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Abstract The Robust Optimization (RO) methodology (Ben-Tal et al., 2009) is 
applied to optimize the operation of a water supply system (WSS) which supplies 
water from aquifers with uncertain recharge and desalination plants through a network 
to consumers. The objective is to minimize the total cost of multiyear operation while 
satisfying operational and physical constraints. The RO methodology optimizes the 
uncertain problem by requesting that the uncertain parameters reside within a user-
defined uncertainty set. The static ("here and now") version of RO is called Robust 
Counterpart (RC), in which the original problem is converted into a deterministic 
equivalent problem. A generic RC model for optimal operation of a WSS is developed 
and demonstrated. The policies obtained by the RO methodology, each requiring a 
different reliability, are compared with other decision making approaches.   
 
INTRODUCTION 
Optimal management of Water Supply Systems (WSS) has been studied extensively 
and resulted in a large number of optimization models and techniques. The parameters 
of early models were assumed perfectly known, leading to deterministic models. The 
results obtained by such models usually perform poorly when implemented in the real 
world, when the problem parameters are revealed and are different from those 
assumed in the deterministic model. A variety of stochastic methodologies have 
subsequently been developed, including stochastic dynamic programming (Yeh, 1985; 
Faber and Stedinger, 2001), implicit stochastic optimization (Lund and Frreira, 1996; 
Labadie, 2004), scenario-based optimization (Pallottino et al., 2005; Kracman et al., 
2006) and chance constraints (Lansey et al., 1989; Sankarasubramanian et al., 2009). 
However, in these methodologies the uncertain data are assumed to have perfectly 
known Probability Density Function (PDF), which is not always the case in reality. 
 This paper considers the Robust Counterpart (RC) approach (Ben-Tal et al., 1998, 
1999, 2000a, 2009), a novel methodology for optimization under uncertainty, in 
which the uncertainty is not described by a PDF. It is viewed as deterministic but 
known to reside within a defined uncertainty set. Hence, instead of immunizing the 
solution in a probabilistic sense, the decision maker searches for a solution that is 
optimal for all possible realizations within defined uncertainty set. The RC approach 
has been applied to variety of optimization problems (see Ben-Tal et al., 2009 for 
details and references therein) such as portfolio models, inventory theory, process 
scheduling and network models. 
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THE ROBUST COUNTERPART (RC) APPROACH 
The RC approach is a min-max oriented methodology (Ben-Tal et al., 1998) that 
seeks robust feasible/optimal "here and now" decisions which are determined at the 
beginning of the time horizon, before the uncertain data are revealed. This version of 
the RC approach is termed "static problem". Robust feasible decisions treat the 
uncertain constraints as hard constraints which have to be satisfied for all the 
realizations within the given uncertainty set, while robust optimal means optimizing 
the guaranteed value (for minimization it is the largest value) of the objective function 
over the uncertainty set. 
 We are also developing, testing and comparing dynamic versions of the RC 
approach, termed "adjustable", "affine adjustable" and "folding horizon" RC (Ben-Tal 
et al., 2000b, 2009). 
To illustrate the method, consider the following LP subject to data uncertainty: 

 
{ }min :T

y
c y Ay b≤ %%%         (1) 

We assume without loss of generality that the data uncertainty only affects the 
elements in the coefficient matrix. If there is uncertainty in the objective or in the 
right hand side, we can rewrite the Linear Programming (LP) problem as: 

 { }min : 0T

x
c x Ax ≤         (2) 

where [ ]; ;1x z y= , 1 0

0

Tc
A

A b

⎛ ⎞−
= ⎜ ⎟⎜ ⎟−⎝ ⎠

%

%%
 and [1;0;...;0]c = . 

The RC of problem (2) is  

 { }min : 0,T

x
c x Ax A U≤ ∀ ∈        (3) 

U is a user-defined uncertainty set. Instead of (3) one can use the following 
formulation (Ben-Tal et al., 1999): 

 { }min : 0, ,T T
i i ix

c x a x i a U≤ ∀ ∀ ∈       (4) 

where T
ia is row i  in matrix A and iU is the projection of U on the space of the data of 

ia . Worst case oriented methodologies can lead to overly conservative solutions such 
as Soyster's (1973) approach which considers interval uncertainties in LP, where 
every uncertain parameter takes is at its worst value in the uncertainty set. To address 
over-conservativeness the RC methodology introduces ellipsoidal uncertainty sets to 
reflect the fact that the coefficients of the constraints are not expected to be 
simultaneously at their worst values. 
The ellipsoidal uncertainty set is defined as affine mapping of a ball of radiusθ :  

 { }ˆ: ,i i iU a a ς ς θ= + Δ ≤        (5) 

where ˆia is the nominal value, Δ is a mapping matrix, and the parameter θ  is a 
subjective value chosen by the decision maker to reflect his attitude towards risk.  
Ben-Tal et al. (1999) show that the RC of this LP is:  
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{ }

( )

ˆa 0 ,

ˆmax a 0

â 0

T
i i i

TT
i

T T
i

x a a

x x

x x

ς θ

ς ς θ

ς

θ

≤

≤ ∀ ∈ + Δ ≤
⇔

⎡ ⎤+ Δ ≤⎣ ⎦
⇔

+ Δ ≤

      (6) 

which is a convex tractable optimization problem that can be solved by polynomial 
time interior point algorithms. When only part of the parameters are uncertain, e.g. 1ia
is a vector of certain parameters and 2ia  a vector of uncertain parameters in row i  of 
the matrix A , the RC is 

 

{ }1 1 2 2 2 2 2 2 2

T
1 1 2 2 2 2

ˆ0 ,

ˆ 0

T T
i i i i

T T
i i

a x a x a a

a x a x x

ς ς θ

θ

+ ≤ ∀ ∈ + Δ ≤
⇔

+ + Δ ≤
     (7) 

where 1x , 2x are the elements of x corresponding to 1 2,i ia a . A special case is when the 
only uncertainty is on the right hand side b% . In this case [ ; ;1]x z y=  from (2) is 
separated into 1 [ ; ]x z y=  and 2 1x = , hence we obtain a linear RC of the form: 

 1 1 2 2ˆ 0T T
i ia x a θ+ + Δ ≤        (8)    

The RC solution immunizes the resulting optimal decision against deviations from the 
nominal value as long as they remain within the set { }Ballθ ς θ= ≤ which is prescribed 
by selection of θ . Points that lie outside this domain are supposed to have very low 
probability, as they represent simultaneous extreme values of all uncertain variables. 
 
RC MANAGEMENT MODEL OF WATER SUPPLY SYSTEMS (WSS) 
WSS management models vary according to the time horizon covered and time steps, 
the level of spatial detail, and the physical laws (e.g., hydraulics) that are included. 
Models range from highly aggregate versions of an entire water system to much more 
detailed models in space and time (Shamir, 1971). Management models of a large-
scale water supply system for seasonal to annual to multi-year operation can be 
captured in a model of medium aggregation (Fisher et al., 2002; Draper et al., 2003, 
2004; Jenkins et al., 2004; Watkins et al., 2004; Zaide, 2006). 
 In the present paper we consider an optimization model with a medium 
aggregation level (Figures 1): water is taken from sources, which include aquifers, 
reservoirs and desalination plants, conveyed through a conveyance system to 
consumers who require certain quantities of water. The time horizon covers several 
years, with an annual time step. The operation is subject to constraints on water levels 
in the aquifers, annual carrying capacities of the conveyance pipes and production 
capacities of the desalination plants. The objective is to operate the system with 
minimum total cost of desalination and conveyance, plus a depletion penalty for 
ending below a prescribed final level in the aquifers, to represent sustainability. The 
annual replenishment series into the aquifers are uncertain, while the desalination 
plants are certain but more expensive than extracted groundwater.  
 
Objective Function 
The objective is to operate the system with minimum total cost over the operation 
horizon fT  years, comprised of desalination and conveyance costs plus a 
penalty/reward related to the final state of the aquifers at the end of the planning 
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horizon. The objective is: 

 
, , , , ,

1

ˆ( ) min
f

f

T

d t d t l t l t a a T a
t d l a

des Q C Q h h E
=

⎡ ⎤ ⎡ ⎤⋅ + ⋅ + − ⋅ →⎢ ⎥ ⎣ ⎦⎣ ⎦
∑ ∑ ∑ ∑    (9) 

Water quantities are in ( MCM/year ), elevations in ( m ), and costs in ( M$/MCM ); a , d , l

and t  denote aquifer, desalination, link and year, respectively, ,d tdes  is the cost of 
desalinated water, ,d tQ  is the annual quantity of water desalinated, ,l tC  is the unit cost 
of transportation and ,l tQ  the annual transport in the link, ,a th  is the water level in the 
aquifer at the end of year t, ˆ

ah  the desired final water level, and aE  is the penalty per 
meter of deviation from this level ( M$/m ).  
 
Network Continuity Constraints 
The distribution system is represented as a directed graph of M  edges (pipes) 
connected at N nodes: 1N  source nodes - desalination plants and aquifers - with one 
outgoing edge from each source node, and 2N  intermediate and demand nodes, where 
two or more edges meet. Pipes in which the direction of flow is not fixed are 
represented by two edges, one in each direction. The topology of the network is 
represented by the junction node connectivity matrix G , where 2N MG R ×∈  has a row for 
each node and a column for each edge. The nonzero elements in each row are 1+  and 

1−  for incoming and outgoing edges respectively. The first columns in G  correspond 
to the links which leave source nodes, while the last rows correspond to the demand 
nodes. For each year t  the following linear equation system insures water 
conservation at the nodes: 

 

, , ,

,

[ , , ]
[0, ]

t t
T

t natural t desalination t links t
T

t demand t

G Q S
Q Q Q Q
S Q

⋅ =
=
=

      (10) 

,natural tQ  is the vector of elements ,a tQ a∀ ; ,desalination tQ  is the vector combining the 
elements ,d tQ d∀ ; ,links tQ  is the vector combining the elements ,l tQ l∀ ; ,demand tQ  is the 
vector combining the elements ,z tQ z∀ where ,z tQ denotes demand in year t in demand 
zone z . The system shown in Figure 1 has 3 source nodes, 4 intermediate nodes and 2 
demand nodes.  
 
Hydrological Constraints in the Aquifers 
The hydrological water balance insures that the change in aquifer storage equals the 
difference between the recharge and withdrawal during the year: 

 
, ,0 , ,

1 1

1 t t

a t a a i a i
i ia

h h R Q
SA = =

⎛ ⎞= + −⎜ ⎟
⎝ ⎠
∑ ∑       (11)  

where ,a t denote aquifer and year; ,a tQ is the extraction amount; ,a tR is the (uncertain) 
recharge; aSA  ( MCM/m ) is the storativity multiplied by area. 
Constraints on water levels in the aquifer reflect both policy and physical/operational 
limits: 

 
min max
, , ,a t a t a th h h≤ ≤         (12) 

where ( )min  is minimum allowed value; ( )max is maximum allowed value. 
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Conveyance Capacity Constraints 
The model deals with water balance and does not include explicitly the hydraulic 
energy equations. Still, in order to maintain feasibility of hydraulic conditions the 
transport in the links is limited by capacity constraints which could be obtained from 
hydraulic data of the pipes/links. The lower bound is set to zero since the flow 
direction in our formulation is fixed. 

 
max

, ,0 l t l tQ Q≤ ≤         (13) 

Capacities of the Natural Sources 
The extracted amount from each natural resource is restricted by an upper bound, 
reflecting various hydrological and hydraulic considerations. The lower bound is set 
to zero as the flow from the source is one-directional. 

 
max

, ,0 a t a tQ Q≤ ≤         (14) 

Desalination Capacity 
The amount of desalinated water from each plant is limited by an upper bound which 
represents plant capacity and by a lower bound that represents a condition usually set 
in the contract with the plant concessioners (which may be zero) 

 
min max

, , ,d t d t d tQ Q Q≤ ≤         (15) 

Construction of the Uncertainty Set 

The resulting mathematical model is LP with uncertainty is in the recharge ,a tR a t∀ ∀  
represented in the uncertain column vector 1.. , 1 1.. ,[ , , ]

f f f

T
a a t a a t TR R R= = = == L . The uncertainty 

set construction relies only on a given estimated average and covariance matrix of the 
recharge vector, without the need for further stochastic information. To construct an 
ellipsoidal uncertainty set for the recharge we assume that the annual recharge values 
are independent random variables, where the annual recharge vector of the aquifers is 

1.. , ''
fa a tR R == in each year 't  is correlated with covariance matrix 'R

Σ and expectation 
vector 'R

μ , indicating positive correlation between the recharge of different aquifers. 
Each row in 'R

Σ and 'R
μ corresponds to an aquifer 1.. fa a= . The annual recharges are 

assumed independent from year to year so the recharge data are repeated for the entire 
horizon. Hence, the expectation vector of the overall recharge is ' '[ , ..., ]T

R R R
μ μ μ= and 

covariance matrix RΣ is a diagonal block matrix: 

 

'

'

0 0
0 0
0 0

R

R

R

⎛ ⎞Σ
⎜ ⎟

Σ = ⎜ ⎟
⎜ ⎟Σ⎝ ⎠

O         (16) 

Consider the linear transformation of the stochastic vector R : 

 
T

R

R R

R

R
ξ

ξ

μ ξ
μ μ μ
= + Δ ⋅
= + Δ ⋅

Σ = Δ ⋅Σ ⋅Δ
        (17) 

If we set 0ξμ = and IξΣ =  , then to maintain the covariance of R  we need to imply 
T

RΣ = Δ ⋅Δ . By replacing the stochastic vector ξ with the perturbation vector ς  that 
varies in the perturbation set { }Ballθ ς θ= ≤ , we obtain the ellipsoidal uncertainty set 

3079World Environmental and Water Resources Congress 2011:
Bearing Knowledge for Sustainability © ASCE 2011 

 World Environmental and Water Resources Congress 2011 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

E
L

Y
A

C
H

A
R

 C
E

N
T

R
A

L
 L

IB
R

A
R

Y
 o

n 
05

/0
4/

13
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



U of the uncertain vector R : 

 { }: ,RU R μ ς ς θ= + Δ ≤        (18) 

For more details which justify replacing ξ  by ς , we refer the reader to Ben-Tal et al. 
(2009). 
 The parameter θ  determines the range of values of the uncertain R against which 
the optimal policy is immunized, i.e. remains feasible. A large value means 
immunization against more extreme values of R. θ  = 0 implies that only the expected 
value of R is taken into consideration, and any deviation of its actual value from the 
expectation could results in constraint violation. The matrix 0.5

RΔ = Σ  can be obtained 
by Cholesky decomposition. Each row in Δ  corresponds to year t  and aquifer a  and 
implies ,a t aσ = Δ , where aσ  is the standard deviation of recharge in aquifer a  which 
remains constant over the years. 
 The RC model is constructed by extracting the state variable ,a th from the 
uncertain equation (11) and creating the robust version of the constraints. The 
resulting RC is LP, since no decision variables appear in the norms, and the 
uncertainty appears only on the RHS.  

 

, 1 1
, , , , 0

1 1 1

' max
,0 , ,

1

' min
,0 , ,

1

min
Subjecte to

0

1 0

1 0

f f f

a

a

T T T
a a t T T

R SA SA d t d t l t l t
t a t d t la

t
R a

a a i a t
ia a a

t
R a

a a i a t
ia a a

K

E Q
D v v D des Q C Q P K

SA
t t

h Q h a t
SA SA SA
t t

h Q h a t
SA SA SA

G Q

μ θ

μ σθ

μ σθ

− −

= = =

=

=

→

⋅
− + Δ + + + − ≤

⋅
+ + − − ≤ ∀ ∀

⋅
− − + + + ≤ ∀ ∀

⋅

∑∑ ∑∑ ∑∑

∑

∑
min max

, , ,
max

, ,
max

, ,

0
0

t t

d t d t d t

a t a t

l t l t

S t
Q Q Q d t

Q Q a t
Q Q a t

= ∀
≤ ≤ ∀ ∀

≤ ≤ ∀ ∀
≤ ≤ ∀ ∀

 (19) 

where 1.. 1..[ , , ]
f f

T
a a a av E E= == L ; 1.. 1..([ , , ])

f fSA a a a aD SA SA= == diag L  
 

APPLICATION 

A small hypothetical water supply system (Figure 1) is used for demonstration. The 
system is fed from two aquifers and a desalination plant to supply two customers over 
a 10 year horizon, for which a minimum total operation cost is sought. The annual 
costs of transportation in the links are {0.1, 0.05} ( M$/MCM ) for odd and even links, 
respectively, and the desalination cost is 1 ( M$/MCM ). The same costs hold for later 
years 2.. ft T=  and are capitalized to the present value with a 5% discount rate. The 
depletion penalty at the final stage is 0.3 ( M$/m ) for being below the prescribed value. 
Both aquifers have identical properties: SA=0.8 ( MCM/m ), 0 75h = ( m ), ˆ 30h = ( m ), 

min 0h = ( m ) and max 500h =  ( m ) (an arbitrary high value, to insure no spill and thus 
simplify the demonstration). All water quantities have the same bounds: 0-100 (
MCM/year ). The annual recharges are i.i.d. with a joint uniform discrete distribution 
{30,40,50} for aquifer 1 and {35,40,60} for aquifer 2, that remains the same for all 10 
years. This joint distribution has mean vector {40, 48.33} ( MCM/year ) and a 
covariance matrix: 
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'

66.67 83.33
83.33 105.56R

V
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

       (20) 

The resulting uncertainty set of the annual recharge is: 

 
 

1

2

40 8.17 0
' : ,

48.33 10.21 1.18
U R

ς
ς θ

ς
⎧ ⎫⎛ ⎞⎛ ⎞ ⎛ ⎞⎪ ⎪= + ≤⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠⎝ ⎠⎩ ⎭

    (21) 

The annual demand in the first year is 80 ( MCM/year ) in each demand zone, and it 
increases by 5% in each subsequent year. The cost of deficit in supply to the 
customers is 3 ( M$/MCM ). 
 

RC solution and Simulation results 
We compare five management policies: three Robust Policies (RP1, RP2 and RP3) 
which are obtained from the RC model with different values of  {1,2,3}θ = , a Nominal 
Policy (NP, θ  = 0) which is essentially a deterministic solution with the average 
recharge, and a Conservative Policy (CP) which is obtained with the worst case 
realization, namely minimum recharge in all years. Each of these policies determines 
"here and now" decisions which are implemented at the beginning of the planning 
horizon before the uncertainty is revealed. 
 Figure 2 compares the annual amount of desalinated water in each of these 
polices. The CP results in constant desalination of 120 ( MCM/year ), which is the full 
capacity of the desalination plant. The NP results in taking as much as possible from 
the aquifers in the first stages while recognizing that the demand is increasing beyond 
the desalination capacity which leads to storing aquifer water to close the gap between 
the demand and the supply capacity at later stages. The conservativeness of the CP 
over all other policies is apparent. The robust polices RP1, RP2 and RP3 require less 
desalinated water than the CP, indicating that these policies are not myopic; in other 
words, they take advantage of the variability of recharge over time. Compared to the 
NP a robust policy takes more desalinated water in the first stages, resulting in higher 
water level in the aquifers, which insures manoeuvrability of the aquifer within its 
operational limits in later years. The degree of conservativeness of the robust policies 
is noticeable: an RP with smaller θ  results in less desalination but lower 
reliability/immunization and higher penalties, where NP (which is RP with 0θ = ) is a 
lower bound. 
 The performance of each policy is examined by simulation, which shows the 
trade-off between the amount of desalination and reliability: lower desalination result 
in lower reliability. The simulation is run 1,000 times with random samples, each with 

20f fa T = recharge values drawn from the discrete distribution of the recharge. The 
results for NP and RP3 are shown in Figures 3 and 4: the final water levels in the two 
aquifers, the total cost and the penalized cost. The feasibility of policies RP1, RP2, 
RP3 and NP is obviously not guaranteed for all possible realizations of the recharge 
sequence, as seen by some excursions of the level to negative values even in RP3, 
which covers the largest uncertainty set. However, as seen in Figure 4 for RP3 these 
are very few; they are fewer as θ  increases. In CP there are obviously no 
infeasibilities, as it considers the worst case, namely the lowest value of the recharge.  
 Since some of the generated samples can result in the reservoirs/aquifers 
becoming empty in some year it is necessary to take this into consideration in two 
respects: (a) continuing the path of the reservoir/aquifer beyond this point, and (b) 
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penalizing the policy for failing to meet the specified operational limits. The two 
aspects are handled as follows: when the reservoir goes dry it is set to empty as the 
initial state for the next year  

 ( )min
, 1 , , , 1 , 1max( , ) /a t a t a t a t a t ah h h R Q SA a t+ + += + − ∀ ∀     (22) 

and a penalty term is added: 

 
min
, ,max( ,0) / a ta t a t t ah h DC SA− ⋅ ∀ ∀     (23) 

where tDC is the deficit cost, which can reflect demand shortage cost or yield loss. This 
is used only in evaluating the optimal solution by simulation and does not appear in 
the optimization models. The Penalized Cost (PenC) which is the operation cost plus 
the sum of penalties over the 10 years for all simulations appears in Figures 3 and 4. 
 The NP results in almost 50% of the samples deviating from the limits in both 
aquifers at the final stage, while in RP3 there are only 4 deviations over all 
simulations. Almost 10% of the samples in the NP exceed the worst cost of RP3. 
Moreover, a very large difference in the cost variability is exposed. 
 Table 1 reports the empirical maximum, minimum, average and standard 
deviation of the total cost and PenC for each policy, along with the reliability defined 
as the fraction of simulations which maintain feasibility in both aquifers in all years. 
The constant value of the cost standard deviation in Table 1 indicates that all policies 
were run on the same sample of the recharge. 
 The cost of the NP ranges between 916-1061 M$ while the cost of RP3 ranges 
between 1021-1166 M$. The NP yields infeasibilities in 51.4% of the samples while 
RP3 has only 0.3% infeasibilities. Accounting for the cost of infeasibility shows clear 
preference of RP3 over NP. RP3 immunizes the NP from a reliability of 48.6% to 
99.7% with only 10.6% increase in the mean cost. RP3 immunizes the NP with price 
of robustness (mean cost increment) of 2.05 M$ for each 1% reliability, while the CP 
immunize it with price of robustness of 3.6 M$ for each 1% reliability. Comparing CP 
with RP3 shows clear preference of RP3 since the CP immunizes RP3 by getting rid 
of the last remaining 0.3% unreliability with an associated cost of 80.5 M$, or 268 M$ 
for each 1% reliability.  
 Selecting the size of the uncertainty set against which the resulting policy is 
immunized (i.e., setting the value ofθ ) is clearly a multi-objective decision, but some 
clear choices can be revealed in this example. Figure 5 shows the trade-off between 
reliability and mean cost, for all policies. The trade-off is characterized by a mild 
slope of the last segment connecting RP3 with CP which indicates that a large 
increment in the mean cost is needed in order to obtain a small increment in 
reliability. The question to be asked is whether it is justified to add this large cost to 
immunize against rare events of the recharge. The CP does not violate any constraint 
over all realizations of the recharge; hence the cost and Penalized Cost are identical.  
In Table 1 the mean PenC of RP3 is 80.34 M$ less than the mean cost of CP; in 
contrast the CP maximum cost is 43.22 M$ less than the maximum PenC of RP3. 
However, further analysis of the cost distribution shows that only one sample in RP3 
would exceed the worst cost of the CP (1246 M$) while 695 samples in RP3 are 
below the best cost of the CP (1101.6 M$). This result shows that implementation of 
the CP would increase the mean cost by 80.34 M$ while the only gain is reduction of 
43.22 M$ in the cost's upper bound, which is rarely realized. Policies RP2 and RP3 
are indeed robust, their standard deviations of the PenC are less by a factor 4.2-6.4 
than the NP standard deviation, indicating that these robust policies lead to stable 
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policies without large variability in the associated costs; this can be viewed as 
preference over other alternatives. 
 

CONCLUSION 
These underlying concepts of the RC methodology results show considerable 
promise, regarding the tractability of the models and the results obtained. They 
demonstrate the advantage of being able to replace the stochastic nature of the 
uncertainty by specifying a user-defined set within which the results are immunized. 
The results demonstrate the trade-off between reliability and cost. 
 We have also applied the methodology and its dynamic variant Folding RC to the 
small WSS as a test-bed, and to a central part of the Israeli National Water System, 
which has 3 aquifers, 3 desalination plants, 9 consumer zones, and 14 network nodes. 
The results are very competitive with those obtained by stochastic and deterministic 
(CP and NP) methods.  We continue to develop and test a variety of RO-based 
methodologies. The additional methodologies include (Ben-Tal et al., 2009): 
Adjustable Robust Counterpart (ARC), Affine Adjustable Robust Counterpart 
(AARC).   
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Fig. 1 Water Supply System 
 

Fig. 2 Annual desalination amounts for the 5 Policies

 
Fig. 3 Simulation results for NP 

 
Fig. 4 Simulation results for RP3 
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Fig. 5 Trade-off between mean cost and reliability

 
Table 1 Simulation results 
 

Policy 
Cost (M$) PenC (M$) Reliability 

% min max mean  std min max mean  std 
NP 916.60 1060.98 984.54 21.27 916.60 1778.32 1074.89 143.71 48.6 
RP1 948.43 1092.81 1016.38 21.27 948.43 1613.35 1035.52 74.01 81.4 
RP2 983.28 1127.66 1051.22 21.27 983.28 1451.40 1053.66 34.07 97.7 
RP3 1021.09 1165.46 1089.03 21.27 1021.09 1289.22 1089.22 22.29 99.7 
CP 1101.62 1246.00 1169.56 21.27 1101.62 1246.00 1169.56 21.27 100 
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