Y
p · ðQS;Y

p Þ2.852
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Conveyance

þ ðαþ β · hS;Ya Þ · QS;Y
a|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Extraction Levy

þ ðγ þ ðCS;Y
d Þ−δÞ · QS;A

d|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Desalination

�
subject to (5)

State equation for water level in the aquifers ∀S∀Y
RS;Y
a −QS;Y

a ¼ SAa · ðhS;Ya − hðS;YÞ−1a Þ
State equation for water salinity in the aquifers ∀S∀Y

ðCRÞS;Ya · RS;Y
a − CðS;YÞ−1

a · QS;Y
a ¼ SAa

· ðCS;Y
a · hS;Ya − CðS;YÞ−1

a · hðS;YÞ−1a Þ

Desalinated water salinity ∀S∀Y
CS;Y
d ¼ Csea · ð1 − RRS;Y

d Þ
Water balance in the network ∀S∀Y

Table 2. De Jong’s Test Suite Results

F1 F2 F3 F4 F5

Algorithm E_ev Std_ev E_ev Std_ev E_ev Std_ev E_ev Std_ev E_ev Std_ev

Cellular 13000 3200 42000 37600 7160 1840 158800 81600 6120 1720
ESGA 11560 2720 33200 22000 6120 1640 61200 19600 5720 17600
Genitor 6800 1640 76000 64000 3280 840 54000 26800 3160 1000
I-ESGA 12920 3040 32400 16000 7320 2000 150000 78800 5520 1880
I-Genitor 9280 2120 44800 37600 4920 1440 83200 64800 4480 1480
I-pCHC 13280 2960 31200 22800 7520 1760 198000 95600 6520 2120
I-SGA 16520 4480 166800 101200 8800 2120 162000 76800 8120 2760
pCHC 11360 2600 61200 55600 6760 1480 89200 41600 6400 1560
SGA 12280 2960 113600 79200 6680 1680 64400 16000 5840 1760
SMBO 2760 881 2013 817 1747 222 10427 1807 8107 7763

Note: E_ev, Std_ev are average and standard deviation of function evaluations, respectively.

Table 3. CEC-05 Test Suite Results

Function

Algorithm

SEGA HTGA SMBO

f1 −4.49Eþ 02 ± 1.34E − 02 −4.41Eþ 02 ± 4.92Eþ 00 −4.50Eþ 02 ± 2.63E − 06

f2 8.24Eþ 02 ± 4.33Eþ 02 1.51Eþ 04 ± 1.46Eþ 03 −4.50Eþ 02 ± 2.86E − 05

f3 1.28Eþ 07 ± 3.81Eþ 06 1.64Eþ 07 ± 2.66Eþ 06 1.09Eþ 07 ± 5.39Eþ 07

f4 1.94Eþ 04 ± 7.87Eþ 03 3.15Eþ 04 ± 3.30Eþ 03 −4.50Eþ 02 ± 4.97E − 05

f5 8.90Eþ 02 ± 1.18Eþ 03 4.05Eþ 03 ± 2.32Eþ 03 1.98Eþ 03 ± 2.81Eþ 03

f6 4.52Eþ 03 ± 1.18E − 02 4.52Eþ 03 ± 6.75E − 02 −1.80Eþ 02 ± 7.15E − 07

f7 −1.19Eþ 02 ± 6.32E − 02 −1.19Eþ 02 ± 8.85E − 02 −1.20Eþ 02 ± 9.34E − 02

f8 −3.29Eþ 02 ± 5.40E − 03 −3.27Eþ 02 ± 1.35Eþ 00 −3.02Eþ 02 ± 1.09Eþ 01

f9 −2.73Eþ 01 ± 9.60Eþ 01 2.65Eþ 01 ± 6.75Eþ 01 −3.05Eþ 02 ± 7.55Eþ 00

f10 1.24Eþ 02 ± 3.42Eþ 00 1.24Eþ 02 ± 2.24Eþ 00 9.38Eþ 01 ± 3.19Eþ 00

f11 2.01Eþ 04 ± 1.37Eþ 04 2.87Eþ 04 ± 1.57Eþ 04 4.53Eþ 04 ± 1.55Eþ 05

f12 −1.29Eþ 02 ± 2.13E − 01 −1.28Eþ 02 ± 3.82E − 01 −1.29Eþ 02 ± 9.68E − 01

f13 −2.87Eþ 02 ± 2.40E − 01 −2.87Eþ 02 ± 2.97E − 01 −2.89Eþ 02 ± 1.04Eþ 00

f14 4.97Eþ 02 ± 1.09Eþ 02 4.57Eþ 02 ± 8.27Eþ 01 4.39Eþ 02 ± 2.66Eþ 02

f15 1.14Eþ 03 ± 3.40Eþ 02 1.71Eþ 03 ± 3.04Eþ 02 1.24Eþ 03 ± 3.41Eþ 01

f16 1.53Eþ 03 ± 7.43Eþ 01 1.51Eþ 03 ± 4.49Eþ 01 8.94Eþ 02 ± 2.54E − 04

f17 8.17Eþ 02 ± 5.06Eþ 02 9.86Eþ 02 ± 5.24Eþ 02 4.60Eþ 02 ± 3.37E − 04

f18 1.55Eþ 03 ± 6.79Eþ 01 1.60Eþ 03 ± 3.25Eþ 01 1.23Eþ 03 ± 8.00Eþ 00

Note: Values have been rounded to three significant digits. HTGA-Hybrid Taguchi Genetic Algorithm (Tsai et al. 2004); SEGA-Sharing Evolution Genetic
Algorithm (Hsieh et al. 2009).

Demand 
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Fig. 5. Network layout
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A · QS;Y ¼ 0

Salinity (mass) balance in the network ∀S∀Y
A · ΔQS;Y · CS;Y ¼ 0

Full dilution in the network nodes ∀S∀Y
B · CS;Y ¼ 0

Bounds ∀S∀Y
ðhminÞS;Ya < hS;Ya < ðhmaxÞS;Ya

ðCminÞS;Y < CS;Y < ðCmaxÞS;Y
ðQminÞS;YSources < QS;Y

Sources < ðQmaxÞS;YSources

ðQminÞS;YPipes < QS;Y
Pipes < ðQmaxÞS;YPipes

ðRRminÞS;Yd ≤ RRS;Y
d ≤ ðRRmaxÞS;Yd

where p, a, d, z, S, Y denote pipe, aquifer, desalination plant, de-
mand zone, season, and year, respectively.

The model parameters are as follows: ωS;Y
p , α, β, γ, δ are cost

parameters; RS;Y
a is recharge (m3); SAa is the storativity multiplied

by area (m2); ðCRÞS;Ya is the salinity of the recharge water
(mgcl=lit); Csea is the sea water salinity (mgcl=lit); A is the graph
matrix of the network; B is the full dilution matrix which indicates
equal salinity for two outgoing pipes which share the same node;
QDemand ¼ ½Qz¼1;Qz¼2� (m3) is the water demand; and ð.Þmin and
ð.Þmax are the lower and upper bounds respectively.

The model variables are as follows: QSources ¼ ½Qa;Qd�;
QPipes ¼ ½Q1; : : : ;Q8� are discharges from sources and in pipes,
respectively; C ¼ ½Ca;Cd;C1; : : : ;C8;Cz¼1;Cz¼2�T is a vector
combinations of salinity in the system sources, pipes, and demand
zones; RRS;Y

d is the removal ratio in the desalination plant; hS;Ya is
the water level in the aquifer; and ΔQ is a diagonal matrix with a
main diagonal Q ¼ ½QSources;QPipes;QDemand�T .

To reduce the model size, one dependent decision variable was
extracted from each equality constraint. Then, the dependent var-
iables were substituted in the objective function and the inequality
constraints. For the model previously defined, extracting all depen-
dent variables leads to the following mathematical model that has
50 decision variables, 120 linear constraints, 80 nonlinear con-
straints, and 50 bounds:

min
X5
Y¼1

X2
S¼1

costðQS;Y
Indep;RR

S;Y
d Þ subject to (6)

Inequality linear constraints ∀S∀Y

K|{z}S;Y
· QS;Y

Indep

ðKQÞS;Y
≤ 0

Inequality nonlinear constraints ∀S∀Y
giðQS;Y

Indep;RR
S;Y
d Þ ≤ 0 ∀i ¼ 1 : : : 8

Bounds ∀S∀Y
ðQminÞS;YIndep < QS;Y

Indep < ðQmaxÞS;YIndep

ðRRminÞS;Yd ≤ RRS;Y
d ≤ ðRRmaxÞS;Yd

where QS;Y
Indep ¼ ½QS;Y

3 ;QS;Y
4 ;QS;Y

6 ;QS;Y
8 �T .

The mathematical model in Eq. (6) was solved using SMBO
for which all inequality constraints except for the bounds were
added to the objective as penalty terms with penalty factor P. After

introducing the penalty terms, the model is a box constrained opti-
mization problem:

min
X5
Y¼1

X2
S¼1

�
costðQS;Y

Indep;RR
S;Y
d Þ þ P ·

X12
j¼1

maxð0; ðKQÞS;Yj Þ

þ P ·
X8
i¼1

maxð0; gS;Yi Þ
�

Subject to∀S∀Y

ðQminÞS;YIndep < QS;Y
Indep < ðQmaxÞS;YIndep

ðRRminÞS;Yd ≤ RRS;Y
d ≤ ðRRmaxÞS;Yd (7)

Problem (7) with penalty factor P ¼ 1E6 (very high value
compared with the values in the cost function) was solved using
SMBO and the commercial GA solver of MATLAB. In both algo-
rithms, the evaluations for each generation and the total generations
were set to 200 and 1,000, respectively. Both solvers were run with-
out special tuning and the parameters of SMBO are the same as
those for the CEC-05 (Table 1), whereas for the MATLAB GA
the default options for creation, selection, crossover, and mutation
were used.

The solvers were run 10 times each, and Fig. 6 reports the
best-run results. SMBO obtained a feasible solution (value below
400 M$) at generation 58 whereas the GA obtained it only at gen-
eration 183. The final solution obtained by SMBO (64.51 M$) is
also better than that obtained by the GA (65.55 M$). The best-
known solution for problem (the original constrained problem)
is 64.12 M$. This solution was obtained by the interior point algo-
rithm of the FMINCON solver within the commercial MATLAB
optimization toolbox.

Conclusions

A new method for box constrained global optimization, SMBO,
was presented. The algorithm searches for the global minimum
with a competitive performance compared with other methods.
The algorithm was tested on two benchmark problem sets. The
number of evaluations needed to obtain the global minimum in
De Jong’s test suite was the smallest in four functions. Moreover,
SMBO achieved a closer solution to the global minimum in most of
the CEC’05 test suite problems.

Fig. 6. Progress of SMBO and GA solutions
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In reference to the WSS management model, SMBO obtained
better results than the commercial GA solver of MATLAB and
achieved close results to the best-known solution obtained by
the gradient optimization solver within the commercial optimiza-
tion toolbox of MATLAB.

These results demonstrate the promising potential of the
method, especially for expensive functions in which each evolution
is time consuming.

In the second test, the control parameters of the algorithm were
given the same values for all tasks without any tuning. Further re-
search is needed to improve the algorithm’s performance through
its parameter selection, for example. In the first test suite, further
analysis shows that 400 evaluations at each generation, which is
specified in the comparison, was too large for SMBO to attain
the best performance in the test suite problems. This analysis shows
that SMBO obtained even better results when low values of E were
selected in the five test functions.

Further research to modify SMBO may be conducted in three
areas. First, further research may use discrete PDFs to accommo-
date discrete variables. Note that because the method is capable of
dealing with discontinuous functions, e.g., function F3 in De Jong’s
test suite, then integer variables may be solved using discontinuous
operators such as floor, ceil, and round. Second, research may
evaluate the inherent integration of a multiobjective evaluation
scheme within an SMBO’s algorithm. Third, future research may
combine an SMBO with local search algorithms to compose a hy-
brid global optimization method.

Appendix. Test Problems

This appendix presents all of the test problems used in both com-
parisons. Tables 4 and 5 present the functions of the first and the
second test, respectively.

Table 4. De Jong’s Test Suite (De Jong 1975)

Function name Interval Function Global Min

F1 (sphere) x ∈ ½−5.12; 5.12�3
fðxÞ ¼

X3
i¼1

x2i
fmin ¼ 0

F2 (rosenbrock) x ∈ ½−2.048; 2.048�2 fðxÞ ¼ 100 · ðx21 − x2Þ2 þ ð1 − x1Þ2 fmin ¼ 0

F3 (step) x ∈ ½−5.12; 5.12�3 fðxÞ ¼
X5
i¼1

bxic fmin ¼ −30
F4 (stochastic) x ∈ ½−1.28; 1.28�30 fðxÞ ¼

X30
i¼1

i · x4i þ Gaussð0; 1Þ fmin ¼ 0

F5 (foxholes) x ∈ ½−65.536; 65.536�2 fðxÞ ¼
�
0.002þP25

j¼1
1

jþ
P

2

i¼1
ðxi−aijÞ6

�−1
fmin ¼ 0.998

Table 5. CEC’05 Test Suite (30D Problems) (Suganthan et al. 2005)

Function name Interval Function fbias
a

Uni-modal functions

f1-sphere x ∈ ½−100; 100�
fðxÞ ¼

X30
i¼1

z2i þ fbias;z ¼ x − oa −450

f2-schwefel 1.2 x ∈ ½−100; 100�
fðxÞ ¼

X30
i¼1

�Xi
j¼1

�2

þ fbias;z ¼ x − o
−450

f3-rotated high
conditioned
elliptic

x ∈ ½−100; 100�
fðxÞ ¼

X30
i¼1

ð106Þi−129 · z2i þ fbias;z ¼ ðx − oÞ · M M − OrthogonalMatrix
−450

f4-schwefel 1.2
with noise

x ∈ ½−100; 100�
fðxÞ ¼

�X30
i¼1

�Xi
j¼1

zj

�
2
�
ð1þ 0.4jNð0; 1ÞjÞ þ fbias z ¼ x − o

−450

Multimodal functions

f5-rosenbrock x ∈ ½−100; 100�
fðxÞ ¼

X29
i¼1

ð100 · ðz2i − ziþ1Þ2 þ ðzi − 1Þ2Þ þ fbias z ¼ x − oþ 1
390

f6-rotated griewank
fðxÞ ¼

X30
i¼1

z2i
4000

−Y30
i¼1

cos

�
ziffiffi
i

p
�
þ 1þ fbias z ¼ ðx − oÞ · M

M − Linear TransformationMatrix;ConditionNumber ¼ 3

−180
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Table 5. (Continued)

Function name Interval Function fbias
a

f7-rotated ackley
with optimum
on bounds

x ∈ ½−32; 32�
fðxÞ ¼ −20 exp

 
−0.2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
30

X30
i¼1

z2i

s !
− exp

�
1
30

X30
i¼1

cosð2πziÞ
�
þ 20þ eþ fbias

z ¼ ðx − oÞċM M-Linear TransformationMatrix;ConditionNumber ¼ 100

−140

f8-rastrigin x ∈ ½−5; 5�
fðxÞ ¼

X30
i¼1

z2i ċðz2i − 10 cosð2πziÞ þ 10Þ þ fbias z ¼ z − o
−330

f9-rotated rastrigin x ∈ ½−5; 5�
fðxÞ ¼

X30
i¼1

z2i ċðz2i − 10 cosð2πziÞ þ 10Þ þ fbias z ¼ ðx − oÞċM

M − Linear TransformationMatrix;ConditionNumber ¼ 2

−330

f10-rotated
weierstrass

x ∈ ½−0.5; 0.5�
fðxÞ ¼

X30
i¼1

�Xkmax

k¼0

½ak cosð2πbkðzi þ 0.5ÞÞ�
�
− 30

Xkmax

k¼0

½ak cosð2πbkċ0.5Þ� þ fbias

z ¼ ðx − oÞ · M; a ¼ 0.5; b ¼ 0.3; kmax ¼ 20

M − Linear TransformationMatrix;ConditionNumber ¼ 5

90

f11-schwefel 2.13 x ∈ ½−100; 100�
fðxÞ ¼

X30
i¼1

ðAi − BiðxÞ2Þ
2

þ fbias Ai ¼
X30
j¼1

ðaij sinðαjÞ þ bij cosðαjÞÞ

BiðxÞ ¼
X30
j¼1

ðaij sinðxjÞ þ bij cosðxjÞÞ A; B are two 30 × 30 matrices:

aij; bij integer random numbers in the range ½-100; 100�
αj are random numbers in the range ½-π; π�

−460

Expanded functions

f12-griewank +
rosenbrock

x ∈ ½−3; 1� faðxÞ ¼
x2

4000
− cosðxÞ þ 1 fbðx1; x2Þ ¼ 100 · ðx21 − x2Þ2 þ ð1 − x1Þ2

fðxÞ ¼ faðfbðz1; z2ÞÞ þ faðfbðz2; z3ÞÞþ · · · þfaðfbðz29;z30ÞÞ
þ faðfbðz30; z1ÞÞ þ fbias z ¼ x − oþ 1

−130

f13-rotated expanded
scaffer

x ∈ ½−100; 100� faðx1; x2Þ ¼ 0.5þ sin2ð ffiffiffiffiffiffiffiffiffi
x2
1
þx2

2

p Þ−0.5
ð1þ0.001ðx2

1
þx2

2
ÞÞ2

fðxÞ ¼ faðz1; z2Þ þ faðz2; z3Þ þ ...þ faðz29; z30Þ
þ faðz30; z1Þ þ fbias ; z ¼ ðx − oÞ · M

M-Linear TransformationMatrix;ConditionNumber ¼ 3

−300

Hybrid composition functionsb

f14-rotated hybrid
composition 1 with noise

x ∈ ½−5; 5� fðxÞ ¼ f1ðxÞċð1þ 0.2jGaussð0; 1ÞjÞ þ fbiasf1ðxÞ is composed using ten functions: two weierstrass,
two rastrigin, two ackley, two griewankand, and two sphere functions.b

120

f15-rotated hybrid
composition 3

x ∈ ½−5; 5� fðxÞ is composed using ten functions: two rotated expanded scaffer, two (griewank + rosenbrock),
two Weierstrass, two rastrigin, and two griewank functions.b

360

f16-rotated hybrid
composition 3 with high
condition number matrix

x ∈ ½−5; 5� The previous function with high condition number matrices in the composition process. 360

f17-rotated hybrid
composition 4

x ∈ ½−5; 5� fðxÞ is composed using ten functions: rotated expanded scaffer, noncontinuous expanded scaffer,
Weierstrass, (griewank+ rosenbrock), ackley, rastrigin, noncontinuous rastrigin, and griewank,
high conditioned elliptic and sphere function with noise.b

260

f18-rotated hybrid
composition 4

Same as the previous function. 260

aAll of the following problems are in 3D and shifted to fmin ¼ fbias;o−, is the shifted global optimum.
bFor more information on composition functions, see Suganthan et al. (2005, pp. 18–38) (http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC-05/
CEC05.htm).
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Notation

The following symbols are used in this paper:
A = graph matrix of the network;
B = half triangles bases (SMBO); full dilution matrix

(WSS model);
Bmin = minimum half triangles bases;

C = triangles center points;
ðCRÞS;Ya = salinity of the recharge water (mgcl=lit);

Csea = sea water salinity (mgcl=lit);
fðxÞ = objective function;

fbest, xbest = best objective value and best solution in the last
iteration, respectively;

fmin, xmin = best objective value and best solution,
respectively;

G = manipulation function;
hS;Ya = water level in the aquifer;

LB, UB = lower bound and upper bound,
respectively;

P = population;
QDemand = water demand (m3);

QSources, QPipes = discharges from sources and in pipes,
respectively;

RS;Y
a = recharge (m3);

RRS;Y
d = removal ratio in the desalination

plant;
Refining = last iterations (%), without base

reduction;
S, Y = season and year, respectively;
SAa = storativity multiplied by area (m2);
TG = total generations;

Warming = first iterations (%), without base reduction;
x = decision variables;
α = linear reduction factor;
Δ = triangular function;
Δ̂ = triangular probability density function; and

ωS;Y
p , α, β, γ, δ = parameters for the cost function.
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