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Abstract 

In this study a regional Water Supply System (WSS), fed from natural sources which depend 

on uncertain recharge, and from desalination plants with fixed capacity, is to be operated over 

years. The water is transported through a network to meet consumers' demands. The 

requirement is to decide dynamically on the optimal operating policy, based on the revealed 

uncertainty up to the decision point, for minimizing the total operation cost of the system 

while fulfilling operational constraints at multiple time decision points. The Robust 

Counterpart (RC) methodology [Ben-Tal et al., 2009] is adopted, which uses a min-max 

approach assuming that the uncertain parameters reside within a user-defined uncertainty set. 

The dynamic version of RC is called Adjustable Robust Counterpart (ARC). One of its 

special tractable versions is the Affine Adjustable Robust Counterpart (AARC) in which the 

dependence of future decision variables on revealed uncertain data is restricted to be linear. 

The AARC solution provides a non-probabilistic analysis for multiyear management of WSS 

under uncertain conditions. 

 

1.   Introduction 

Decision making under uncertainty is a key challenge in water resources management. 

Deterministic models can yield solutions which may become heavily infeasible as a result of 

data perturbations [Watkins and McKinney, 1997].  

One of the most adapted approaches for optimization under uncertainty is stochastic 

programming, in which the uncertain data are assumed to have a known probability density 

function (PDF). A variety of stochastic methods have been applied to water resources  
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management, including stochastic dynamic programming [Yeh, 1985; Faber and Stedinger, 

2001], implicit stochastic optimization [Lund and Ferreira, 1996; Labadie, 2004], scenarios-

based optimization [Pallottino et al., 2005;Kracman et al., 2006], and chance constraint 

methods [Lansey et al., 1989; Sankarasubramanian et al., 2009]. 

However, despite its intuitive formulation, stochastic programming faces three significant 

drawbacks. Firstly, stochastic programs, requires a perfectly known PDF in each of the 

uncertain data while such information is rarely available in practice. Secondly, given PDFs 

the mathematical stochastic formulation, especially multistage formulation, is extremely 

difficult to solve since it requires optimization over a space of functions. Thus, in all the 

applications above the scenario based stochastic programming was applied. In scenario based 

programs a finite set of scenarios is considered as an approximation of the PDFs this process 

exempts the optimization over a space of functions. However, working with scenario would 

increase the size of the optimization problem significantly. Furthermore, building a 

representative scenario sets out of the PDFs is not a trivial task. 

Thirdly, in the classical stochastic programming, the models are aimed at optimize the 

expected value of the objective function and do not allow to evaluate the trade-offs between 

the risks of infeasibility and the losses in optimality.  

Watkins and McKinney [1997] show that the scenario-based  Robust Optimization (RO) 

methodology proposed in Mulvey et al. [1995] as applied to urban water transfer planning and 

ground-water quality management allows for finding solutions hedging against inherent 

parameter uncertainty. Nevertheless, this approach shares some of the disadvantages with 

stochastic programming (For distinction in the scenario based RO and the RO considered in 

this stud the reader is referred to Housh et al. [2011]). 

To cope with some of the challenges faced by stochastic programming, over a decade ago a 

new paradigm for optimization under uncertainty, the Robust Counterpart (RC) approach, was 

proposed [Ben-Tal and Nemirovski 1998, 1999, 2000a] and used in a number of applications 

which includes portfolio models [Ben-Tal et al., 2000b; Lobo and Boyd, 2000], inventory 

theory [Bertsimas and Thiele, 2006; Bienstock and Ozbay, 2008], process scheduling [Li and 

Ierapetritou, 2008], and network models [Mudchanatongsuk et al., 2005]. This methodology 

seems to be attractive for water management problems as well [Housh et al., 2011]. 

The RC is distribution free min-max oriented approach which solves the uncertain 

optimization problem by assuming that the uncertain parameters can only reside within a 

known uncertainty set.  

Housh et al. [2011] applied “static” version of the RC approach for water recourses system 

management. In the “static” RC the decisions for all future stages are determined at the 

beginning of the time horizon, “here and now”, before the uncertain data are revealed. To 
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capture the dynamic nature of the problem Housh et al. [2011] adapted the ‘‘folding RC’’ 

approach (FRC) [Ben-Tal et al., 2000b].   

In this study we consider the “dynamic” version of the RC, the Affine Adjustable RC 

(AARC), for WSS management. This work could be seen as a natural continuation of the 

study in Housh et al. [2011]. We will rely on the theoretical and methodological description 

of the RC which previously presented there.  

The rest of the paper is organized as follows. Section 2 presents the motivation for the AARC 

method along with the basics of the AARC methodology. Section 3 presents mathematical 

formulation of the WSS model. Section 4 describes the application of the AARC to the WSS 

model. Section 5 presents applications of the AARC. 

 

2.   The Adjustable Robust Counterpart (ARC) 

2.1.   Motivation 

The RC approach was originally designed for problems where all decision variables are “here 

and now” and should be determined at the beginning of the horizon, before the uncertain data 

is revealed [Ben-Tal and Nemirovski 1998].  

Many real-world problems can be more accurately modeled using multistage decision 

environment. In such decision environment decisions which should be implemented after the 

first stage, 1t > , may depend on the reveled uncertain data up to stage t . 

The only way to apply the original RC approach (which is “static” in nature) for a multistage 

decision making problem, is to use it within a folding horizon framework. 

In the folding horizon framework instead of solving the problem once at the beginning of the 

entire planning horizon and adapt the resulted decision for the entire horizon, the problem is 

sequentially re-solved over the stages. At time “now” the RC solution for all stages is 

computed, and the first stage decision is implemented. At the beginning of the next stage, we 

solve a new problem with reveled uncertain data from the previous stages and reduced time 

horizon. This is repeated over all of the stages. Following [Ben-Tal et al., 2000b] the RC 

within the folding framework, namely, “folding RC” approach (FRC) was applied in Housh et 

al. [2011]. 

In that study the FRC approach with other multistage decision making approaches and shows 

that the results are of the FRC are very competitive with those obtained by stochastic and 

deterministic methods.  

Despite the promising results obtained the preference of the FRC over inherently dynamic 

methods was not apparent. The FRC solution was a quite conservative, as it inherently 

“static” and does not explicitly takes into the computation the fact that decision at the next 

stages will be determined with additional information about the uncertainty. 
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In this study we implement the dynamic version of the RC, namely, the Affine Adjustable RC 

(AARC). Ben-Tal et al. [2004] presented the AARC to cope with the need for non-

probabilistic multistage decision making under uncertainty. The AARC extends the RC 

approach for a problems in which part of the variables must be determined before the 

uncertain data is revealed (“nonadjustable variables” as called in the robust optimization 

terminology or “here and now decisions” as called in the stochastic programming 

terminology), while the other part is for variables that can be chosen after the some of the data 

is reveled (“adjustable variables” or “wait and see decisions”).  

 
2.2.   Methodology 

To extend the robust optimization methodology to dynamic settings, Ben-Tal et al. [2004] 

proposed the AARC, in which –just like- the RC, the uncertainties are assumed to vary within 

a predefined uncertainty set. While the RC corresponds to the case when all the variables 

represent decisions that must be made before the actual realization of the uncertain data is 

reveled. The AARC recognizes the dynamic decision environment by allowing some 

decisions to be adjustable (“recourse variables” or “wait and see” variables) which can be 

made after the realization of the uncertainties and be adjusted to its actual realization.  

To simplify the mathematical presentation, in this section the methodology is presented for 

two-stage problem. The approach can be straightforwardly extended to multistage uncertain 

linear program. Consider the following two-stage uncertain linear program: 

{ }
,

min :T

x y
c x Ax By b+ ≤         (1) 

where 1n x1Rc ∈  , 1mxnRA∈ , mx1Rb ∈ are uncertain data; 2mxnRB ∈   is known data (without 

uncertainty); 1n x1Rx ∈ represents “here and now” decisions; 2n x1Ry ∈  represents “wait and see” 

or “recourse decisions”. 

Following the terminology of the two-stage stochastic programming the matrix B is called 

recourse matrix. When B  is not uncertain such as the case above, we call the corresponding 

uncertain LP a fixed recourse one. Hence, in this paper we only focus on a fixed recourse 

multistage uncertain problem. 

Note that in the above formulation we assume without any loss of generality that the objective 

is a function of the first stage decisions x . If the objective depends also on y we can use 

auxiliary variable to formulate the objective as a constraint, however, to keep the problem 

fixed recourse the coefficients of y  in the objective must not be uncertain. 

The AARC explicitly parameterizes the recourse decisions as affine functions of the revealed 

uncertainty. Hence, the AARC restricts the adjustable/recourse variables to be affine 

functions of the corresponding revealed data where in the original problem the function itself 
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is unknown. For the two-stage above the second stage variable, ( ), ,y c A b , is parameterized as 

follows: 
1

0 1 2
1

n

i i
i

y z Z c Z A
=

= + +∑         (2) 

where iA corresponds to thi column of A . After substituting (2) in (1), the problem becomes: 

1

0 1 2
0 1 2, , , 1

min :
i i

n
T

i ix z Z Z i
c x Ax Bz BZ c BZ A b

∀ =

⎧ ⎫
+ + + ≤⎨ ⎬

⎩ ⎭
∑      (3) 

The resulting optimization problem (3) is a single stage uncertain linear program in which all 

the decision variables are determined at the first stage before any uncertain data is reveled. 

Thus, the problem could be solved with the “static” RC where the decision variables are the 

elements of the vectors 1n x1Rx ∈ , 2n x1
0 Rz ∈ and the elements of the matrices 2 1n xn

1 RZ ∈ , 

2n xm
2 1R 1..iZ i n∈ ∀ = . 

To apply the RC for (3) let us consider the reformulation: 

{ }min : 0
x f

T
f f f fc x A x ≤         (4) 

Problem (3) can be reformulated as (4), where all the decision variables are in the vector 

fx and where only part of fA are uncertain. We assume without any loss of generality that (3) 

can be reformulated as (4), for more detailed see Section 2 in Housh et al. [2011]. 

According to the RC methodology [Ben-Tal and Nemirovski, 1998, 2000a], the RC of 

uncertain problem  (4) is: 

{ }min : 0
x f

T
f f f f fc x A x A U≤ ∀ ∈        (5) 

where U is a user-defined uncertainty set. To address over-conservativeness, the RC method 

introduces ellipsoidal uncertainty sets to reflect the fact that the coefficients of the constraints 

are not expected to be simultaneously at their worst values.  

The deterministic equivalent of problem (5) when U ellipsoidal uncertainty set of the form 

ˆ{ : , }i fi fiU a a ς ς θ= + Δ ≤ i∀ , is given as: 

min

Subject to

ˆ 0

x f

T
f f

T
fi f f

c x

a x x iθ+ Δ ≤ ∀

        (6) 

where T
fia is the thi row in the matrix fA ; ˆ fia  is the nominal value of the fia ; Δ  is the mapping 

matrix and θ  is a subjective the parameter chosen by the decision-maker to reflect his attitude 

toward risk. 

For short introductory on the RC method and the transition from (5) to (6) the reader is 

referred to Section 2 in Housh et al. [2011] and the references therein for specific 

details/proofs. 
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Optimization problem (6) is Second Order Conic Program which is a convex tractable 

optimization problem that can be solved by polynomial time interior point algorithms. 

 

3.   Management model of a Water Supply System (WSS) 

We consider the same WSS management model from Housh et al. [2011] where water is 

taken from sources, which include aquifers, reservoirs and desalination plants, conveyed 

through a distribution system to consumers who require certain quantities of water. 

The time horizon covers several years, with an annual time step. The operation is subject to 

constraints on water levels in the aquifers, annual carrying capacities of the conveyance pipes 

and production capacities of the desalination plants. The objective is to operate the system 

with minimum total cost of desalination and conveyance, plus a penalty/reward related to the 

final state of the aquifers at the end of the planning horizon. This model could be classified as 

a medium aggregation model such as the developed by a model of medium aggregation 

[Draper et al., 2003; Jenkins et al., 2004; Watkins et al., 2004; Zaide, 2006].  

Despite that the mathematical model was fully presented by the authors in previous paper in 

what follows a concise formulation is presented since it is crucial step for applying the new 

methodology. For more details and for the reasoning of the model formulation the reader is 

referred to Housh et al. [2011]. 

, , , , ,
1 1

Desalination Conveyance Penalty/Reward

ˆ[ ] [( ) ] min
f f

f

T a

d t d t l t l t a a T a
t d l a

des Q C Q h h E
= =

⋅ + ⋅ + − ⋅ →∑ ∑ ∑ ∑
1442443 14243 144424443

    (7) 

Subject to 

, ,0 , ,
1 1

/
t t

a t a a i a i a
i i

h h R Q SA a t
= =

⎛ ⎞= + − ∀ ∀⎜ ⎟
⎝ ⎠
∑ ∑     (8)

t t tG Q S t⋅ ≥ ∀      (9)  

min max max
, , , , ,

max min max
, , , , ,

; 0

0 ;
a t a t a t l t l t

a t a t d t d t d t

h h h Q Q

Q Q Q Q Q a d l t

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤ ∀ ∀ ∀ ∀
    (10) 

where a , d , l and t  denote aquifer, desalination, link and year, respectively. Water quantities 

are in ( MCM/year ), elevations in ( m ), and costs in ( M$/MCM ). 

,d tdes  is the cost of desalinated water, ,d tQ  is the annual quantity of water desalinated, ,l tC  is 

the unit cost of transportation and ,l tQ  the annual transport in the link, ,a th  is the water level in 

the aquifer at the end of year t, âh  the desired final water level, and aE  is the penalty per 

meter of deviation from this level ( M$/m ), ,a tQ is the extraction amount from the aquifer, 

,a tR is the aquifer recharge; aSA  ( MCM/m ) is the storativity multiplied by area, tG is the graph 
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matrix of the network, , , ,[ , , ]T
t a t d t l tQ Q Q Q∀ ∀ ∀= , ,[0, ]T

t demand tS Q= ,  ,demand tQ  is the vector denotes 

water demands, ( )min  is minimum allowed value; ( )max is maximum allowed value. 

 

4.   Applying the AARC 

4.1.   Modeling uncertainty 

In this study we only focus on the uncertainty in the recharge vector  , 1 ,[ , , ]
f

T
a t a t TR R R∀ = ∀ == L to 

demonstrate the methodology. Though, the authors recognize there is often significant 

uncertainty in other variables, such as demands uncertainty.  The application of the AARC 

can be straightforwardly extended to deal with such uncertainty.  

Housh et al., [2011] showed the advantage of choosing ellipsoidal uncertainty set in the RC 

methodology. In section 2.2 Housh et al. [2011] proved that if we choose ellipsoidal 

uncertainty set ˆ{ : , }U R R ς ς θ= + Δ ≤  with the center taking as the expected value of the 

uncertain recharge R̂  and the mapping matrix Δ as the Cholesky decomposition of the 

covariance matrix ∑ , then it is the same as saying that we are immunized against  θ standard 

deviations of the constraint. Hence, simple probabilistic arguments such as first and second 

moments of the uncertain recharge can be utilized to construct the ellipsoidal uncertainty set. 

In this application we consider the annual recharge values are independent random variables, 

where the spatial recharge vector of the aquifers , '' a tR R∀= in each year 't  is correlated with 

covariance matrix 'R
Σ and expectation vector 'R

μ , Hence, the expectation vector of the overall 

recharge is ' '
ˆ [ ,..., ]T

R R
R μ μ= and covariance matrix Σ is a diagonal block matrix with 'R

Σ in the 

main diagonal. 

 

4.2.   Formulation of the AARC 

To apply the AARC it is necessary to eliminate the uncertain equality constraints(8), thus 

coming to the inequality constrained problem. Additionally, it is convenient to work on the 

vectorized version of the model: 

0
max

,0 , , ,

min
,0 , , ,

min max

min
Subjecte to

0

0

0

T T

T T
a a t a t a t

T T
a a t a t a t

K

Coff Q R v P K

h R Q h a t

h R Q h a t
G Q S
Q Q Q

δ γ

δ γ

→

− + − ≤

+ − − ≤ ∀ ∀

− − + + ≤ ∀ ∀
⋅ ≥

≤ ≤

     (11) 

where 0 ,0
ˆ( )a a a

a
P h h E= −∑  is a certain constant, [ ]T

tQ Q∀= , 

, , ,[ , , ]T
t a t d t l tQ Q Q Q∀ ∀ ∀= , [ ]T

tCoff Coff∀= , ( )1
, ,[ , , ]T

t d t l ta
Coff E SA des C−

∀ ∀∀
= ⋅ , 
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, 1 ,[ , , ]
f

T
a t a t TR R R∀ = ∀ == L , ( ) ( )1 1[ , , ] T

a a
v E SA E SA− −

∀ ∀
= ⋅ ⋅L , G is diagonal block matrix with the 

matrices tG∀ in the main diagonal, [ ]T
tS S∀= , ,a tδ  and ,a tγ has 0 and 1

aSA−  values according to 

a and t in order to extract the elements corresponding to the constraints from the elements of 

R and Q , respectively. Thus, the dimension of  ,a tδ equal to the dimension of R while the 

dimension of ,a tγ  is equal to the dimension of Q . 

In our model the decision vector at each stage is , , ,[ , , ]T
t a t d t l tQ Q Q Q∀ ∀ ∀=  . Hence,  1Q  is “here 

and now” decision and 2.. ft TQ = are “wait and see” decisions. The “wait and see” decisions of 

stage t are function of all the realized data up to stage t :  

( ) 2..t t fQ f V R t T= ⋅ ∀ =        (12) 

where tV is given diagonal matrix, includes 0, 1 values in the main diagonal according to t , 

i.e. tV  will have the value 1 in the main diagonal corresponding to the elements of R at times 

1...( 1)t t∀ = −  of all the reveled uncertainty contributed to the decision at time t . If only part 

of the reveled uncertainty contributes (e.g. only revealed data within 2 time gaps) then the 

elements of tV are adjusted accordingly. In this study we will consider that all the revealed 

uncertain data up to stage t contributes to the decision of stage t . 

If we restrict the former dependency in (12) to affine functions (linear function) as the AARC 

methodology implies we obtain: 

 ( ) 2..t t t t t fQ f V R q M V R t T= ⋅ = + ⋅ ⋅ ∀ =      (13) 

Thus at each stage t the decision variables are the elements of the vector tq and the non-zero 

elements in the matrix t tM V⋅ . Hence, the overall flow vector Q  in (11) is defined as: 

Q q MV R= + ⋅           (14) 

where [ ]T T
tq q∀=  and [( ) ]T T

tMV M V ∀= ⋅ . Substituting (14) in (11) and applying the RC as 

described in section 2.2 results in: 

( )
( )

( )

0

max
,0 , , , , , ,

min
,0 , , , , , ,

min
Subjecte to

ˆ ˆ 0

ˆ ˆ 0

ˆ ˆ 0

ˆ

T T T T T

T T T T T
a a t a t a t a t a t a t

T T T T T
a a t a t a t a t a t a t

T T
i i

K

Coff q Coff MV R R v Coff MV v P K

h R q MV R MV h a t

h R q MV R MV h a t

e G q e G MV R

θ

δ γ γ θ δ γ

δ γ γ θ γ δ

θ

→

+ ⋅ − + − Δ + − ≤

+ − − ⋅ + − Δ − ≤ ∀ ∀

− − + + ⋅ + − Δ + ≤ ∀ ∀

− ⋅ ⋅ − ⋅ ⋅ ⋅ + ( )
( )

( )
max

min

0

ˆ 0

ˆ 0

T T
i i

T T T T
j j j j

T T T T
j j j j

e G MV e S i

k q k MV R k MV k Q j

k q k MV R k MV k Q j

θ

θ

⋅ ⋅ ⋅ Δ + ⋅ ≤ ∀

⋅ + ⋅ ⋅ + ⋅ ⋅ Δ − ⋅ ≤ ∀

− ⋅ − ⋅ ⋅ + ⋅ ⋅ Δ + ⋅ ≤ ∀

(15) 

where ie and jk are unit vectors having the value 1 at the thi and the thj elements respectively. 
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Optimization problem (15) is Second Order Conic Program where the decision variables are 

the elements of the vector q and the non-zero elements in the matrix MV . 

 

5.   Demonstrated example 

In this section we consider a simplified example of the WSS model presented in Section 3, the 

model does not include the module of the conveyance system this to limit the number of 

decision variables and facilitate the presentation and the discussion of the whole solution 

components. We would like to stress that this was done only for this presentation purposes, 

the application of the methodology for large scale problem is straightforward. 

In this example we consider the problem of optimal allocation in WSS (Figure 1) fed from 

two aquifers and a desalination plant with cost of 1 M$/MCM , where the aquifers' recharges 

are uncertain. The demand is 80 MCM for each year, the initial water level is zero, âh  the 

desired final water level is 30 ( )m , aSA  the storativity multiplied by area is 0.8 ( MCM/m ) and 

aE  the deviation penalty from this level is 0.3 ( M$/m ) in both aquifers. 

The objective is to minimize multiyear operation costs to provide a given demand over two 

years. The operation satisfies bounds on the water levels of the aquifers and non-negativity 

constraints on the flows (decision variables) and the water levels (state variables). The 

uncertain recharges in both aquifers are given by the ellipsoidal set: 

11 1

21 2

12 3

22 4

R 40 12 0 0 0
R 40 4 9 0 0

; 2
R 40 0 0 12 0
R 40 0 0 4 9

U

ς
ς

ς
ς
ς

⎧ ⎫⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎪ ⎪⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎪ ⎪⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟= = + ≤⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎪ ⎪⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎩ ⎭

     (16) 

 

 
Figure 1: WSS scheme: demonstrated example  

In the above AARC model, we account for the fact that decisions on the extracted quantities 

in each year (beyond the first) can be delayed to the beginning of that year. For example, the 
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extracted quantities in year two can be adjusted according to the realization of the recharge in 

the first year. Moreover, in AARC the dependence of the adjustable decision variables on past 

realized data is restricted to be linear. Hence, the adjustment is according to a linear decision 

rule (LDR). 

For instance, the extracted quantities in year two is a linear function of one past realization of 

the recharge and an additional free coefficient, having a total of three coefficients (realization 

of two aquifers in the first year and a free coefficient) for each flow variable (flow variables 

are the decision variables in the deterministic formulation).   

In order to explicitly write the AARC model, we substituted the LDRs. Thus, in the AARC 

formulation, the coefficients of the LDR become the actual decision variables.  

To implement the AARC solution we need to find the optimal LDR coefficients and then at 

the beginning of each year we can calculate the quantity by substituting the realized data in 

the LDRs.  

The optimal LDRs obtained from the AARC formulation for the demonstrated example are 

given in Table 1. For example, the results show that the extraction from the second aquifer in 

year 2 is given as the LDR: 2, 2 11 2133.9 0.48 0.52a tQ R R= = = − ⋅ + ⋅ . Thus, one cannot determine the 

amount to be taken from aquifer 2 in year 2 unless the realization of the first year recharge is 

given. The AARC found the optimal linear function for the second aquifer withdrawal in year 

2. Decision in the first year are real values, not functions, since the is no reveled uncertain 

data in this stage, the first stage decision is taken in the face of the unknown without any extra 

information about the uncertainty except that it belongs to the ellipsoidal uncertainty set 

defined in (16). In Table 1 we can see that the first stage decisions are real values and not 

functions since all the coefficients except the free coefficients are zero. 

The decisions in year 2 can only depend on the revealed uncertain data; hence the decisions in 

stage 2 are taken in the face of unknown recharge in stage 2, this explains the zero 

coefficients in the last two columns in Table 1. 

The optimal solution of the AARC guarantees cost below 74.1 M$ for all realization within 

the uncertainty set defined in (16). To show the advantage of learning and adjusting the 

decisions based on revealed uncertainty we compare the solution of the ARCC to the solution 

of the “static” RC. Table 2 shows the optimal decision obtained by the RC method. Since the 

method is “static”, all decisions are real values (not functions of the recharge) as can be seen 

in Table 2. The significant difference between the free coefficients in the AARC solution 

(Table 1) and the optimal values of the RC (Table 2) shows the advantage of adjusting the 

decisions based on gathered information about the uncertainty. A particularly noteworthy 

feature is the difference in the first stage decisions. While both in the AARC and the RC 

approaches the first stage is taken without any knowledge of revealed data, still we have 
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significant difference between the decisions. This indicates that the AARC approach reflects 

the advantage of the adjustment of future decisions for the first stage decisions.  As can be 

seen by comparing Table 1 and Table 2, the solution of the AARC is less conservative by less 

relying on the desalination plant. 

The optimal solution of the RC is given as fixed values for all the horizon, these values are 

the optimal decisions to be taken in the future if we are forced to take the decisions in the first 

stage before any uncertainty is revealed. This formulation could be seen as more constrained 

version of the original problem, namely, by adding the constraint for taking all decision for all 

years in advance. Adding constraints can only worsen the optimal objective, hence we should 

expect inferior results compared to the AARC. 

The optimal solution of the RC guarantees cost below 77.2 M$ as opposed to the AARC 

which guarantees cost below 74.1 M$ for all realization within the uncertainty set. 

To discuss the difference between the decisions in the first stage let us analyze the range of 

possible values for the second aquifer withdrawal. Since the decision is given as LDR 

2, 2 11 2133.9 0.48 0.52a tQ R R= = = − ⋅ + ⋅  and the uncertainly is represented by (16): 

1
2, 2

2

40 12 0
33.9+[ 0.48, 0.52]  ; 2

40 4 9a tQ
ς

ς
ς= =

⎛ ⎞⎡ ⎤⎡ ⎤ ⎡ ⎤
= − + ≤⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠
    (17) 

which implies: 

 2, 235.5 47.6a tQ = =≤ ≤         (18) 

The value obtained from the RC approach is 36.42 (MCM) nearly as the lower bound in (18) 

this demonstrate the over conservativeness of the RC solution which decrease the reliance on 

the less expensive source because of uncertainty. 

 

  Coefficients of the LDRs 
 Decision Free 11R  21R  12R  21R  

Y
ea

r 
1 Aquifer 1 12.48 0.00 0.00 0.00 0.00 

Aquifer 2 17.51 0.00 0.00 0.00 0.00 
Desalination 50.01 0.00 0.00 0.00 0.00 

Y
ea

r 
2 Aquifer 1 41.49 0.41 -0.59 0.00 0.00 

Aquifer 2 33.90 -0.48 0.52 0.00 0.00 
Desalination 4.61 0.06 0.06 0.00 0.00 

 

Table 1: Optimal solution of the AARC, demonstrated example 
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 Decision 
Optimal 
Solution

Y
ea

r 
1 Aquifer 1 11.79 

Aquifer 2 15.30 
Desalination 52.91 

Y
ea

r 
2 Aquifer 1 33.57 

Aquifer 2 36.42 
Desalination 10.01 

 

Table 2: Optimal solution of the RC, demonstrated example 

 

5.1. Simulation results 

The guaranteed value of the AARC is lower than the guaranteed value obtained value of the 

RC approach. This indicates that if the worst case realization within the uncertainty set is 

realized the performance of the AARC is better than the performance of the RC. However, we 

it is important to investigate the average performance of both approaches. the average 

performance could be evaluated by simulation. We generate a recharge sample within the 

ellipsoidal uncertainty set then we compare the performance of the approached considering 

the sample as the real life realization of the recharge. The results may differ according to the 

scattering pattern within the uncertainty set. Here, we consider two cases for demonstration 

(a) Uniform distribution and (b) Normal distribution. By means of 1000 samples Figure 2 

presents histogram of the cost resulted from the AARC and the RC solutions. 
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Figure 2-a: Performance comparison of the AARC and the RC under normal distribution. 
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Figure 2-b: Performance comparison of the AARC and the RC under uniform distribution. 

 

Figure 2-a shows that the AARC obtained (a) lower best cost value (lower bound), 37.98 

(M$) compared to 39.3 (M$) in the RC solution. (b) lower worst cost value (upper bound) 

73.89 (M$) compared to 76.75 (M$) in the RC. (c) lower average cost value 55.32 (M$) 

compared to 57.31 (M$) in the RC solution. 

One can also notice that the peak frequency obtained in the AARC is with smaller cost than in 

the RC solution. 

The simulation results in the uniform distribution shows the same results as the normal 

distribution as summarized in Table 3. 

 

 Approach Min Average Max 

Normal 
AARC 73.89 37.98 55.32 

RC 76.75 39.28 57.31 

Uniform 
AARC 73.22 37.58 55.30 

RC 76.30 38.79 57.32 
 

Table 3: Performance of the AARC and the RC 

 

6.   Conclusions  

The concepts of the RC and the AARC methods show considerable promise, regarding the 

tractability of the models and the results obtained. The results obtained by Housh et al., 

[2011] demonstrate the advantage of being able to replace the stochastic behavior of the 

uncertainty by specifying a user-defined set within which the resulting policies are 

immunized. In this paper we present paper we formulated the AARC as the dynamic variant 
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of the RC method. The method was applied to a small hypothetical system to show the nature 

of the decision compared to the “static” RC method. The results show the advantage of 

adjusting the decision variables and utilizing the revealed uncertainty. Here we only presented 

a comparison between the AARC and the RC for realization within the designed ellipsoidal 

uncertainty set. However, another evaluation for the performance of the approaches when the 

realizations are outside the uncertainty set is need. The results obtained here encourage us to 

compare the performance of the AARC with other dynamic approach which were consider in 

Housh et al., [2011], such as the dynamic variant of the RC  Folding RC and multistage 

stochastic programming. 
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