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Abstract 

This thesis deals with management of water resources systems under uncertainty, 

concentrating on seasonal multi-year management of water quantities and salinities in 

regional water supply systems (WSS), where water is taken from sources, which 

include aquifers, reservoirs, and desalination plants, and delivered through a 

distribution system to consumers who require prescribed quantities of water under 

salinity constraints. Within this framework the natural replenishment into the aquifers 

is uncertain, while the desalination plants can produce a large and reliable amount of 

water, but at greater cost. A deterministic optimization model has been developed. In 

which the uncertain variables are represented by some deterministic values. The 

objective function and some of the constraints in this model are non-linear and 

therefore a non-linear optimization method was used. The model determines the 

optimal operational plan of the supply system of reservoirs, aquifers, desalination 

plants and the conveyance system. 

A number of approaches for optimization under uncertainty of the aquifers' recharge 

have been developed and applied, including: (a) probabilistic (stochastic) approaches 

in which the aquifers recharge is modeled as a stochastic process and (b) non-

probabilistic approaches in which no probabilistic assumption is made about the 

aquifers' recharge.  

A key issue when formulating stochastic models is the sequence in which decisions 

alternate with observations. Various stochastic models were developed in this thesis, 

which considered different alternations between decisions and observations of the 

recharge stochastic process. These models include two-stage and multi-stage 

stochastic programming along with the two extreme cases: a) the Wait-and-See 

approach, in which decisions are made after all the realizations are known b) the 

Here-and-Now approach, in which decisions are made before the realizations are 

known.     

In addition to these approaches a Limited Multi-stage Stochastic Programming 

(LMSP) approach was developed. The LMSP is an approximation of the Multi-stage 

Stochastic Programming (MSP) approach which was developed in the current work. 

The Robust Optimization (RO) methodology and the Info-Gap decision theory (non-

probabilistic approaches) were applied.   
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A small "made up" system was used for testing the algorithms and for demonstrating 

and explaining the results; a real scaled system which represents the central part of the 

Israeli National Water System (INWS) was solved by all models, and the results are 

presented to demonstrate the efficacy of the tools used and efficiency of the models as 

proof of their practicality. The results of the large system show the importance for 

models with uncertainty incorporation over deterministic models. The solution can 

change dramatically when recharge uncertainty is imposed.  

The results show that the LMSP provides a good approximation for the stochastic 

approaches. The quality of the LMSP was verified by several examples which show 

the emphasis and the justification of the LMSP approximation. The results of the non-

probabilistic methods are very promising, since they result in smaller mathematical 

problems and they obtain competitive results in terms of robustness and tractability 

compared to the classical probabilistic methods. 
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RHS-Right Hand Side 

RO-Robust Optimization 

RP-Robust Policy 

SA-Sensitivity Analysis  

SDP-Stochastic Dynamic Programming  

SLP-Sequential Linear Programming   

SMBO-Search Method for Box-Constrained Optimization 

SQP-Sequential Quadratic Programming   

ST-Spanning Tree   

SWDP-Sea Water Desalination Plants 

TBS-Three Basin System 

TCM-Time Chain Method 

TSP-Two-Stage Stochastic Programming 

WSS-Water Supply System 
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1. Introduction  

1.1. Motivation 

Management of water resources systems is aided by models of various types, ranging 

from those used for long-term development of large systems, to detailed operation of 

smaller parts, for example annual operation of an aquifer. It does not seem feasible to 

create a single tool which deals with all levels in time and space simultaneously. A 

possible option is to use a suite of models, inter-connected in a loose hierarchy 

[Shamir, 1971]. 

This work concentrates on management of the Israeli National Water Supply System 

(INWSS) that comprises several aquifers, a surface reservoir - Lake Kinneret, large 

sea-water desalination plants, a central conveyance system, and numerous local 

distribution systems. Several sea-water desalination plants have been constructed and 

began operation in 2006, 2007 and 2009. Their current combined annual capacity is 

285 MCM/year, already about 25% of the current average annual replenishment of all 

natural sources (~1,300 MCM/year). By 2013 this will rise to about 50% and by 2050 

it is expected to be 150% (i.e., 1.5 times today's average natural recharge). 

The various consumers have different requirements regarding the quantity and the 

quality of the water supplied to them. The consumers are urban, agriculture, and 

industry, plus commitments under bilateral agreements with the Hashemite Kingdom 

of Jordan and the Palestinian Authority.  

The models developed herein are aimed to support/guide INWSS managers (also 

referred to as the decision makers) in making decisions on operation of the system 

over a time horizon of several years, and also in evaluating proposed plans for system 

changes and capacity expansion. The INWSS is not very large and still quite 

challenging to manage and optimize, as a result of its complex structure and 

conditions, and the requirements for reliable service. An important aspect of this 

complexity is associated with hydrological uncertainty, including the effects of 

climate change, in addition to population growth, inclusion of desalination plants and 

the deterioration of water quality in the sources. 

As the INWSS shares many characteristics with regional water supply systems (WSS) 

elsewhere, the models in this work were formulated in a general form and format, to 
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facilitate application to regional systems with similar elements and characteristics as 

the INWSS. A central part of the INWSS was used as a case study for the generalized 

model.  

The research presented in this thesis has been aimed to develop a multi-year model for 

managing regional WSS under conditions of hydrological uncertainty. As the research 

progressed, several modeling philosophies, strategies and methodologies for 

optimization under uncertainty were developed and tested.  

Models for water systems management deal with quantities of water delivered from 

sources to demand zones. More recently, there are models that consider water quality 

as well, in particular salinity throughout the system, so that the objectives and 

constraints of management consider both quantity and quality (salinity) [Draper et al., 

2003; Jenkins et al., 2004; Zaide 2006]. With the inclusion of desalination plants (as is 

the case in the INWSS), water quality considerations are now a vital part of the 

modeling procedure. It is important to consider both quantity and salinity in the water 

sources, in the water supplied to consumers, and at each node of the supply system 

itself. With salinity consideration becoming a key factor of the management model, 

the complexity of the model evidently increases. 

Another consideration is the sustainability of the management plan. This implies 

meeting the needs of the present without reducing the ability of the next generation to 

meet its needs [Loucks, 2000]. This requires a perspective with a relatively long time-

horizon, and assigns a value for leaving the system at the end of the planning horizon 

with reservoirs that have not been depleted nor have high salinity. An associated 

aspect of multi-year water supply management relates to hydrological uncertainty 

[Ajami et al., 2008] and climate change [Grantz et al., 2007], which is the main focus 

of this work. 

In light of the above, there is a challenge to develop a multi-quality, multi-year 

model for management of water quantities and salinities in a regional WSS under 

uncertainty. 

Most models developed so far (including models for the INWSS) are essentially 

deterministic. This means that the amount of natural replenishment is known and 

changes from year to the next in a known sequence (which can be "shuffled" to test 

different possible future sequences, in an "ensemble" mode). The historical time series 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V6C-4WM7585-1&_user=32321&_coverDate=09%2F15%2F2009&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000004038&_version=1&_urlVersion=0&_userid=32321&md5=2bec911046d4380ddb6e67e849425a56#bib105
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of replenishment is used to test the performance of capacity development and 

operational plans, thus generating estimated future distributions of system states and 

performance. Still, this is not considered to be an explicit inclusion of system 

reliability and performance under hydrological uncertainty. A main objective of the 

current research is to incorporate explicit considerations of uncertainty, both at the 

conceptual level – i.e., what are the best ways to formulate the objectives and 

constraints for long-term management in view of uncertainties – as well as the 

technical level – i.e., what techniques and methodologies can and should be used in 

modeling, so that the results are usable in the real world. 

This research presents a seasonal multiyear model for management of both water 

quantity and salinity, using optimization methods with an emphasis on management 

uncertainty associated with replenishment. The objective that drives the decision is to 

minimize the present value of system operation cost, subject to technological, 

administrative, and environmental constraints, and possibly include social 

implications as well. 

Models of regional water systems are large and complex hence, simplifications and 

aggregation must be made in order to obtain a solvable model. This is particularly true 

when uncertainty is introduced, since it significantly expands the dimension of the 

model. 

1.2. Objectives and Contribution 

The objective of this research is to develop a water management model using 

optimization under uncertainty conditions in order to guide long-term water supply 

system operation. The model can then be used to evaluate directions for capacity 

expansion of the WSS. 

There may be more than one suitable model for optimization under uncertainty, based 

on different approaches. Several methodologies/models for decision making under 

uncertainty were used in determining the optimal management of a regional WSS 

under hydrological uncertainty associated with the replenishment of the natural 

resources. In fact there are other sources of uncertainty that will influence the 

development and management plan (in particular in the INWSS), including demands 

uncertainty, agreements with neighboring countries, new and improved technologies 

for desalination at lower cost, rising (or dropping) prices of oil, international trade 
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agreements on agricultural and other products, etc. However, this research did not 

account for all these uncertainties; it considers only hydrological uncertainty. 

Decisions under uncertainty involve a subjective attitude. Decision makers may be 

risk-averse, risk-neutral or risk-tolerant (risk loving/risk seeking), and their decisions 

will be accordingly influenced. In management of resources for the public good, it is 

not the individual decision maker's attitude to risk that is the dominant feature 

(although it definitely plays a role!) but rather the policy of the governing body: the 

Water Authority, the Ministry of National Infrastructure, the Ministry of Finance, 

ultimately the Government. It is therefore not possible to anticipate the attitude that 

will be taken by the decision makers at decision times. Furthermore, statements and 

decisions regarding risk-management which are made ahead of the actual risky 

situation do not predict well the decision when the actual risky situation materializes. 

The Ministry of Finance and the Government's decisions on desalination for the 

INWSS demonstrate such a case: in the dry spell leading up to summer of 2002 the 

Government approved a plan for constructing seawater desalination plants with a 

capacity of 400 MCM/year; then there was a very wet year in 2002/2003 - and the 

amount was reduced to 260 MCM/year (!); the recent dry spell led to another reversal, 

and a decision to increase to 600 MCM/year by 2013 and 750 MCM/year by 2020.  

The conclusion to be drawn from this is that the tools required to support decision 

making in the face of uncertainty must be flexible enough to allow testing tradeoffs 

between various characteristics of future outcomes, efficient enough to be run quickly 

for different inputs, and transparent enough to convey to the decision makers the full 

range of consequences of different possible decisions. So the developed models will 

quantify the following: 

1. Indications regarding the best capacities of production and conveyance facilities. 

2. The optimal 'salinity map' of the supply system for each season over years. 

3. The optimal conveyance map of the supply system for each season over years. 

This work is connected to the Water Authority through Miki Zaide, Strategic Planner 

at the Government Authority for Water and Sewage. This was aimed to achieve two 

goals: (a) information and advice regarding the INWSS which can be obtained 

(however: there is no claim that the model will be completely realistic), and (b) if the 
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methodology is successful it will have a chance of being adopted and used by the 

Water Authority. 

1.3. Dissertation outline 

The remainder of the thesis is organized as follows: 

Chapter 2 includes literature review and theoretical background of the methodologies 

used in the research. The first part (Section 2.1) introduces a comprehensive review 

for deterministic WSS models. This part also includes a special Section that describes 

the INWSS and the models used for its management. 

The second part includes a review of methodologies for optimization under 

uncertainty (Section 2.2.2). Several applications of these methodologies for water 

resources models are reviewed in Section 2.2.3. A review of some models from other 

fields are presented in Section 2.2.4. 

Chapter 3 presents the deterministic formulation of the seasonal multi-year model for 

management of water quantities and salinity in regional water supply systems. Next, 

the optimization framework for solving the nonlinear optimization problem is 

presented. It includes a set of manipulations for reducing the model size, and an 

efficient finite differences scheme for calculating the derivatives required by the 

optimization algorithm. This is followed by application of the methodology to a small 

demonstration system (Section 3.8) and to the central part of the INWSS (Section 

3.9).  

Chapter 4 introduces various scenario based stochastic models based on the 

deterministic model developed in Chapter 3. In Section 4.10, the Limited Multi-stage 

Stochastic Programming (LMSP) which is an approximation of the MSP developed in 

this work is introduced. Several examples were run to validate the quality of the 

solution obtained by the LMSP. 

Chapter 5 introduces the Robust Optimization (RO) methodology and its application 

for optimizing the operation of a WSS. A new WSS model, that differs from the 

model developed in Chapter 3 is introduced, due to restriction of convexity for 

application of the RO methodology. It is a linear model and does not consider salinity. 

The results obtained from the RO were compared to the solution from other 

methodologies, such as MSP. 
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Chapter 6 introduces the Info-Gap methodology and its application for the WSS 

model developed in Chapter 3. This application is preliminary, to demonstrate the 

methodology, thus the examples included are only the small network. 

Chapter 7 is a general summary, discussion, conclusions, and recommendations for 

further research. 

Appendix 1 presents a Search Method for Box Optimization (SMBO) which was 

developed as a byproduct of this thesis as an attempt to solve the optimization model 

in Chapter 3. SMBO is a heuristic population based search methodology which solves 

global optimization problems by representing the population as Probability Density 

Functions (PDF) within the problem bounds. The performance of SMBO is compared 

with old and recent genetic algorithms (GA). The results show that SMBO performs 

equally or better than the GAs in both comparisons. 

Appendix 2 graphical results for the large scale example in Chapter 3  

Appendix 3 includes the list of references. 
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2. Literature survey and methodology  

2.1. Deterministic models 

2.1.1. Introduction 

Management of water resources systems is characterized by inter-dependent 

hydrological, physical, environmental, ecological economic and social aspects, and 

therefore determining the optimal design and operational management policies for 

water systems poses complex challenges for decision makers. Planning and 

management decisions for water resources systems are determined according to the 

effects expected to arise as a result of these decisions. These effects can be predicted 

by expert opinion and/or by quantitative information generated by mathematical and 

computational models. The past four decades have witnessed significant advances in 

the ability to model engineering, economic, ecological, hydrological and political 

aspects of large complex water resources systems. Today, quantitative mathematical 

optimization models are considered essential tools to assist design and management of 

water resources systems. 

In the planning phase, models assist in determining the topological layout and the size 

of the system components to meet specified requirements while optimizing for 

specified objectives. Operational management models determine the operation over a 

given time horizon, divided into specified periods, given the system components and 

capabilities, the required service, and the objective function. The two model 

categories are inter-related, since the system’s layout and component sizes obviously 

affects the optimal operation, while operational models can help in detecting system 

deficiencies and "bottlenecks" whose solution will improve system performance and 

whose cost is justified by the improved performance. 

2.1.2. Water management models 

Water resources systems are distributed in space and operate over a time horizons that 

range from short (minutes, hours, days) to long (months, a year) to very long (multi-

year) and are subdivided into time-periods. The spatial and temporal resolution of a 

model has to be selected judiciously – to capture the essential features and 

performance measures while avoiding excessive and costly detail. Thus, models range 

from highly aggregated versions of an entire water system with annual periods to 
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much more detailed models in space and time. It does not seem feasible to create a 

single management model that covers all levels in time and space simultaneously and 

the preferred option is therefore to use a suite of models, inter-connected in a 

hierarchy. Shamir, [1971] analyzed the management of the Israeli National Water 

Supply System and proposed an approach to its optimization by using a “Hierarchy of 

Models”. This approach recommends using a series of inter-connected models, which 

have different scales in time and space; the models supply each other with 

information and results that relate to their constraints and objective functions. Close to 

the top of the hierarchy an aggregate model is designed to determine the general plan 

of the system, its major topology and addresses the capacity expansion of its main 

components. At this level, the model does not have to consider the detailed 

hydraulics; therefore it treats the conveyance system as a transportation network. 

Once the first level model’s results are obtained, new models with detailed 

components of the network are used, with the results of the first aggregate model 

spread out and detailed in space and time. These models have to consider the detailed 

hydraulics more explicitly. Selecting the proper aggregation in time and space for a 

particular application is one of the most important challenges of modeling.  

For short-term (weekly to monthly) or longer-term (years to decades) operation of a 

large scale water supply system a medium aggregation is used to manage 

simultaneously both the sources and the network [Fisher et al., 2002; Draper et al., 

2003, 2004; Jenkins et al., 2004; Watkins et al., 2004]. Fisher et al., [2002] developed 

and applied, in a combined US, Dutch, Palestinian, Jordanian and Israeli team, a 

model called Water Allocation System (WAS) under the framework of the Middle 

East Water Project. WAS is a benefit-maximizing model driven by consumers' 

willingness-to-pay (demand functions), with constraints representing physical laws 

and administrative regulations. It considers water sources and consumers in districts 

and a physical conveyance system that connects them. WAS recognizes that one 

cannot use competitive markets to insure efficient allocations since at least the 

following basic properties needed for a free market to function are often absent: (a) A 

competitive market must have a large number of independent small sellers and 

buyers, which is not true in water markets. (b) In a competitive market we assume that 

social costs and benefits must coincide with private ones, which is not the case in the 

presence of externalities that affect the social optimal results. Thus the objective 
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function is maximization of total social net benefit, over all consumers in all districts, 

i.e. the difference between the total benefit generated by water-based activities and the 

cost of supplying it. WAS is a single-year model, which accepts a defined water 

supply system and determines the annual operation of the sources and conveyance 

systems under fixed hydrological conditions; a multi-year model MYWAS is under 

development. The model generates the optimal water use pattern and helps in 

analyzing the cost-benefit of proposed infrastructure projects. WAS is developed to 

promote and facilitate cooperation in water in order to obtain win-win situations in 

disputes over water. Application by Israeli, Palestinian and Jordanian teams to their 

water sectors showed that the value of the water in dispute is very small while the 

potential gains from cooperation are relatively large. 

Draper et al., [2004] developed a simulation model for planning and management of 

the State Water Project and the Federal Central Valley Project in California. The 

model is called California Water Resources Simulation Model (CALSIM). It couples 

a simulation language with a mixed integer linear programming (MIP) solver for 

efficient water allocation decisions. The model is a single time step optimization (the 

optimization does not include long term considerations) while simulation is used to 

link the system operation over a sequence of monthly periods. For each time step a set 

of objectives and constraints are considered in the optimization problem, different 

objectives can be added using a combination of weights which construct the overall 

monthly objective. The weights are subjective factors that indicate the decision 

maker's preferences. The monthly constraints can be formulated as hard or soft 

constraints with associated penalties for deviating from a specified target. The MIP 

solver enables CALSIM to represent nonlinear ‘if-then’ constraints and piecewise 

linearization of nonlinear functions. However, the MIP problem is much more 

difficult to solve than LP, hence the number of the binary integer variables has to be 

limited. Water quality considerations are not included explicitly in CALSIM; still, it 

uses an external module which consists of an Artificial Neural Network (ANN) to 

estimate the water quality in the system.  

Jenkins et al., [2004] and Draper et al., [2003] developed and applied a large-scale 

economic-engineering optimization model of California’s water supply system called 

CALVIN. The model combines economic benefit and loss functions in its objectives. 

It manages surface sources, groundwater sources, and allocates water using a 72 year 
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record of historical hydrologic data. The model maximizes the economic value of 

agricultural and urban water uses, within specified physical, environmental, and 

operational constraints. Incorporating the economic performance in the objective 

function facilitates maximizing net economic benefit to the entire system, which leads 

to optimal balance between supply and demand. The optimization algorithm is a 

linear network flow formulation where convex economic functions are replaced by 

piecewise linear functions.  CALVIN runs with historical time series of monthly 

inflows with a single demand condition to prescribe monthly system operation. 

Agricultural and urban water demands are represented by economic value functions 

for 2020 levels of development. CALVIN is solved for water quantities; water quality 

is represented by flow constraints and elimination of some water sources as potential 

water supplies. 

Watkins et al., [2004] developed a screening model called the South Florida Systems 

Analysis Model (SFSAM) that uses optimization to reduce the large number of 

alternatives and operating polices to a few that can then be simulated and evaluated in 

greater detail. The model seeks minimum cost within specified physical, 

environmental, and operational constraints, to manage surface and groundwater 

resources and allocate water using 25 years of historical hydrologic record. The 

mathematical optimization model is a linear network flow formulation where the 

water conveyance and storage facilities are represented as arcs in the network. The 

objective functions and some of the constraints are expressed by piecewise linear 

functions. SFSAM runs with monthly time series of inflows and a single demand 

condition to prescribe monthly system operation. The demand condition is set equal to 

the maximum demand observed over the 25-year of the historical record study record. 

There is no reference to water quality neither in the network nor in the sources. 

Many models deal only with quantities of water to be delivered from sources to 

demand zones. More recently, there are models that consider water quality as well, in 

particular salinity [Yates et al., 2005; Tu et al., 2005]. Yates et al., [2005] developed 

WEAP21, which is a simulation model comprised of watershed-scale hydrologic 

processes, physical network of reservoirs, canals demand sectors and environmental 

requirements. The hydrologic module of WEAP21 considers evapotranspiration, 

surface runoff, subsurface runoff and percolation. It includes the interconnections 

between an aquifer and the surface of the watershed. It also includes a temperature-
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index snow-melt model and heat budget equations. The water quality module in 

WEAP21 includes constituents that are conservative or decay according to an 

exponential decay function such as:  Dissolved Oxygen (DO) and Biological Oxygen 

Demand (BOD). Demand allocation is determined by a linear programming 

optimization module in which the priorities are entered by the user. The consumers 

are divided into equity groups, and the objective function is formulated such that 

demand zones with the same priority are supplied equally as percentage of their total 

demand. The optimization module does not reflect fully all of the model's 

components: (a) It only considers the water quantity allocation among the different 

demand zones, the water quality in the watershed, the aquifers and the network is not 

considered in the optimization phase (b) The water allocations are made according to 

user-specified input that are independent of source state and of conveyance costs. 

Tu et al., [2005] developed a quality-quantity flow model to optimize water 

distribution in a regional water supply system with multi-quality sources. The model 

is a nonlinear optimization model with monthly operation units and a six month 

management horizon, which considers water and quality parameters balance in the 

system but does not consider hydraulic laws. The nonlinear mathematical model is 

solved by a hybrid genetic algorithm (GA) using the optimization software LINGO. 

The GA is first used to globally search for the directions of all undirected arcs in the 

network. Then a generalized reduced gradient algorithm (GRG) embedded in the GA 

is used to optimize the objective function for fitness evaluation. The methodology was 

applied to the regional water distribution system of the Metropolitan Water District of 

Southern California twice; the first objective function was to minimize the total 

shortage in water supply and the second objective function was to minimize the 

deviations of reservoir storage from the preset target. 

The network representation in a model can be classified according to the physical 

laws that are considered explicitly in the model constraints [Ostfeld and Shamir, 1993; 

Cohen et al., 2000]. Ostfeld and Shamir, [1993], solved for optimal operation policy 

of a multi-quality water supply system, which consists of the following elements: 

sources, reservoirs, pipes, pumping stations, treatment plants and consumption nodes. 

The objective function was to minimize the total operational cost. Three types of 

models were developed: steady-state, quasi-steady-state and an approximate unsteady 

state. The solution was obtained with GAMS/MINOS (General Algebraic Modeling 
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System). Cohen et al., [2000] determined the optimal operation of a multi-quality 

network under steady-state flow conditions. This work was developed in 3 parts: (a) 

Q-C is the flow-quality transport model (b) Q-H is the hydraulic model which 

represents the network hydraulic (c) Q-C-H which uses the shared flow vector Q of 

the two partial models to represent the hydraulics and the water quality 

simultaneously. The Q-C-H is divided into the two sub-problems which are solved 

separately and then combined into a comprehensive Q-C-H model. The purpose of 

this decomposition is to tackle the nonlinearities that appear in the Q-C-H problem. 

According to this classification the proposed models of Tu et al., [2005] and Yates et 

al., [2005] are flow-quality models which consider the balance of the flows and mass 

of quality parameters, but without explicit inclusion of the hydraulics. The inherent 

assumption of these models is that the hydraulic operation with the quantities 

prescribed by the model would be feasible. With the inclusion of desalination plants 

as an important source in water supply systems, as is the case in Israel, water salinity 

consideration must be included explicitly in the management scheme. It is important 

and necessary to consider both quantity and salinity in the water sources, in the water 

supplied to consumers and at nodes of the supply system itself, with due consideration 

to the hydraulic performance of the system. With the salinity considerations becoming 

an important part of management models, the complexity of the model evidently 

increases. 

An important consideration is sustainability of the operational management plan. This 

implies meeting the needs of the present without reducing the ability of the next 

generation to meet its needs [Loucks, 2000]. Sustainable management requires a 

perspective with a relatively long time-horizon. Zaide, [2006] developed a model for 

Multi-Year Combined Optimal Management of Quantity and Quality in the Israeli 

National Water Supply System (MYCOIN). This model is aimed to consider long-

term (years) allocation optimization with various components of water supply, water 

quality and water system and demand zones for national level decision makers. It is a 

deterministic seasonal (two seasons per year) multi-year model for management 

(operation and implications for development) of both water quantity and salinity in 

the Israeli National Supply System (INWSS). Both quantity and salinity 

considerations (in the water sources, supply system and demand zones) are optimized 

simultaneously for a long time horizon. The objective function is defined as minimum 
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total cost of multi-year operation subject to physical, environmental and operational 

constraints. The optimization model is solved by the generalized reduced gradient 

algorithm (GRG) with an off-the-shelf software that uses Excel for model 

formulation. 

In this Section we presented some of the deterministic water management models 

which are relevant to our work. This work introduces a model for optimal multi-year 

management of regional water resources systems under hydrological uncertainty. It is 

a seasonal multi-year model for optimal management of both water quantity and 

salinity, which minimizes the overall cost of the system operation subject to 

technological, administrative, and environmental constraints. The model does not 

include hydraulic constraints and does not guarantee required heads at consumer 

nodes, yet the objective function takes into account the cost of conveyance as a 

function of the hydraulics properties of the network. This is appropriate when it can 

be assumed that the resulting operation plan will be feasible hydraulically [Cohen et 

al., 2000]. 

We next provide some information about the Israeli National Water System (INWS), 

whose central part is used in demonstrating the application of the models developed in 

this research.   

2.1.3. The Israeli National Water System (INWS) 

Israel is located in a semi-arid to arid region. The annual rainfall ranges from over 

1,000 mm in the north to 150 mm and less in the south, over a distance of some 500 

km, with an average annual rainfall of 500 mm. The average annual replenishment of 

fresh water in all sources for the 77 year historical record (Figure 2.1) is 1,391 

(MCM/year). The main sources (Figure 2.2) are Lake Kinneret (LK, average annual 

replenishment 580 MCM), the Mountain Aquifer (MA, 360 MCM) and the Coastal 

Aquifer (CA, 310 MCM). Most of the water supply in the INWS depends on these 

three sources, and hence this main part of the national system is called the Three 

Basin System (TBS). The replenishment has been declining in recent decades, due to 

a variety of causes, and the total is now estimated at around 1,100 (MCM/year). In the 

last decades the Israeli water managers are facing difficulties to supply a reliable 

quantity of fresh water from the TBS due to the high variability of annual 

replenishment where the standard deviation of the 77 year historical record of the 
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annual replenishment reached to 460 (MCM), i.e. 32% of the average. Another aspect 

is the frequent long sequences of below average replenishment which can result in 

cumulative deficits of 1,500 (MCM) and more. In addition, there is the quality issue, 

since large parts of the aquifers, especially in the Coastal Aquifer, are no longer 

suitable for direct potable purposes because of contamination due to human activities 

and over-extraction that caused intrusion of saline water bodies.   

At the beginning of this study (2007) the total annual consumption of all sectors for 

all types of water was 2060 (MCM), of which 1,435 (MCM) (70%) is potable and the 

rest non-potable, reclaimed wastewater and brackish waters. The urban consumption 

exceeded 50% of the total potable water use and the potable water use by agriculture 

was set by the Government to 560 (MCM/year) to maintain agriculture that can use 

only potable quality water. Other consumers are industry, nature, and commitments 

under agreements with the Hashemite Kingdom of Jordan with the Palestinian.  

Following the Water Sector (Interim) Master Plan for the years 2002-2010 [Water 

Commission, 2002], the government of Israel decided to construct sea water 

desalination plants (SWDP) with an installed capacity of 400 (MCM/year). The first 

SWDP, located in Ashkelon (Figure 2.3), was inaugurated in 2005, and produces 115 

(MCM/year) of very high-quality water, the second plant, at Palmachim, with a 

capacity of 45 (MCM/year), began operation in 2007, and the third plant, at Hedera, 

with a capacity of 127 (MCM/year), was inaugurated in late 2009. The product of all 

plants – a total of 287 (MCM/year) - is injected into the National Carrier (Figure 2.3), 

and blended with water from the natural sources. Two additional SWDP plants are 

added: under construction at Sorek, with a capacity of 150 (MCM/year), and at 

Ashdod, with a capacity of 100 (MCM/year), whose contract is being finalized with 

Mekorot.   

The INWS is highly integrated; the National Water Carrier (NWC) which connects 

the three main water sources, most of the other sources and some 30 regional systems 

by a conveyance network that covers most of the country’s area and supplies water to 

some 4,000 primary consumers. The consumers are urban, industry, agriculture, 

nature, and commitments under bilateral agreements with the Hashemite Kingdom of 

Jordan and the Palestinian Authority. The various consumers have different 

requirements concerning the reliability and quality of supplied water. The complexity 
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of management, operation and design of the INWS will increase as quality 

considerations become more important, primarily due to the inclusion of desalinated 

water with its high quality that allows blending with lower quality waters. 

 

Figure 2.1: Recharge record in INWS 

 

Figure 2.2:  Israel Water Sources 
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Figure 2.3: Main Water Systems and Desalination Plants 

2.1.4. Management models applied to the INWS 

The INWS may not be very large by international standards, yet it is a complex 

system to manage and optimize. The complexity and difficulty of modeling for 
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of the non-linear quality equations. The annual optimization model considers the 

quantities provided from 8 natural sources and 4 desalination plants to 8 demand 

zones. TKUMA was used in a multi-year simulation framework where the state 

variables in the natural sources connect the successive years.  Zaide, [2006] developed 

a Multi-Year Combined Optimal Management of Quantity and Quality in the Israeli 

National Water Supply System (MYCOIN), which is an optimization model that 

considers long-term (years) allocation optimization with various components of water 

supply, water quality and water system and demand zones for national level decision 

makers. At Mekorot (Israel National Water Company) and the IWA there are several 

models which are aimed to manage and operate a single source, which was not 

included in this short review as they have less relevance to those developed in this 

study. 

Among all the models which were developed for the INWS there is no management 

model which considers multi-year optimization of quantity-quality of the system 

under hydrological uncertainty. This explains the need for a model that considers 

these aspects especially in the inclusion of new components such as desalination 

plants and hydrological uncertainty which is expected to increase.     

2.2. Models that consider Uncertainty 

2.2.1. Introduction  

Planning and management of infrastructure projects is always conducted under 

conditions of uncertainty. Typically, uncertainty results from the two aspects: (a) The 

loads/demands placed on the system, and (b) The capability/capacity of the planned 

system to meet the loads/demands. The system fails whenever the load exceeds the 

capacity. In the domain of water, future demands are those imposed by the consumers 

(even when demand management is exercised), while the capacity to meet the 

demands depends on the uncertain hydrology and system delivery capacity. The 

uncertainties can be classified into two types: (a) Objective (external) uncertainty, 

which results from an uncontrolled or unknown phenomenon, and (b) Subjective 

(internal) uncertainty, which results from lack of adequate knowledge of the system 

and its parameters [Wendt et al., 2002]. 

One way to deal with uncertainty is to practically ignore it. In this approach, the 

nominal or expected value of the uncertainty is usually used in a deterministic 



26 
 

formulation, while it is well understood that in reality the uncertain variables will 

certainly deviate from this value. 

Another standard way to deal with uncertainties is by overdesign of the infrastructure 

project at the design stage and by operating rules based on overestimation of the 

uncertainties at the operation stage. This approach can work well when the number of 

uncertain parameters is small; otherwise it can lead to design and operation that are 

much too expensive. Since, uncertainties in different parameters have different effects 

on the system; overdesign may present conservative solution [Babayan, 2007]. 

Given this generic situation, a required next step in the development of management 

models is optimization under uncertainty. A major difficulty in optimization under 

uncertainty is in dealing with an uncertainty space that is very large which leads to 

very large-scale optimization models. Decision-making under uncertainty is further 

complicated when the problem being is multi-period and/or multi-stage [Sahinidis, 

2004]. 

2.2.2. Optimization under uncertainty 

Decisions must often be taken in the face of the unknown, for example precipitation 

and evaporation variability that affect availability of water, on the supply side, and the 

urban and irrigation water requirements, on the other. The consequences of the 

decision taken at time now cannot be known until the unknown data are revealed. 

Still, some corrective decisions may be taken in the future as more and more data 

become known.  

In the deterministic optimization the uncertainty plays no role and some selected 

values of the unknown parameters are used in determining the decisions. In stochastic 

optimization [Birge and Louveaux, 1997] the uncertain parameters are modeled as 

random variable with a known probability distribution. Generally, there are two types 

of stochastic programming: implicit and explicit stochastic programming. 

Implicit stochastic programming (Figure 2.4) uses a (sufficiently long) sequence of 

data corresponding to random variables. Using forecasting methods which are based 

on existing knowledge and the history of the system (or by using Monte Carlo 

simulation) this data are used to simulate the possible future values of the uncertain 

variables. In this approach, the stochastic aspects of the problem are implicitly 
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included and each forecast is used as input for deterministic optimization. The optimal 

solution obtained by each optimization problem is unique to that forecast, and the 

range of outcomes is analyzed to arrive at the decision rules. 

Explicit stochastic programming (Figure 2.4) incorporates the probability distribution 

of the random variables inside the optimization problem, and as a result both the 

objective and the constraints are stochastic in nature. Hence, statistical operations 

(e.g. expectation) should be applied to the objective and the constraints. There are 

many options to apply the explicit stochastic programming approach, for example 

different objective functions could be considered which differ by the statistical 

operator applied to the stochastic objective function. Regarding the constraints, one 

could use: (a) Chance constraints which depend on a specified levels of risk of 

violating these constraints (b) Penalizing the constraints violation by adding penalty 

term to the objective (c) Combination of chance constraints and violation penalty.  

    

Figure 2.4: Implicit (left) vs. Explicit (right) stochastic programming  
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A common tool to present the stochastic process is to work with scenarios [Dupacova, 

2000], which are particular representations of how the process might be realized in the 

future. We approximate the stochastic process R  by a finite set of scenarios sR ∈Ω  

s∀ with probability sp . In general, some kind of probabilistic model or simulation is 

used to generate a batch of such scenarios out of the continuous process. The 

challenge then, is how to make good use of the scenarios in coming up with an 

effective decision. 

In the deterministic formulation of this optimization problem the uncertainty is treated 

through the replacement of the random elements of R  by some particular estimate R̂ . 

The problem solved is: ˆ( , ) minf x R →  the optimal solution of this problem does not 

involve any hedging of decisions since only the single realization R̂ is considered. The 

implicit approach implies that decision can be taken after the value of R becomes 

known. Hence, we have an optimization problem which depends on sR  as a fixed 

parameter: ( , ) minsf x R → s∀ , after solving this optimization problem for each s we 

obtain the decision corresponding to each scenario sx , these decisions construct the 

objective value set  min ( , )s
s s

fx
f x R ∈Ω  s∀ and the optimal solution set 

arg min ( , )s
s s

xx
f x R ∈Ω s∀ . Both sets need to be analyzed in their dependence on the 

stochastic process R . The optimal value and the optimal solution sets are treated as 

stochastic elements and their probabilistic behavior is used to derive decision rules for 

implementation. 

When the decision has to be taken in advance, before any realization of the stochastic 

process is revealed, then the probability distribution of the process should be 

explicitly included in the problem. The extreme case is when all the decisions have to 

be made in advance, i.e. all the problem is considered as a single stage. In this 

formulation each possible decision has stochastic value ( , )f x R with its own Probability 

Density Function (PDF). Since we cannot minimize a probability density function of 

( , )f x R  we have to apply a statistical operator on the PDF before the optimization. 

Some of the common operators which are used are: 

(a) The Worst case approach, max ( , ) minR f x R →  in which we minimize the worst 

outcome which may results from the decision. This corresponds to a pessimistic 

attitude. It does not distinguish between the outcomes according to their probability of 
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occurrence; hence it could give poor results when the worst outcome has small 

probability as it the case many real word problems. 

(b) The Expectation approach,  [ ( , )] minRE f x R →  in which we minimize the 

expectation of the PDF, hence, this approach emphasize the average outcome. 

(c) The Variance approach, [ ( , )] minR f x R∑ → , in which we minimize the  variance of 

the PDF, hence, this approach emphasizes the variability of the outcome. 

(d) The Value at Risk approach, [ ( , )] minVaR f x Rα →  in which we minimize the 

quantile value associated with confidence levelα . 

(e) Any combination of the above approaches is also applicable. For instance the 

Mean-Variance approach, ( [ ( , )], [ ( , )]) minR RE f x R f x Rψ ∑ →   where ψ provides a way to 

balance between the expectation and variance. This approach is quite traditional in 

financial applications, where the outcomes variance is considered a measure of risk 

[Markowitz, 1959]. 

When we need to consider not just one decision and one observation, but possible 

interactions between decisions and observations in stages, then multi-stage stochastic 

programming (MSP) should be used [Dupacova, 1995]. The MSP distinguishes 

between decisions that have to be made now before any information is reveled and 

decisions at later stages where part of the information becomes available. However, 

the decisions of the first stage (present) are made with recognition that there are 

opportunities for modification and corrections at later stages (recourse decisions). In 

the fT stages problem the expectation formulation of the MSP is: 

( )0 1 1 2 1 2 1, ( ), ( , ),..., ( ,..., ), min
f fR T TE f x x R x R R x R R R  → 

    (2.1) 

Where for example 2 1 2( , )x R R show that decision at stage two depends on the 

information revealed up to this stage. A special case of the MSP is the two stage 

stochastic programming; this formulation involves an initial decision (present), 

receiving reveled information and then a single recourse decision.  

Recourse decisions (future decisions taken after some information is realized) can 

react to the past, but they cannot be based on knowing the future before it happens. In 

the MSP terminology, the decision space X consists of all function ( )x ⋅ that are 
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nonanticipative. The MSP solves for an optimal policy defined as the first stage 

decision (values) and the recourse decisions (functions). Minimization over a function 

space confronts us with a more advanced level of mathematics to which conventional 

optimization methodology in not applicable.  

This problem is overcome by solving the MSP with discrete probability distribution of 

the stochastic process, which was introduced earlier by the scenarios representation of 

the process. When the process is given by scenarios, to specify the function ( )x ⋅ we 

replace it by a finite number of vectors equal to the different possibilities which the 

function ( )x ⋅  takes as its input. For example, the function 1 1( )x R is replaced by fk

vectors 1 1( )kx R where 1.. fk k= and fk is the different values which 1R takes in the 

scenario set. 

Up to this point we presented the methodologies for unconstrained optimization. 

When dealing with constrained optimization problems, some of the constraints may 

also depend on the stochastic process. In general the problem constraints could be 

classified as follows: (a) constraints which are not affected by the stochastic process 

which we can represent by the feasibility set x C∈ (b) inequality constraints depend on 

stochastic process ( , ) 0g x R ≤ (c) equality constraints ( , ) 0m x R = . 

An inequality constraint will be satisfied for all the realization of the stochastic 

process by replacing it with its worst-case counterpart max ( , ) 0R g x R ≤ , representing a 

conservative approach that is costly.  

By an equality constraint we are asking for a decision which makes the random left 

side of the constraint ( , )m x R  equal to zero. Namely, the requirement on the decision is 

that it has to make the random variable to be not random at all but have the constant 

value of zero. In many cases such a decision does not exist. Modeling uncertain 

equality constraints should therefore be avoided, and uncertain inequality constraints 

should be replaced by their worst-case counterpart only if the constraint in question is 

a hard constraint which cannot be violated under any circumstances. However, when 

the constraints are soft and can be violated with no collision in the model these 

constraints can be substituted by penalty terms in the objective function [Dupacova et 

al., 1991]. Whenever the constraint is violated, the penalty term invokes an additional 
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cost that is proportional to the amount of violation. For example, the so-called linear 

penalty function is: ( )max ( , ),0p g x Rλ= ⋅ where λ is the penalty per unit deviation. 

Soft constraints can also be modeled as chance constraints [Wendt et al., 2002] in 

which they are relaxed probabilistically. Using the chance constraints approach one 

may specify the required level of risk of violating the constraint. The chance 

constraint is defined as { }prob ( , ) 0g x R ≤ ≥ pre-specified probability that this inequality 

holds. 

For instance, requiring this probability to equal one is the same as making the 

constraints hard constraints, which have to be satisfied for all the realization of the 

stochastic process. In contrast when requiring the probability to equal 0.9 the 

constraints are satisfied for only 90% of the realizations. 

The size of the optimization problem results from the explicit stochastic model is 

greatly affected by the future branching and the scenarios’ number considered in the 

model. The challenge of solving large scale optimization problems with many 

variables and constraints is one of the main concerns of stochastic programming. 

To overcome the difficulty of the large scale optimization model various 

decomposition methods have been suggested [Rockafellar and Wets, 1991; Mulvey 

and Ruszczynsk, 1995].   

Another optimization technique which is also applied to stochastic models is 

Stochastic Dynamic Programming (SDP). As opposed to the MSP, the decisions at 

each stage do not depend on the information we may infer from the directly on 

underlying stochastic process, instead, the decisions at each stage depends on the 

observed state of the system which is a function of the stochastic process. Dupacova 

and Sladky, [2002] discussed the similarities and the differences of MSP and SDP. To 

explain the concept of SDP we shall first explain the deterministic Dynamic 

Programming (DP) in which we define the objective function as a recursive formula 

and decompose the original problem into sub-problems that are solved sequentially 

over each stage. In the sub-problems solution we translate the state variable into a 

finite number of levels and then perform conditional optimization over all possible 

discrete combinations of state levels. For all the discrete combinations the objective 

function is optimized recursively over each time period in a backwards sequence. The 
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SDP models attempt to solve the recursion relation adapted to stochastic problems by 

applying statistical operator (such as expectation) on the recursive objective. 

Beside the stochastic approach, there is another class of optimization under 

uncertainty, methods in which the uncertainty is not probabilistic, but rather 

deterministic and set-based. Namely, instead of seeking to immunize the solution in 

some probabilistic sense to stochastic uncertainty, the decision maker seeks a solution 

that is optimal for any realization of the uncertainty in a given set. We review three 

variants of these methods: 

 (a) Inexact programming [Soyster, 1973] in which the model incorporates the 

uncertain parameters as ranges [ , ]R R R− +∈ . The objective is to maintain feasibility 

against whatever might happen when the actual values are realized from the intervals. 

Another way to deal with interval uncertainty is the Grey Mathematical Programming 

(GMP) developed by Huang, [1994] for linear models. The model is transformed into 

two deterministic sub-models, which correspond to the upper and lower bounds for 

the desired objective function value, through this transformation we obtain two sub-

models that provide interval solutions e.g. [ , ]opt opt optx x x− +∈  and decision alternatives can 

be chosen within these intervals. 

(b) Robust Optimization [Ben-Tal et al., 2009], a more recent approach to 

optimization under uncertainty, in which there is no limitation on the uncertainty to be 

represented by intervals, but rather any set could be chosen to represent the uncertain 

parameters. However, the use of convex sets, such as an ellipsoidal set 

{ }ˆ: ,U R R ς ς θ= + ∆ ≤ , makes it possible to formulate a tractable optimization 

problem. The Robust Optimization (RO) associates with the uncertain problem its 

robust counterpart where the constraints are satisfied for every realization within the 

prescribed set while the worst case value of the objective function is minimized. 

This method was applied in different fields such as portfolio models [Ben-Tal et al, 

2000b; Lobo and Boyd, 2000], inventory theory [Bertsimas and Thiele, 2006; 

Bienstock and Ozbay 2008], process scheduling [Li and Ierapetritou, 2008] and 

network models [Mudchanatongsuk et al., 2005].  

 (c) The Info-gap decision theory [Ben-Haim, 2006] seeks decisions which maximize 

robustness to failure instead of minimizing the objective function. The optimization 
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problem is to find the decision x  such that it would be feasible with as many as 

possible realization in the uncertain parameters set. When the uncertainty set is 

defined as: { }ˆ:U R R R α= − ≤ where R  deviates from the expected function R̂  by an 

unknown amountα . The greater the value ofα , the greater the possibilities of R , soα , 

the uncertainty parameter, expresses the information gap between what is known and 

what needs to be known for an ideal solution of the exact function. The methodology 

expresses the idea that uncertainty may be either pernicious or propitious, that is, an 

uncertain variation may be either adverse or favorable: the robustness function is the 

greatest level of uncertainty consistent with no failure, while the opportunity function 

is the least level of uncertainty, which entails the possibility of sweeping success. 

Consequently, the robustness and opportunity functions can be expressed as the 

maximum or minimum of a set of  α  values: α̂ = max {α  : minimal requirements are 

satisfied}, β̂  = min {α : sweeping success is obtained}. An application of the Info-

Gap on water resources model is presented in the next Section. 

2.2.3. Water systems under uncertainty 

Planning and management of real-life water resources projects are always conducted 

under uncertainty, such as uncertain demands, flows, yields, costs and benefits, etc. A 

common approach is to neglect the uncertainty in the mathematical model by 

replacing them with deterministic estimator. However, Philbrick and Kitanidis, [1999] 

show the limitation of this approach for reservoirs management. They present three 

models for reservoirs managements and demonstrate that the deterministic 

formulation does not perform as well as a stochastic formulation in which the 

uncertain parameters considered as random parameters with known PDF. 

Recently, consideration of uncertainties is becoming a standard step in water 

resources modeling. Numerous models were developed in the past for management 

optimization of reservoirs, in which, inflows, net evaporation, hydrologic, and 

economic parameters and system demands are considered as random variables 

[Labadie, 2004]. Hiew et al., [1989] and Crawley and Dandy, [1993] applied the 

Implicit Stochastic (IS) approach for optimal management of multi-reservoirs system 

with uncertain inflows. However, since implicit approach requires solving many large 

scale deterministic problems, Hiew et al., [1989] formulated a linear model and 

Crawley and Dandy, [1993] formulated piecewise linear approximation of the 
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nonlinear model which can be solved efficiently by available linear programming 

methods. 

In many applications of multi-reservoirs management, linear techniques are not 

applicable due to the existence of nonlinear and non-separable functions in objective 

functions and constraints. In these cases, various nonlinear algorithms are used, such 

as Successive Linear Programming (SLP), Successive Quadratic Programming (SQP), 

Generalized Reduced Gradient (GRG), interior-point algorithms and Genetic 

Algorithms (GA). Barros et al., [2003], compared the performance of SQP and SLP 

on a large scale Brazilian hydropower system. Peng and Buras, [2000] applied the 

GRG to nonlinear model within IS optimization framework. Cai et al., [2001] 

presented a framework for solving large-scale nonlinear water management model by 

GA which can be used within the IS approach. 

Dynamic programming is also a popular optimization technique within the IS scheme 

applied to reservoirs management. The earliest application of IS and dynamic 

programming has its roots in Young, [1967]. The difficulty in using dynamic 

programming is the curse of dimensionality, which makes it impractical in large-scale 

systems. To overcome this drawback in the context of IS approach, some versions of 

discrete dynamic with various approximations were proposed. Among them the 

incremental dynamic programming and the discrete differential dynamic 

programming which were applied to reservoir management models in the last 

decades. For more details and applications of these methods we refer the reader to 

Labadie, [2004] and the references therein. Vasiliadis and Karamouz, [1994] explicitly 

incorporate the stochastic inflows of a single reservoir into the optimization model 

and solved it by the stochastic dynamic approach to minimize the expectation of the 

cost function. 

Similar to stochastic dynamic programming, the scenario based Multi-stage Stochastic 

Programming (MSP) is also explicitly includes the random parameters in the 

optimization model. The MSP had wide applications in water resources modeling. 

Kracman et al., [2006] developed a multi-stage linear programming model which 

considers stochastic inflows given as scenario tree for a system of reservoirs in the 

Colorado River in Texas. The model seeks maximum total expected benefit of the 

system over a five year horizon. Where the first stage decision is water quantity to 
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contract for the coming years and the future decisions are monthly reservoirs releases 

to meet specified requirements. The main disadvantage of this scenario based method 

is that the size of the optimization problem will increase with the number of scenarios 

and result in an extremely large scale optimization problem. However, the model is 

linear, and therefore large scale problems can be solved efficiently by decomposition 

methods such as Bender’s decompositions [Benders, 1962]. 

A special variant of the MSP is the Two-stage Stochastic Programming (TSP) in 

which the problem is formulated to optimize the actual objective value of the first 

stage plus the total expected value of future decisions (recourse), which depend on the 

first stage decisions and future random realizations. Seifi and Hipel, [2001] applied 

the TSP for a linear model of multi-reservoir operation with stochastic inflows 

specified by set of scenarios. In this model the two stages are decision making stages 

and not time period stages as in Kracman et al., [2006]. In the first decision stage the 

model decides on the releases for the entire period to minimize the sum of deviation 

from given targets for the storage and the releases. The second stage is considered as 

surplus and shortage variables corresponding to each scenario along with the expected 

value of the shortage and spill penalty. This formulation leads to a large scale linear 

program which is solved efficiently by an interior-point algorithm that exploits the 

structure of the problem being considered. 

One of the more common objectives is to optimize expected value of the objective as 

it the case in Vasiliadis and Karamouz [1994], Kracman et al. [2006] and Seifi and 

Hipel [2001]. However, decision makers are always interested in risk measures 

together with or instead of the expected value. Yamout et al., [2007] considered a 

water resource allocation problem over a region of East Central Florida. The available 

water is considered random and represented by finite number of scenarios. The paper 

studies the effect of incorporating a new objective, termed Conditional Value at Risk 

in analyzing a water allocation problem by comparing the results with various 

frequently used models and objectives for stochastic optimization, such as: 

deterministic expected value model, scenario analysis model and STP model with 

recourse. The new objectives which incorporate a risk measure provides an objective 

value with a confidence level associated with it. 
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Watkins and McKinney, [1997] incorporated different risk measures in their 

optimization models. They considered two water resources planning problems with 

stochastic parameters represented by scenarios. The first is for screening a water 

supply plan with stochastic future demand, and the second considers the problem of 

hydraulically containing a ground water contaminant when aquifer parameters are 

stochastic given by scenarios. In the first model they modeled the cost variance as a 

measure of risk and minimized an objective function defined as a weighted sum of the 

expected value of the cost and the standard deviation of the cost. In the second model 

they used the upper partial mean, i.e., the expected positive deviation from the mean 

cost as a measure of risk and minimized an objective function defined as a weighted 

between the expected value of the cost and the upper partial mean of the cost.  

Chance Constrained Programming (CCP), is a common and popular technique in the 

modeling of stochastic problems. Several researchers developed chance constraints 

optimization schemes to design water distribution systems under demand and 

roughness coefficients stochastic conditions, modeled as PDFs. Lansey et al., [1989], 

Xu and Goulter, [1998] and Babayan et al., [2005] formulated a chance constrained 

minimization problem for least cost design of water supply systems. The model is 

formulated as minimization of the network cost of a nonlinear function of the pipe 

diameters in the network, under constraints of water balance, energy conservation and 

minimum head requirement at the nodes, where the discharge in each pipe is 

expressed by the Hazen-Williams equation. This formulation implies that the 

objective function is deterministic, since the objective function does not depend on 

the stochastic parameters (the demand and the roughness coefficients). The constraints 

in the demand nodes and the minimum required head constrain are stochastic and 

hence formulated as chance constraints. Lansey et al., [1989] modeled the stochastic 

demands and roughness coefficients as independent normally distributed random 

variables, and showed that the stochastic constraints are also normally distributed, 

which facilitates the formulation of a closed form of the chance constraints. For a pre-

determined confidence level of the chance constraints, the deterministic equivalent of 

the chance constraints model was solved using the Generalized Reduced Gradient 2 

(GRG2). 

In practice, demands in the certain area may be highly correlated, as they are affected 

by the same causes, e.g., hot and dry weather conditions. Xu and Goulter, [1998], 
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solved the same formulation, but the stochastic parameters were modeled by 

correlated normally distributed variables. Incorporating the correlation in the model 

makes it more difficult to evaluate the chance constraints so they suggested a Monte 

Carlo simulation and linearization of the model equations to facilitate the chance 

constraints evaluations. The GRG2 optimization method requires that decision 

variables (e.g., pipe diameters) to be continuous variables, which is unrealistic. 

Recently, Babayan et al., [2005] overcame this drawback by using GA linked to an 

integration based technique for evaluating the probabilities associated with the chance 

constraints. The minimum cost design formulated previously is a chance constraint 

problem with deterministic objective function which depends only on the pipe 

diameters of the networks. In contrast to this formation Kapelan et al., [2005] 

proposed a multi-objective optimization approach for solving design problem under 

stochastic demand which was modeled as normal PDF and roughness coefficient 

modeled as uniform PDF. This approach is aimed to minimize the total design cost 

and the failure probability. Hence, the chance constraints in the former formulation 

are contained in the multi-objective optimization scheme. The multi-objective 

optimization problem was solved by multi-objective GA to obtain the whole Pareto 

front in a single run. The Pareto front identifies the trade-off between the total cost 

and the failure probability. In contrast, the single objective formulation, e.g. Lansey et 

al. [1989], only solves for one point on the Pareto front, the point that corresponds to 

the pre-determined failure probability.  

Filion et al. [2007] proposed a new formulation which considers not only the 

hydraulic performance of the system but also the economical damages and losses 

arising from death and human injury during low and high pressure failures. For 

instance, a low pressure failure can affect residential and commercial users, cause 

pipes to collapse, and in the event of a fire, it can cause the loss of property and 

human life. A high pressure failure can cause pipes to burst with flooding damage to 

surrounding property. The suggested formulation accounts for this damage by 

minimizing two objective optimization problems comprised of expected annual cost 

and expected damage minimization. 

In addition to the many applications of the CCP for optimal design problems, several 

researchers applied this approach for management problems. Wagner [1999] applied 

the CCP to model the least cost pumping model for remediating the ground water 
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contamination. This model is a part of a framework for analyzing the optimal position 

of ground water sampling for ground water projects. The least cost pumping module 

is formulated as chance constraints in which the concentrations as a function of the 

stochastic parameters are normally distributed.  

Sankarasubramanian et al. [2009] presented an optimization model for water 

allocation from a reservoir to users, where the optimization is performed under 

stochastic inflow forecasts given as scenarios. The optimization model seeks 

maximum utility of water use with feasible water allocation policy. The expectation 

operator was applied to the objective function and the stochastic constraints were 

replaced by chance constraints. Generally, there is one stochastic constraint in a 

reservoir management model, which is associated with the continuity equation of the 

storage, while in this model a second constraint is added, which is associated with the 

maximum deviation allowed for the water users from predetermined (contracted) 

amount. 

In real world problems, the information is frequently not sufficient to cast the 

uncertain variables as PDFs or scenarios. Instead, the available information may be 

used to present the uncertain variables as intervals or uncertainty sets. This is 

reasonable, because planners and engineers typically find it more difficult to specify 

distributions than to define value intervals/sets. Hipel et al. [1999] demonstrate the 

information gap methodology for three models for three systems arising in watershed 

management: (a) Hydroelectric generation system in which water flows from the 

watershed into a reservoir, then through the generating plant back out into the 

environment. If the reservoir is unable to store all the inflow, then water is diverted 

past the generating plant directly to the environment, with consequent loss of 

electricity generation. (b) Irrigation system in which water polluted with pesticides 

and/or fertilizers flows from farmland to a collection facility before treatment, and 

then to the environment. If the collection capacity is too small, some polluted water 

flows directly into the environment. (c) Urban sewage system where sewage flows to 

a large primary treatment facility, then to a second facility and then back to the 

environment. Overflow of untreated sewage directly into the environment occurs if 

the primary plant capacity is too small.  
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The drainage of the watershed over time is considered uncertain, while the only 

information is given by the nominal value of the drainage. In the three models the 

decision maker must choose the storage capacity of the collection facility and the 

treatment/process rate which is assumed to be constant over time. The inlflow in each 

case is unknown and given by the uncertainty set: 

2

0

( , ) ( ) : ( ) 0 ( ) ( )
T

U r r t r t and r t r t dtα α
   = ≥ − ≤    

∫       (2.2) 

which constrains the integrated squared deviation of the actual drainage over time 

from the nominal drainage. Each model was solved for maximum robustness, defined 

as the maximum deviation allowed without violating the failure criteria which states 

that the stored volume cannot exceed the storage capacity. 

Water planning and management decisions face increasing challenges to satisfy a 

variety of water demands, exacerbated by the recent droughts, climate variability and 

climate change. Therefore, a framework for incorporating large-scale climate 

information into the water resources planning and decision-making process is needed 

in order to accommodate forecasts of the future scenarios. Grantz at el. [2007] 

developed a framework for incorporating large-scale climate information into the 

water resources planning and decision making process, and demonstrated it to the 

semiarid Truckee-Carson Basin in Nevada. The framework consists of: (a) 

Identification of climate signals that are relevant to the area of interest, (b) 

Development of probabilistic forecasts for stream flow based on the climate signals, 

and (c) Incorporation of the forecasts into the decision support system. In this study a 

simplified seasonal management model was developed for the Truckee-Carson basin 

to demonstrate the utility of the climate based stream flow forecasts in water 

resources decision making. The model is based on the conservation of mass, subject 

to the supply and demand constraints of the system. In this case, the supplies are the 

Truckee and Carson forecasts, the demands are irrigation and fish requirements. The 

decision variables are the storage available for irrigation, Truckee River water 

available for fish and the Truckee Canal diversion. The results of the climate based 

stream flow forecast were compared to the results from historical record, in order to 

investigate the benefit of including climate information in the stream flow forecast. 
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The result show that that incorporating climate information into the stream flow 

forecast improves the overall skill in forecasting the decision variables. 

Minville et al. [2010] used several climate projections from five general circulation 

models with two greenhouse gas scenarios to evaluate the uncertainty of these future 

potential climates on floods and hydroelectric production. The climate change 

projections were used to produce synthetic series using a stochastic weather generator 

for the climate variables: minimum temperature, maximum temperature, and 

precipitation. To account to for the natural variability of the climate, thirty stochastic 

series for each climate variable were generated for each of the climate projections, 

which then served as input for a hydrological model which simulates the watershed 

response (inflow to river or reservoir) for each of the thirty series. Given the 

simulated inflows and reservoir simulation model the climate change impacts are 

evaluated by entering each of the thirty series of the future inflows for all the climate 

projections into the reservoir simulation model which includes hydropower system 

and spilled flows. Hence, for predetermined operating rules, performance measures of 

the reservoirs (reliability and vulnerability) are evaluated and compared to simulation 

results of a historical control period. The results show that classical management 

policy of the reservoir should be re-considered in order to incorporate the new 

hydrological conditions. 

In contrast to Grantz at el. [2007] and Minville et al. [2010], Ajami et al. [2008] used 

only climatological historical data in their analysis. The climatological data were used 

as input for the hydrological model. However, they consider not only the 

climatological uncertainty but also uncertainty of parameter values and in the 

structure of the hydrological model. In this paper integrated Bayesian uncertainty 

estimator framework was used to incorporate parameters and model structural of the 

hydrological model. This framework consists of using three different models with 

variety of model parameters. 

Like in Minville et al. [2010], different operational rules were considered in 

examining how hydrological uncertainties impact reliability, resilience, and 

vulnerability for reservoir management. Uncertainty in climate change was used as 

input in forecasting the future scenarios discussed in Grantz at el. [2007] and Minville 

et al. [2010]. For instance: uncertainty in forecasting the effect of green house gases 



41 
 

(GHGs) on climate change, amount of the GHGs, the technologies available for the 

treatment, and the decisions of future policy makers. 

Tol [1998] demonstrated an uncertain model that deals with decisions which affect 

climate change, through the emission of GHGs. A part of that uncertainty that is often 

ignored is the behavior of future policy makers. For example, a present day policy 

maker wants to stabilize the concentration of GHGs, but this is unlikely to be a 

welfare maximizing policy, therefore future policy makers have an incentive to switch 

to less ambitious emission controls, as a result the costs substantially increase if 

current policy makers want to set long-term goals without the full cooperation of 

future policy makers. Tol, [1998] attempts to advise a current policy maker what he 

should do, given a long-term goal for climate policy while he does not know what 

future policy makers will do. The only uncertainties considered are those regarding 

the motives of future policy makers, with only two types of policy makers: stabilizers 

and optimizers who are seeking to maximize net present welfare. When the current 

policy maker is a stabilizer, successive policy makers will either follow his strategy or 

switch to a policy which maximizes the net present welfare. The probability of a 

switch (conditional probability) is considered constant over time. The objective of the 

current policy maker is to minimize the net present costs of emission reduction, given 

certain conditions on the chance of meeting the stabilization target. The model is 

demonstrated with a numerical example which shows that if current policy makers 

want to meet a cumulative emission constraint in expectation, then the preferred 

policy does not qualitatively deviate from one suggested by a standard cost-effective 

policy. If, however, the constraint is to be met with a certain probability, then the 

importance of early action is enhanced relative to that of postponed action and the 

costs substantially increase. 

2.2.4. Infrastructure management under uncertainty 

Uncertainty in planning and management of infrastructure projects has been tackled 

by various approaches, including probabilistic and non-probabilistic. In the former 

approach, two methods have been used for representing uncertain variables: discrete 

and continuous distributions. González et al. [2006] suggests a methodology for 

maintenance of railway infrastructure (called RCM) under uncertainty regarding the 

deterioration rate of the railway infrastructure. The model formulation assumes that 
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the management under facility deterioration is a discrete Markov decision process, 

with a known matrix of transition probabilities. In contrast, Jido et al. [2008] 

developed an infrastructure Maintenance and Rehabilitation (M&R) model for 

maintenance of railway infrastructure, under uncertainty of the deterioration rate, 

without neglecting the inspection cost that has trade-off with the M&R cost. The 

introduction of the inspection cost into the model adds more uncertainty to the model, 

for instance: how to inspect the facility and which technology to use? Usually, 

infrastructure management is presented as a Markov decision process in which the 

state of facilities is defined in discrete states to represent the uncertain deterioration. 

However, in Jido et al. [2008] continuous states are defined instead, in order to avoid 

"the curse of dimensionality". Both models developed by González et al. [2006] and 

Jido et al. [2008] are designed to minimize the expected value of the facility’s 

lifecycle cost. However, if the optimality is based only on cost expectation (i.e. risk 

neutral attitude) this may not meet the requirement of reliability in the sense that 

system failure may have a significant probability. 

Zhao at el. [2006] demonstrated an improved approach for optimal decision making 

for infrastructure development and expansion decisions based on the decision maker’s 

risk preference. The decision making process is modeled as a multistage stochastic 

problem with uncertainty modeled by a binomial tree. As a result of the binomial 

lattice representation of the uncertainty the random outcome is subject to a normal 

distribution, i.e. the optimal risk averse decision has analytical terms depending on the 

risk preference factor, variance and expectation of the normal distribution. The risk 

factor is an input for the model, the expectation and the variance are formulated as a 

recursive relation that can be solved by a SDP which applies backwards calculations 

to determine the optimal values and decisions. 

When the uncertain variables are represented as continuous distribution, this leads to a 

stochastic programming problem, in which special treatments are applied to the 

objective function and the constraints, so the problem can be re-stated as an 

equivalent deterministic one. 

Chan at el. [2006] presented a study on selecting electricity contracts for a large-scale 

chemical production plant, which requires electricity importation under uncertainty 

regarding the electricity demand. Two common types of electricity contracts are 
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considered: (a) Time zone (TZ) contract where electricity price depends on the time 

during the day (b) Loading curve (LC) contract where restrictions are employed in the 

contract, and if any of these restrictions is violated penalties will be charged on the 

customers. The customers, however, are rewarded in the second contract by a lower 

electricity price compared to the first one. Chan at el. [2006] considered only demand 

uncertainty which is assumed to be normally distributed. The problem is formulated 

as a multi-period probabilistic linear programming and modeled as a chance 

constrained linear program. This approach seeks to satisfy the constraints involved by 

a predetermined confidence level based on the known PDF of the uncertain variables, 

and thus the problem can be restated as an equivalent deterministic one. The essential 

challenge lies in the computation of the probabilities of satisfying the constraints, but 

in the paper this is an easy task as a result of the fact that the demand is normally 

distributed and is the only uncertainty. Furthermore, there is only one chance 

constraint in the model, namely that related to the amount of the product being 

produced, which must satisfy the market demand with the predefined confidence 

level. The objective is to determine the best electricity contract and the optimal 

imported electricity amount in each shift which maximize the net-profit of chemical 

production plant according to the desired confident level. 

In case that traditional stochastic programming is not applicable because of lack of 

sufficient information to construct the PDFs the uncertain variables can be presented 

as intervals. One alternative for dealing with this type of uncertainty is to use methods 

of optimality analysis i.e. sensitivity analysis or to formulate best/worst case models 

[Liik at el., 2004]. However, sensitivity analysis is generally suitable for problems 

with few uncertain variables. The best/worst case analysis solved only for the two 

extremes possibilities which may not necessarily construct a set of stable intervals for 

generating decision alternatives. To overcome these drawbacks when many uncertain 

variables are given as intervals, one must test a number of combinations for 

deterministic values within the intervals. However, for large-scale problems, this 

number may become extremely large [Huang at el., 2005]. 

Liik at el., [2004] presented a model for long-term optimization of electricity 

generation capacity. In the deterministic formulation of the problem, the objective is 

to minimize the total costs in the planning period considering the reliability and 

environmental constraints. The model assumes that the set of existing power plant 



44 
 

units and a set of units which can be build in the future are given. The optimization 

task is to determine the optimal unit commitment and the economic scheduling of 

units’ active power and energy production during the planning period. Liik at el. 

[2004] consider the uncertain problem in which the load duration curve (which is the 

cumulative probability of load magnitudes) and the cost function are uncertain. Each 

of the uncertain functions is given in the form of intervals, i.e. the load function is 

bounded within an interval that changes over time along the planning horizon and the 

same for the cost function. Instead of the cost function the authors suggest to define a 

new function representing the risk or the possible losses caused by uncertainty factors. 

A min-max approach was applied to the uncertain risk function to obtain the 

deterministic equivalent model which was solved by dynamic programming. 

Huang at el. [2005] developed a model for long-term planning of the integrated solid 

waste management system under uncertainty (ISWM), i.e. management of municipal 

solid waste, which includes programs that reduce or reuse the waste produced, and/or 

divert wastes from traditional disposal facilities to recycling, composting, and/or 

incineration. The suggested model can effectively reflect uncertain characteristics of 

the waste management systems, such as the amounts of solid waste generated in cities 

and towns, the costs for various waste transportation routes, and the capacities and 

operating costs of waste management facilities. Economically, the model considers 

costs related to waste collection, transfer, transportation, processing and disposal, 

capital investments for developing and expanding waste management facilities, and 

revenues from recycled materials, finished compost, and residual facility values. Its 

solutions provide bases for answering questions of siting, timing, and sizing for new 

and expanded waste management facilities in relation to a variety of waste-diversion 

targets. The problem is modeled as an inexact mixed integer linear programming 

model which minimizes the net system cost, related to four groups of costs and 

revenues: (a) Waste collection and transportation costs (b) Facility operating costs (c) 

Capital costs for new and expanded facilities and (d) Revenues from the sale of 

composting products and recyclable materials, and the facilities’ residual market 

values. Under the constraints of: (a) Capacity limitation (b) Mass balance, and (c) 

Technical constraints. 

Models for infrastructure planning and management uncertainties may have 

probabilistic and non- probabilistic characteristics. The former can be formulated with 
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stochastic approaches and the latter can be expressed as intervals with known lower 

and upper bounds but unknown distributions. Namely, it is possible to incorporate 

probabilistic and non-probabilistic approaches in one model in order to represent 

different kinds of uncertainties. 

Li at el. [2006] demonstrated a two-stage chance constrained mixed integer linear 

programming method for an integrated municipal solid waste (IMSW) management 

under uncertainty. In the (IMSW) management there are different kind of 

uncertainties, such as costs of waste transportation and facility operation and revenues 

from waste management facilities, which can be presented by intervals. In 

comparison, uncertainties such as waste generation rates may be better presented as 

random variables with known PDFs. The cost function in Li at el. [2006] covers 

expenses for handling fixed allowable waste flows, probabilistic excess flows, 

expansions of the waste management facilities, and revenues from waste treatment 

facilities, therefore the model is attending to minimize the expected cost. The system 

constraints are related to all of the relationships between the decision variables and 

the waste generation management conditions. The first-stage decision variables 

represent allowable waste flows from district to waste management facility. The 

second-stage decisions are related to probabilistic excess flows from district to facility 

under varied waste generation, capacity expansion schemes for the landfill and waste 

treatment facilities. The constraints on the existing landfill capacity are formulated as 

chance constraints. All other uncertainties like the cost coefficient and some other 

parameters in the constraints are formulated as interval uncertainties. The integrated 

final mathematical model which includes interval uncertainties inexact programming 

is needed in order to obtain the optimal solution. 
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3. Deterministic model 

3.1. Introduction 

The main objective of this work, as indicated by its title, is to develop and test a 

model for seasonal multi-year management of water quantities and salinity in regional 

water supply systems (WSS) under uncertain hydrological condition. As one step 

towards this meeting this objective we formulate, implement and test the performance 

of a deterministic model. Computational efficiency of this model is a guiding 

principle, since the deterministic model will constitute a kernel of a stochastic 

optimization tool. 

The details of the model and the solution technique are given in the next Sections. The 

model's objective function and the constraints are presented in Section  3.4.  Sections 

3.5, 3.6 and 3.7 contain the optimization plan and the optimization tools, namely 

structuring the model for the optimization solver. Sections 3.8 and 3.9 present 

numerical examples and sensitivity analysis. Section 3.10 presents the Time-Chained-

Method (TCM), and its performance measure. 

3.2. Background and Motivation  

Management of water resources systems (WSS) is aided by models of various types, 

ranging from long-term development of large systems, to detailed operation of smaller 

parts such as a distribution system or an aquifer. Thus models range from highly 

aggregate versions of an entire water system to much more detailed models in space 

and time. It does not seem feasible to create a single tool that covers all levels in time 

and space simultaneously and the preferred option is therefore to use a suite of 

models, inter-connected in a hierarchy [Shamir, 1971; Zaide, 2006]. Selecting the 

proper aggregation in time and space for a particular application is one of the most 

important aspects of modeling. The short-term (weekly to annual) or long-term (years, 

decades) operation of a large scale WSS can be captured in a model of medium 

aggregation that is used to manage simultaneously both the sources and the network 

[Fisher et al., 2002; Draper et al., 2003, 2004; Jenkins et al., 2004; Watkins et al., 

2004]. Many models deal with quantities of water to be delivered from sources to 

demand zones. Some models consider water quality as well, in particular salinity 

[Mehrez et al.1999; Tu et al., 2005; Yates et al., 2005; Zaide, 2006].  
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The network representation in the model can be classified according to the physical 

laws that are considered explicitly in the model constraints [Ostfeld and Shamir, 1993; 

Cohen et al., 2000]. According to this classification the models of Tu et al. [2005], 

Yates et al. [2005] and Zaide [2006] are flow-quality models which consider the 

balance of the flows and mass of quality parameters, but without explicit inclusion of 

the hydraulics. The inherent assumption of these models is that the hydraulic 

operation with the quantities prescribed by the model would be feasible hydraulically. 

With the inclusion of desalination plants as an important source in WSS, as is the case 

in Israel, water salinity consideration must be included in the management. It is 

important and necessary to consider both quantity and salinity in the water sources, in 

the water supplied to consumers and at nodes of the supply system itself. With the 

salinity considerations becoming an important part of management models, the 

complexity of the model evidently increases. 

A further consideration is sustainability of the management plan. This implies meeting 

the needs of the present without reducing the ability of the next generation to meet its 

needs [Loucks, 2000]. Sustainable management requires a perspective with a 

relatively long time-horizon, and hence the need to develop multi-year flow-quality 

models for WSS management. The multi-year models insure that the final state of the 

system at the end of the operating horizon is considered, either as a constraint or 

having a value in the objective function.  

An associated aspect of multi-year water supply management relates to hydrological 

uncertainty [Ajami et al., 2008], climate change [Grantz et al., 2007], population 

growth [Kasprzyk et al., 2009], and the decline of water quality in the sources. The 

model described in this Chapter is deterministic; however, as will be demonstrated 

below, our model is developed with structural adaptability and high computational 

efficiency in mind, so it can be a building-block for a model that takes uncertain 

considerations into account by sensitivity or uncertainty analysis [Lal et al., 1997; 

Wong et al., 2002; Wu et al., 2006]; an Ensemble or Scenario-based Optimization 

[Seifi and Hipel, 2001; Kracman et al., 2006] or by Implicit Stochastic Optimization 

[Crawley and Dandy, 1993; Labadie, 2004].  

Water resources management models have been solved by a variety of optimization 

techniques. Evolutionary Algorithms, including Genetic Algorithms and others, have 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V6C-4WM7585-1&_user=32321&_coverDate=09%2F15%2F2009&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000004038&_version=1&_urlVersion=0&_userid=32321&md5=2bec911046d4380ddb6e67e849425a56#bib105
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gained popularity in recent years, as detailed in a recent review paper [Nicklow et al., 

2010]. During the first stages of this research we developed our own Evolutionary 

Algorithm titled “Search Method for Boxed-Constrained Optimization” as a candidate 

solver for the optimization problem (for details and application of this method to WSS 

problems see Appendix 1).  

3.3. Model Outline  

A seasonal multi-year model for management of water quantities and salinity in 

regional water supply systems (WSS) has been developed; water is taken from 

sources, which include aquifers, reservoirs and desalination plants, conveyed through 

a distribution system to consumers who require certain quantities of water under 

specified salinity constraints. The year is divided into seasons, and the operation is 

subject to technological, administrative and environmental constraints such as water 

levels and water quality in the aquifers, capacities of the pumping and distribution 

system, capacity of the desalination plants and their maximum salinity removal ratio. 

The objective is to operate the system over a period of several years, each year 

divided into two seasons, with minimum total cost of desalination, pumping, delivery 

and an extraction levy in the aquifers. The objective function and some of the 

constraints in the model are nonlinear, leading to a nonlinear optimization problem. 

The model does not include hydraulic constraints and does not guarantee required 

heads at consumer nodes, yet the objective function takes into account the cost of 

conveyance as a function of the hydraulic properties of the network. This is 

appropriate when it can be assumed that the resulting operation plan will be feasible 

hydraulically [Cohen et al., 2000]. 

3.4. Model Components 

In the seasonal multi-year model for management of water quantity and salinity, water 

is taken from sources, which include aquifers, reservoirs and desalination plants, 

conveyed through a distribution system to consumers who require certain quantities of 

water with specified salinity limits. The small WSS shown in Figure 3.1 was used for 

model development, testing and demonstration; results will be shown also (in Section 

3.9) for the WSS shown in Figures 3.11, which is a central part of the Israeli National 

WSS. The year is divided into seasons (two seasons in the examples, but there could 

be more, since the computational cost rises only linearly with the number of seasons, 
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as detailed in Section 3.10) and the operation is subject to constraints on water levels 

and water quality (salinity) in the aquifers, capacities of the pumping and distribution 

system, capacity of the desalination plants and their salinity removal ratio. Therefore 

the decision variables in each season are: desalinated water production and salinity 

removal ratio in the desalination plants, and the water flow and water salinity 

distribution throughout the network. Two sets of state variables describe the state of 

the system at the end of each season: water levels and water salinities in the natural 

resources (aquifers and reservoirs).  

The model was developed in two forms, first as an annual model and then it was 

expanded into a multi-year model. The annual model served as the building block for 

the multi-year with the state variables linking the seasons and the years (Figure 3.2). 

The annual model has value in itself, as it can be used to determine the coming year's 

operation with the known initial condition and the desired end-of-year state 

prescribed. It is also valuable for developing and debugging when new system 

expansions/modifications are considered.  

 
Figure 3.1: Demonstration WSS 

 

 
Figure 3.2: Linkage between seasons and years through state variables 
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3.4.1. Objective function 

The objective is to operate the system with minimum total cost of desalination CD , 

extraction levy from the natural sources CE  and conveyance costs CC  over the 

planning horizon fT . 

In the next Sections , , , , ,p a d z S Y  denote pipe, aquifer, desalination plant, demand zone, 

season and year, respectively.  

Conveyance Cost  

The conveyance cost in a pipe is related to the head loss, given by the Hazen-

Williams equation, and the topographical difference between its ends (assuming the 

same hydraulic head at both ends, a reasonable assumption for a seasonal model).  
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      (3.1) 

where ,S Y
pCC is conveyance cost ( $ / season ); ,S Y

pX is head loss ( m ); ,S Y
pQ is discharge       

( 3 /m season ); ,S Yw is number of pumping hours ( /hr season ); ,S YKWHC  is pumping cost   

( $ / kwhr ); pZ∆  is topographical difference ( m ); ,S Y
pHf∆ is energy head loss ( m ); Y

pc  is 

Hazen Williams coefficient ( − ); pD is link diameter ( cm ); pL  is link length ( km ). 

Extraction Levy 

The extraction levy depends on the water level in the natural resource. The levy is 

higher at low water levels, to indicate the increasing value (cost of scarcity) of the 

resource. The specific levy is expressed as a value per unit volume, so the cost of the 

extraction levy is: 
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which is a quadratic relationship between of extraction levy and the amount pumped, 

where ,S Y
aCE  is specific levy ( 3$ / m ); ,S Y

ah  is water level ( m ); ( ) ,
min

S Y

ah  is minimum 

allowed water level ( m ); ( ) ,
max

S Y

ah  is maximum allowed water ( m ); ( ) ,max S Y

a
CE  is 

maximum levy ( 3$ / m ); ,S Y
aCE is extraction levy ( $ / season ); ,S Y

aQ  is pumping amount (
3 /m season ). 

Desalination Cost 

The desalination cost includes a constant price per unit of desalinated water plus a 

variable cost of the salinity removal ratio: 

, ,
,

1
(100 ) d

S Y S Y
d d dS Y

d

CD Q
RR βα

 
= + ⋅ 

− 
      (3.3) 

where ,S Y
dCD is desalination cost ( $ / season ); dα is constant ( 3$ / m );  ,S Y

dQ is desalination 

amount ( 3 /m season ); ,S Y
dRR  is removal ratio ( % ); dβ is constant ( − ). 

Overall Cost 

The objective of the multi-year model is to minimize the present value of the total 

cost of operation over the planning horizon. 
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where cost  is the total operation cost ( $ ); r  is the annual discount rate ( − ). Since the 

objective function is nonlinear, it can easily be converted into benefit maximization 

by including the value of the quantity and salinity of the water supplied to consumers 

(within the specified constraints), if the relevant cost/benefit coefficients are available. 

3.4.2. Constraints 

Water Conservation Law 

This law holds for all nodes in the network; source nodes, intermediate nodes and 

demand nodes. A WSS can be represented as a directed graph consisting of N  nodes 

connected by M  edges. The nodes can be grouped into two sub-groups: 1N  are 

source nodes, such as desalination plant and aquifers, with one outgoing link for each 
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source node and 2N  are junction nodes where two or more edges join i.e., 

intermediate nodes and demand node. The M edges represent the links between two 

nodes; links in which the direction of flow is not fixed are represented by two edges, 

one in each direction. The topology of the network is represented by the junction node 

connectivity matrix A , where 2N MA ×∈R  has a row for each node and a column for 

each edge. The nonzero elements in each row are 1+  and 1−  for incoming and 

outgoing edges respectively. The first columns in A  correspond to the links which 

leave source nodes (aquifers and desalination plants), while the last rows correspond 

to the demand nodes. For each season S  in year Y  the following linear equation 

system insures water conservation at the network nodes. 

A Q b⋅ =          (3.5) 

where [ , ]T
source pipesQ Q Q= ; [0, ]T

demandb Q= ; SourceQ  is the vector of discharges leaving source 

nodes; pipesQ  is the vector of discharges in the links which are connected to 

intermediate nodes excluding the links which are connected to source nodes; demandQ  is 

the vector of outgoing discharges at demand nodes.  

The water supply network shown in Figure 3.1 has 2 source nodes, 4 intermediate 

nodes and 2 demand nodes. The junction node connectivity matrix for this network 
6 10A ×∈R is given in Table 3.1 and the vectors Q  and b are 1 8[ , , ,..., ]T

a dQ Q Q Q Q= ;

1 2[0,...,0, , ]T
z zb Q Q= == . 

Node Source Pipe 
a d 1 2 3 4 5 6 7 8 

1 1 0 -1 -1 0 0 0 0 0 0 
2 0 1 0 0 -1 -1 0 0 0 0 
3 0 0 1 0 1 0 -1 0 -1 0 
4 0 0 0 1 0 1 0 -1 0 -1 
5 0 0 0 0 0 0 1 1 0 0 
6 0 0 0 0 0 0 0 0 1 1 

Table 3.1: Junction node connectivity matrix 

Mass Conservation Law 

For each season S  of year Y  the following linear equation system insures salt mass 

conservation at network nodes: 
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( )

2 3

3 3

( )0 0 0

0

0

( ) ( )

0,

0

[ , , ]

diagonal matrix

[ , , ]

N M n
Q

T
source pipes demand

M n M n
Q

Q source pipes demand

A D C A

A A
I

C C C C

D

D Q Q Q

× +

+ × +

⋅ ⋅ = ∈

 
=  − 
=

∈

=

R

R

diag

      (3.6) 

where sourceC  is salinity leaving source nodes; pipesC  is the salinity in the links which are 

connected to intermediate nodes excluding the links which are connected to source 

nodes; demandC is salinity supplied at demand nodes; 3n  number of demand nodes; 

3 3n nI ×∈R is the identity matrix.  

For the network in Figure 3.1, the matrix 0 6 12A ×∈R is given in Table 3.2, 12 12
QD ×∈R  is 

given in Figure 3.3 and the vector 0C is defined as 0
1 8 1 2[ , , ,..., , , ]T

a d z zC C C C C C C= == . 

Node Source Pipe Demand 
a d 1 2 3 4 5 6 7 8 z=1 z=2 

1 1 0 -1 -1 0 0 0 0 0 0 0 0 
2 0 1 0 0 -1 -1 0 0 0 0 0 0 
3 0 0 1 0 1 0 -1 0 -1 0 0 0 
4 0 0 0 1 0 1 0 -1 0 -1 0 0 
5 0 0 0 0 0 0 1 1 0 0 -1 0 
6 0 0 0 0 0 0 0 0 1 1 0 -1 

Table 3.2: Definition of the matrix 0A  

12 12

1

8

1

2

0

0

S
Q

S
a

S
d

S

S
Q

S

S
z

S
z

D

Q
Q

Q
D

Q
Q

Q

×

=

=

∈

 
 
 
 
 

=  
 
 
 
 
 

R



 

Figure 3.3: Definition of the matrix S
QD  

Hydrological Balance for Natural Resources 

The hydrological water and salinity mass balances insure that the change in aquifer 

storage equals the difference between the recharge and withdrawal during the season: 

, , , ( , ) 1( )S Y S Y S Y S Y
a a a a aR Q SA h h −− = ⋅ −        (3.7) 
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( ) ( ), , ( , ) 1 , , , ( , ) 1 ( , ) 1S Y S Y S Y S Y S Y S Y S Y S Y
R a a a a a a a aaC R C Q SA C h C h− − −⋅ − ⋅ = ⋅ ⋅ − ⋅    (3.8) 

where ,S Y
aR is recharge ( 3m ); aSA is the storativity multiplied by area ( 2m ); , ,,S Y S Y

a ah C are 

water level and salinity respectively ( m ), ( /mgcl lit ); ( , ) 1 ( , ) 1,S Y S Y
a ah C− −  are water level and 

salinity in the previous season respectively ( m ), ( /mgcl lit ); ( ) ,S Y
R aC is salinity of the 

recharge water ( /mgcl lit ). Each natural source (aquifer, reservoir) is viewed as a 

single entity. If an aquifer is to be subdivided into cells with hydraulic connections 

between them then a finite difference representation of the aquifer or a simulation tool 

can be substituted for equations (3.7) and (3.8). 

Desalinated Water Salinity  

,
, 100

100

S Y
S Y d
d sea

RR
C C

 −
= ⋅ 

 
       (3.9) 

where 
,S Y

dC is desalinated water salinity ( /mgcl lit ); seaC is sea water salinity (27000

/mgcl lit ); ,S Y
dRR  is the removal ratio (%).  

Dilution Condition 

The model assumes total mixing at all nodes, so the salinity in all links leaving a node 

is the same. This dilution condition is given by the linear equation system: 

0 0 0B C⋅ =          (3.10) 

Each row of 0B indicates equal salinity for two outgoing edges which share the same 

inflow node, i.e. each row has only two non-zero elements 1+ and 1− ; when three 

links leave the same node there are two rows, each with two non-zero elements 1+ and

1− . In the demonstrated example (Figure 3.1), the matrix 0 4 12B ×∈R is given in Figure 

3.4, each of the 4 intermediates nodes has 2 outgoing edges, and therefore each of the 

4 nodes has 1 row in the matrix 0B . 

0 4 12

0

0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 1 0 1 0 0

B

B

×∈

− 
 − =
 −
 

− 

R

 

Figure 3.4: Definition of the matrix 0B  
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Conveyance Capacity Constraints 

The model deals with balance of water and salt mass and does not consider explicitly 

the hydraulic energy balance of the system. However, in order to prevent 

infeasibilities of hydraulic conditions, the discharges in the pipes are limited by 

capacity constraints which are calculated from the maximum hourly conveyance 

capacity of the pipe, multiplied by the number of hours in the season. The lower 

bound is set to zero since the flow direction in the pipes is fixed. 

( ) ,,
max0 S YS Y

p pQ Q< <         (3.11) 

where ( ) ,
max

S Y

pQ is the maximum discharge allowed ( 3 /m season ). If the flow direction in 

a link is not set in advance then two pipes with opposite directions are introduced, and 

the solution will determine for each season the direction of flow. 

Extraction Capacities from the Natural Sources 

The amount from each natural resource may be restricted by an upper bound, 

reflecting various hydrological and hydraulic considerations. The lower bound is set 

to zero as the flow from the source is one-directional. 

( ) ,,
max0 S YS Y

a aQ Q< <         (3.12) 

where ( ) ,
max

S Y

aQ is the maximum admissible/feasible withdrawal ( 3 /m season ). 

Desalination Capacity 

The amount of desalinated water from each plant is limited by an upper bound which 

represents plant capacity and by a lower bound (which may be zero) that represents a 

condition of the contract with the plant concession. 

( ) ( ), ,,
min max

S Y S YS Y
dd dQ Q Q< <        (3.13) 

where ( ) ,
max

S Y

dQ is maximum supply ( 3 /m season ); ( ) ,
min

S Y

dQ is minimum supply (

3 /m season ). 

Removal Ratio Limits 

Salinity removal limits reflect the plant technology and its overall system design: 
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( ) ( ), ,,
min max

S Y S YS Y
dd dRR RR RR≤ ≤        (3.14) 

where  ,S Y
dRR is removal ratio ( % ); ( ) ,

min
S Y

dRR  is minimum removal ratio ( % ); ( ) ,
max

S Y

dRR  

is maximum removal ratio ( % ). 

Water Levels in the Sources 

Constraints on water levels in the natural resources reflect policy and operational 

limits. 

( ) ( ), ,,
min max

S Y S YS Y
aa ah h h< <        (3.15) 

where ,S Y
ah is water level ( m ); ( ) ,

min
S Y

ah is minimum allowed water level ( m ); ( ) ,
max

S Y

ah is 

maximum allowed water level ( m ). 

Salinity Levels in the Sources 

Constraints on admissible source salinity reflect source management policies, 

especially for preventing excessive water salinity. 

( ) ( ), ,,
min max

S Y S YS Y
aa aC C C< <        (3.16) 

where ,S Y
aC is water salinity in ( /mgcl lit ); ( ) ,

min
S Y

aC is minimum salinity ( /mgcl lit ) 

(which may be zero); ( ) ,
max

S Y

aC is maximum admissible salinity ( /mgcl lit ).  

Demand Salinity Constraints 

Ensuring salinity of supply water within bounds: 

( ) ( ), ,,
min max

S Y S YS Y
zz zC C C< <        (3.17) 

where ,S Y
zC is water salinity supplied for demand zone z ( /mgcl lit ); ( ) ,

min
S Y

zC is 

minimum salinity ( /mgcl lit ); ( ) ,
max

S Y

zC is maximum admissible salinity ( /mgcl lit ). 

3.5. Optimization Plan 

The mathematical formulation of the optimization model determines its suitability for 

solution by an optimization algorithm and the resultant computational efficiency. 

Since we intend to run the model many times, in interactive mode with decision 

making, and later as a kernel of models for management under uncertainty, we have 
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developed a set of manipulations that improve substantially the solvability and 

efficiency of the model. 

3.5.1. Eliminating Dependent Variables 

To reduce the model size we extract one dependent decision variable from each 

equality constraint. Then the dependent variables are substituted in the objective 

function and the inequality constraints to obtain a smaller model (fewer decision 

variables) without equality constraints.  

In the linear equality constraints set obtained from the water balance requirement 

(Equation 3.5): 

A Q b⋅ =          (3.18) 

the reduction is achieved by solving the linear equation system. This system is most 

likely underdetermined since we have more edges than nodes 2M N> , and the rank of 

the matrix A  is therefore 2N  [ Boulos and Altman, 1991].   

The general solution of the underdetermined system (3.18) is given by: 

( )1
1 2dep indepQ A b A Q−= ⋅ − ⋅        (3.19) 

where 1A  is a matrix of 2N  independent columns of A ; 2A  is a matrix of 2M N−

dependent columns of A ; ( )dep
is the vector of dependent decision variables; ( )indep

is 

the vector of independent decision variables. 

In graph theory this is related to the spanning tree (ST); a ST of a connected graph is 

defined as a maximal set of edges that contains no cycle, i.e. the graph matrix of the 

ST has full rank. Thus finding the dependent columns of the matrix A  is equivalent to 

finding the non-ST edges of the graph. In a connected graph there are many STs, and 

any of these can indicate which columns in A are dependent and which are not. To 

generate a ST one can use the Breadth-First-Search algorithm (BFS) [Boulos et al., 

2006], or simply by calculating the reduced echelon form of A  using Gauss Jordan 

elimination with partial pivoting. In the reduced echelon form the columns which are 

related to ST edges construct the standard basis. 
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The inequality constraints (3.11)-(3.13) define lower and upper bounds for the vector 

Q . Substituting the dependent variables in the inequality constraints (3.11)-(3.13) 

leads to:  

( ) ( ) ( )
( ) ( )

1
min 1 2 max

1 max 2 1 min

indepdep dep

indepdep dep

Q A b A Q Q

b A Q A Q b A Q

−≤ ⋅ − ⋅ ≤

− ⋅ ≤ ⋅ ≤ − ⋅
     (3.20) 

Constraint (3.20) with the following bounds replaces constraints (3.11)-(3.13): 

( ) ( )min maxindepindep indepQ Q Q< <        (3.21) 

Another way to extract the dependent decision variables from the underdetermined 

system is to calculate the null space of A , ( )Null A . The solution of the 

underdetermined system is given by the sum of a particular solution of the system and 

a vector in the null space of A . 

( )particularQ Q Null A Q= + ⋅∆        (3.22) 

In graph theory the null space of A  is related to the loops and pseudo-loops of the 

network, and the solution is achieved by considering the circular flows Q∆  in loops 

and pseudo-loops as decision variables [Boulos et al., 2006]. The size of the decision 

vector Q∆  is 2M N−  - exactly the same as indepQ in the previous approach. In our model 

we have used the first approach i.e. equations (3.19)-(3.21) because it keeps the 

decision variables bounded. 

For the water supply system model shown in Figure 3.1, the reduced row echelon 

form of the graph matrix is given in Table 3.3. Recalling that in the reduced echelon 

form the columns related to ST edges construct the standard basis, i.e. the ST edges 

are{ }a , d , 1, 2,5,7 . Hence the non-ST edges are{ }3, 4, 6, 8 and their corresponding flows 

in each season present the independent decision variables; thus 2A  contains columns 

{ }3, 4, 6, 8  while 1A  contains columns{ }a , d , 1, 2,5,7 . The definitions of depQ , indepQ , 1A  

and 2A  are given in Figure 3.5. 
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Node Source Pipe 
a d 1 2 3 4 5 6 7 8 

1 1 0 0 0 1 1 0 0 0 0 
2 0 1 0 0 -1 -1 0 0 0 0 
3 0 0 1 0 1 0 0 1 0 1 
4 0 0 0 1 0 1 0 -1 0 -1 
5 0 0 0 0 0 0 1 1 0 0 
6 0 0 0 0 0 0 0 0 1 1 

Table 3.3: Reduced row echelon form of the matrix A  

3 4 6 8[ , , , ]S S S S S T
indepQ Q Q Q Q=  

1 2 5 7[ , , , , , ]S S S S S S S T
dep a dQ Q Q Q Q Q Q=  

 

1
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Figure 3.5: Dependent flows, definitions and values 

3.5.2. 69BResultant Variables 

A special and useful property of our model is that equality constraints (3.6), (3.9), 

(3.10) and the hydrological constraints (3.7), (3.8) imply that for fixed values of the 

flows and removal ratios the salinity variables C  and the state variables of the natural 

resources ,a ah C  are also fixed (resultant variables). This property insures the ability to 

evaluate the objective function and all the constraints for predetermined indepQ and RR , 

since the remaining flows are dependent and the other variables are resultant variables 

which can be evaluated directly.  

By using the equality constraints (3.7) and (3.8) we can extract the state variables of 

the natural resources ,a ah C as a function of indepQ . 

, ,
, ( , ) 1

S Y S Y
S Y S Ya a
a a

a

R Q
h h

SA
−−

= +        (3.23) 
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( ) , , ( , ) 1 ,
, ( , ) 1 ( , ) 1

,

1
S Y S Y S Y S Y

R a a aS Y S Y S Ya
a a aS Y

aa

C R C Q
C C h

SAh

−
− −

 ⋅ − ⋅
 = + ⋅
 
 

    (3.24) 

The salinity variables of the desalination plants nodes given in (3.9) can also be 

calculated by given indepQ and RR . Hence, sourceC  is a function of indepQ  and RR . After 

calculating the state variables of the natural resources the objective function and the 

inequality constraints (3.15) and (3.16) can also be evaluated. 

Note that in our formulation the objective function does not depend directly on water 

salinity in the system (it does, however, reflect the cost of desalination, which is 

required in order to meet salinity constraints). Constraint (3.15) is linear in the given 

formulation, but if the aquifers were represented by a finite differences model or a 

simulation program this constraint would be nonlinear. 

Given a network with the structure depicted in Figure 3.6, water quantity distribution 

in the network for all the edges and the sources salinity vector sourceC . One can 

formulate the salinity balance equation at each node 1...j J= and 1...k K= . Hence we 

can formulate _eq bal J K= + equations with 
1

_
J

j
j

un MID OUT K
=

= +∑  unknowns. 

 

Figure 3.6: General network topology 

By applying the full dilution condition in the network nodes, we obtain that for each 

1...j J=  the edges ,_ j lmid out  , 1... _ jl MID OUT=  have the same salinity, hence we can 

formulate ( )
1 1

_ 1 _
J J

j j
j j

MID OUT MID OUT J
= =

− = −∑ ∑  equations of the form 

, , 1salinity of  link[ _ ] salinity of  link[ _ ]j l j lmid out mid out += . 

iin 
 

,_  ,  1... _j l jmid out l MID OUT=

 

kout 

i 

j 

k 

Source nodes, i=1...I  

Junction nodes, j=1...J  

Demand nodes, k=1...K  
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From the salinity balance we have _eq bal J K= +  equations and from the dilution 

condition we have  
1

_ _
J

j
j

eq dil MID OUT J
=

= −∑  equations. The total number of equation 

is 
1

_
J

j
j

eq MID OUT K
=

= +∑ , which is equal to the total number of the salinity unknowns.  

To extract the salinity variables, constraints (3.6) and (3.10) can be joined to form the 

following: 

0 0K C⋅ =          (3.25) 

where K is a block matrix defined as 
0

0

QA D
K

B

 ⋅
=   
 

. When sourceC  is determined using 

the salinity state variables aC and the desalination plants salinity dC given in (3.9), the 

first columns corresponding to the sources are moved to the RHS of the equation 

system to form the following: 

1 2 sourceK C K C⋅ = − ⋅         (3.26) 

where [ , ]T
pipes demandC C C= , 1K  is a square and full rank matrix, hence the resultant 

salinity variables are: 

1
1 2 sourceC K K C−= − ⋅ ⋅         (3.27) 

The matrices 1 2,K K  are functions of the flows, i.e. functions of the independent 

decision variables indepQ . Since the salinity variables are a product of the inverse of 1K  

and 2K , this creates a nonlinear relationship between the salinity variables and indepQ . 

As a consequence, the inequality constraint (3.17) is nonlinear. 

Regarding the WSS shown in Figure 3.1, for predetermined 3 4 6 8[ , , , ]T
indepQ Q Q Q Q= and 

dRR ; the vector [ , ]T
source a dC C C= is determined using  (3.24) and (3.9). Hence, the 

vector 1 8 1 2[ ,..., , , ]T
z zC C C C C= ==  can be obtained by (3.27). Where 

2 10
2K ×∈R  is the 

matrix combining the first columns (corresponding to the sources) of the matrix K

and 10 10
1K ×∈R  is the matrix of the remaining columns of K ; the matrix K is given in 

Figure 3.7. 
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Figure 3.7: Definition of the matrix SK  

3.6. Evaluating the Objective Function and the Constraints  

The dependent variables depQ  and the resultant variables are functions of the decision 

variables indepQ  and RR . Hence, the objective function and all the constraints can be 

evaluated for predetermined decision variables indepQ  and RR . The seasonal evaluation 

scheme is depicted in Figure 3.8, where: (a) The flow distribution in the network and 

the source limitations (3.5) and (3.11)-(3.13) are integrated by the inequality linear 

constraints (3.20) and the bounds (3.21), (b) Evaluation of the objective function does 

not require the salinity calculations in the system, since it depends only on the 

removal ratios of the desalination plants, and (c) The remaining inequality constraints 

(3.15)-(3.17) are nonlinear in the general case (discussed in the previous Section). 

 
Figure 3.8: Scheme for evaluation of the constraints and objective function with a 

given set of flow decision variables indepQ and RR  

Network & 
demand data 

Aquifer & 
Desalination data 

RR
 

Evaluation of 
constraints (3.15), (3.16) 
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constraints (3.20) and 
bounds (3.14), (3.21) 

Evaluation of 
objective function 

Evaluation of non-
linear constraints (3.17) 

Calculate salinity in the 
pipes and demand zones 

Calculate the aquifers state 
variables and desalination 

plants salinity  

Calculate dependent 
discharges indepQ
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3.7. The Optimization Solver 

The steps described in the previous Sections result in a general nonlinear 

optimization, which  can be solved with one of the existing general nonlinear 

programming solvers, such as SQP [Fletcher, 1985] or an interior point algorithm 

[Waltz et al., 2006; Byrd et al., 2000]. These solvers use the gradient of the objective 

and the Jacobian matrix of the nonlinear constraints. When calculation of the 

analytical derivatives is computationally demanding, a finite differences scheme can 

be used to give an estimation of the derivatives. However, for a water supply network 

of practical size the optimization model becomes very large, particularly for long-term 

multi-stage operation problems, so this numerical approximation is very cumbersome.  

We have therefore developed the Time-Chained-Method (TCM), an efficient finite 

differences scheme designed for our model's multi-stage structure, which reduces the 

computation time from 2( ) ( )f fO T to O T where fT  is the number of stages. Nonlinear 

optimization solvers are sensitive to scaling [Betts, 2001], which means that the solver 

may encounter difficulties when decision variables have different scale. To overcome 

these difficulties a transformation of variables is used. Details of the TCM appear in 

Section 3.10. 

3.7.1. Optimization Software 

Due to the general structure of the objective function and constraints in our model a 

general nonlinear optimization solver is required. Our model was programmed in 

MATLAB and uses the interior-point algorithm with conjugate gradient of the 

FMINCON nonlinear optimization suite.  

We developed a special-purpose pre-processor that generates the data for the 

optimizer and a post-processor that displays the results in tabular and graphic forms 

(see Section 3.12). These tools facilitate greatly the use of the software for creating 

models of any system and for ease of making topological and data changes for 

sensitivity analysis and/or testing alternatives. Scaling is applied to model data to 

improve convergence (see Section 3.11).   

3.8. Illustrative Example 

A water supply system model (Figure 3.1) has been solved in this example; minimum 

cost of operating a system which is fed from a one cell aquifer and a desalination 
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plant to supply two customers over a year. The year has two seasons: the first has 265 

days ("winter" with low demands) and the second 90 days ("summer" with high 

demands). The daily pumping hours in each season is 20 ( / )hr day , hence the seasonal 

pumping hours are 1 5300 ( / )Sw hr season= =  ,  2 1800 ( / )Sw hr season= = . 

Problem Parameters 

Pipes and Conveyance Cost Data 

The network layout is presented by the junction node connectivity matrix A , given in 

Table 3.1. The pipes 1-8 all have the same parameters: diameters 50 ( )pD in= , lengths 

1( )pL km= , Hazen Williams coefficients 110 ( )pc = − ,  and no topographic difference 

between their ends 0 ( )pZ m∆ = . The pipes seasonal capacities are based on a hydraulic 

loss of 4 ‰. The resulting capacities for all pipes are ( ) 1
max 57.6( / )S

pQ MCM season= =  and 

( ) 2
max 18.8( / )S

pQ MCM season= = for season 1 and the season 2 respectively. The energy 

cost for both seasons is 0.1 ($ / )SKWHC kwhr= . 

Sources and Demand Data  

The demand data for the two demand zones are identical for both demand zones and 

both seasons, that is the water demand ( ) 25 ( / )S
demand zQ MCM season=  and the water 

salinity requirements are ( )min 0 ( / )S

zC mgcl lit= , ( )max 190 ( / )S

zC mgcl lit= . The system is fed 

from two sources; the first is an aquifer with initial water level 0 11 ( )ah m= , initial water 

salinity 0 180 ( / )aC mgcl lit= , recharge in the first season 1 50 ( )S
aR MCM= = and in the 

second season 2 0 ( )S
aR MCM= = . The operational limits and additional parameters of the 

aquifer are given in Table 3.4. The second source is a sea-water desalination plant (sea 

water is 27000 ( / )SeaC mgcl lit= ); the plant is large enough to supply the entire seasonal 

demand in both seasons, hence ( )max 50 ( )S

dQ MCM= . The plant has no obligation for a 

minimal supply requirement (which is often a constraint in actual practice) i.e. 

( )min 0 ( )S

dQ MCM= . The removal ratio of the plant is between ( )min 99 (%)S

dRR = and

( )max 99.9 (%)S

dRR = , yielding a product salinity in the range 270-27 ( / )mgcl lit . The 

desalination cost parameters are 0 ($ / )d MCMα =  and 1 ( )dβ = − . 
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( )max ( )S

ah m  100 ( )max ( / )S

aC mgcl lit  210 
( )min ( )S

ah m  1 ( )min ( / )S

aC mgcl lit  0 
( ) ( / )S

R aC mgcl lit  200 ( )max ( )S

aQ MCM  50 

( )aSA −  1 ( )max
($ / )

S

a
CE MCM  0 

Table 3.4: Aquifer data 

Extracting Dependant Variables 

According to Section 3.5.1, the flow constraints (3.5) and (3.11)-(3.13) are substituted 

by constraints (3.20) and (3.21) where the dependent flows are given by (3.19): 

( ) ( )1 max 2 1 min

S S

S SS S S
indepdep dep

U U

b A Q A Q b A Q− ⋅ ≤ ⋅ ≤ − ⋅
 

     (3.28) 

( ) ( )min max
S SS

indepindep indepQ Q Q< <        (3.29) 

( )1
1 2

S S S
dep indepQ A b A Q−= ⋅ − ⋅        (3.30) 

Section 3.5.1 presents the definitions of these constraints for the network layout 

considered in this example (Figure 3.1). The values and the definitions are given in 

Figure 3.5. 

Extracting Resultant Variables  

For given values of S
indepQ and S

dRR , the aquifer state variables are given by (3.23) and 

(3.24) while the desalinated water salinity is given by (3.9): 

1
S S

S Sa a
a a

a

R Q
h h

SA
−−

= +          (3.31) 

( ) 1
1 11

S S S S
R a a aS S Sa

a a aS
aa

C R C Q
C C h

SAh

−
− −

 ⋅ − ⋅
 = + ⋅
 
 

     (3.32) 

100
100

S
S d
d sea

RR
C C

 −
= ⋅ 

 
         (3.33) 

Once these values have been calculated, the salinity distribution is given by (3.27): 

( ) ( )1
1 2

S SS S
sourceC K K C−= − ⋅ ⋅        (3.34) 
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Section 3.5.2 presents the definitions of the RHS in (3.34) for the network layout 

considered in this example (Figure 3.1).  

Evaluating the Objective Function and the Constraints 

 

Figure 3.9: Evaluation scheme of the illustrative example 

The overall cost of the annual operation cost is given by (3.4): 

2 8

1 1
cost S S S

p d a
S p

CC CD CE
= =

 
= + + 

 
∑ ∑        (3.35) 

1,2S
dRR =

 

Evaluation of constraints 
(3.15) and (3.16): 
( ) ( )min max

S SS
aa ah h h< <  

( ) ( ), ,,
min . max, ,

S Y S YS Y
a la l a lC C C< <  

Evaluation of linear constraints 
(3.28), (3.29) and (3.14): 

2

SS S
indepU A Q U≤ ⋅ ≤  

( ) ( )min max
S SS

indepindep indepQ Q Q< <

( ) ( )min max
S SS

dd dRR RR RR≤ ≤  

Evaluation the objective 
function (3.35) for season S : 

8

1

S S S
p d a

p
CC CD CE

=

+ +∑  

Evaluation the nonlinear 
constraints (3.17): 
( ) ( )min 1 max1 1

S SS
zz zC C C== =

< <  
( ) ( )min 2 max2 2

S SS
zz zC C C== =

< <  

Calculate salinity in the 
pipes and demand zones 

via (3.34) 

Calculate the sources salinity 
and the aquifers state 

variables by (3.31)-(3.33) 

Calculate dependent flows 
by (3.30) 

1,2S
indepQ =
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Initiate 1S =  
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No 
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where S
aCE  is the extraction levy given by (3.2); in this example 0S

aCE =  since 

( )max
0

S

a
CE = .  S

dCD  is the desalination cost given by (3.3): 

61 10
(100 )

S S
d dS

d

CD Q
RR

 
= ⋅ ⋅ − 

       (3.36) 

S
pCC  is the conveyance cost of pipe p  which is given by (3.1): 

6

1.8526
7 4.87

10
0.736

200

10
1.526 10

S S
p pS S

p

S S
p p

S
pS

p p pS
p

X Q
CC KWHC

X Hf

Q
Hf D L

w c
−

⋅ ⋅
= ⋅ ⋅

= ∆

 ⋅
∆ = ⋅ ⋅ ⋅ ⋅  

 

     (3.37) 

The evaluation scheme of this example is described in Figure 3.9. 

Base Run and Sensitivity Analysis 

Table 3.5 and 3.6 show detailed results for the base run (BR) and 5 sensitivity analysis 

(SA) runs. 

Base Run (BR) 

The optimal decision variables, obtained from the optimization solver are: 

 

1 1 1 1 1
3 4 6 8

1

2 2 2 2 2
3 4 6 8

2

, , , [11.2,11.2,12.5,12.5]

99.25

, , , [8.8,8.8,12.5,12.5]

99.43

TS S S S S T
indep

S
d

TS S S S S T
indep

S
d

Q Q Q Q Q

RR

Q Q Q Q Q

RR

= = = = =

=

= = = = =

=

 = = 
=

 = = 
=

    (3.38) 

with minimum objective value (total cost) of  61 ( $)M  which comprises conveyance 

cost of 0.1 ( $)M  and desalination cost of 60.9 ( $)M , there is no extraction levy cost 

since the extraction levy has been set to 0. As a result, the optimal solution preferred 

water from the aquifer to desalinated water and hence the level in the aquifer is 

reduced to its minimum allowed level at the end of the year ( )min 1 ( )S

ah m= and the water 

salinity in the aquifer rises to its maximum value ( )max 210( / )S

aC mgcl lit= . To minimize 

the cost the model set the salinity at the demand nodes to the maximum allowed value 

190 ( / )S
zC mgcl lit= in both seasons. The full solution is shown in Tables 3.5 and 3.6. 
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Sensitivity Analysis 

Five sensitivity analysis runs were carried out in order to test the model's response to 

changes in the parameters of the objective function and the constraints. The solutions 

of all runs are shown in Tables 3.5 and 3.6. 

The purpose of sensitivity analysis 1 (SA1) is to explore the influence of the recharge 

salinity on the optimal solution. Therefore the recharge water salinity is modified to 

( ) 180( / )S
R aC mgcl lit=  instead of 200 ( / )mgcl lit in (BR). The extraction levy is left at 0, 

hence the optimal solution preferred water from the aquifer to desalinated water and 

the level in the aquifer was reduced to its minimum allowed level at the end of the 

year. The annual available water from the aquifer is 60 ( )MCM  (50 from recharge and 

10 from initial storage); hence the model needed annual desalination of 40 ( )MCM to 

supply the 100 ( )MCM  demand. The optimal solution of (SA1) is almost identical for 

both seasons. It is not perfectly identical since the seasons' lengths are not equal; this 

results in different conveyance costs. However, the conveyance costs are not a 

significant part of the objective function (two orders of magnitude smaller than the 

desalination cost as shown in Table 3.6) and for this reason the conveyance cost did 

not change the optimal solution significantly. If the difference in the conveyance cost 

were neglected, then the optimal seasonal solution would be perfectly identical at both 

seasons, resulting in 30 ( )S
aQ MCM= and 20 ( )S

dQ MCM= . The aquifer water is equally 

distributed in pipes 1, 2 since these are identical pipes (the same parameters) i.e. 

1,2 30 / 2 15 ( )SQ MCM= = . In the same manner, the desalinated water is equally distributed

3,4 20 / 2 10 ( )SQ MCM= = . Each of the intermediate nodes 3 and 4 passes 

15 10 25 ( )MCM+ = , recalling that pipes 5-8 have identical parameters results in 

5 8 12.5 ( )SQ MCM− =  

To insure minimum cost the model set the salinity at the demand nodes to the 

maximum admissible value 190 ( / )S
zC mgcl lit=  and to insure salinity of 190 ( / )mgcl lit

at the demand nodes, the desalinated water salinity at the plant has been set to 

205 ( / )S
dC mgcl lit=  i.e., 99.24 (%)S

dRR = . The aquifer water salinity remains as the initial 

salinity i.e., 180 ( / )S
aC mgcl lit= , since the recharge salinity is equal to the initial 

salinity. As stated previously, the solution in Table 3.5 is slightly different from the 

solution discussed above since the seasons do not have identical lengths.  
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Sensitivity analysis 2 (SA2) introduces an extraction levy with maximum specific 

levy ( )max S

a
CE  ( $ / )M MCM  equal to the desalination cost of 1 ( )MCM from 27000

( / )mgcl lit  down to 190 ( / )mgcl lit  i.e. 1.42 ( $ / )M MCM . As a result, the model takes 

less water from the aquifer and the total cost higher than in the (BR). The final water 

level in the aquifer 24.2 ( )m did not reach the minimum limit and the final aquifer 

salinity 205.9 ( / )mgcl lit did not reach the maximum value, as was the case in (BR). 

In (SA3) we set the prices so the aquifer and the desalination to have the same water 

cost per ( )MCM at the beginning of the year. To do this we set the maximum specific 

levy ( )max S

a
CE  ( $ / )M MCM equal to the desalination cost of 1 ( )MCM from 27000

( / )mgcl lit  down to 180 ( / )mgcl lit  i.e. 1.5 ( $ / )M MCM . Furthermore, we set the aquifer 

initial water level to its minimum value 0 1 ( )ah m= , the recharge salinity to 

( ) 180( / )S
R aC mgcl lit=   and the maximum salinity requirement in the demand zones to

180 ( / )S
zC mgcl lit= . As a result, both of the sources supply water with salinity of 180

( / )mgcl lit , the initial water level is at its minimum value, thus at the beginning of the 

year the specific extraction cost is equal to the specific desalination cost. The results 

show almost identical values for both seasons. The model uses less water from the 

aquifer and the total cost is higher than in (BR) and (SA1). The final water level in the 

aquifer did not reach the minimum limit, as in (BR) and (SA1). As explained 

previously the conveyance cost is relatively low compared to the extraction and 

desalination cost as shown in Table 3.6, for this reason the conveyance aspect did not 

influence the optimal solution significantly. 

(SA4) modifies (SA3) by increasing of the conveyance cost in the system. To increase 

the conveyance cost of the system to the same order of magnitude of extraction and 

desalination costs, all the pipes' diameters have been set to 1 8 12 ( )D in− = . The optimal 

solution for (SA4) takes more water from the aquifer compared to (SA3). Since the 

conveyance cost became significant the model avoids taking too much water from 

desalination because of the high conveyance cost. In (SA5) we change to even smaller 

set of pipes diameters 1 8 5 ( )D in− = which results in conveyance cost two orders of 

magnitude larger than the extraction and desalination costs; we obtain approximately 

the same water amount taken from both sources which is distributed equally in the 
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network. Table 3.5 contains the flow and salinity results of the runs BR and SA1-SA5. 

Table 3.6 includes the cost components and totals for these runs.  

Run S Aquifer Desalination Pipe 1-2 Pipe 3-4 Pipe 5-8 Zone 1, 2 W.Level * 

(BR) 1 27.7(180) 22.3(202.4) 13.8(180) 11.2(202.4) 12.5(190) 25(190) 33.3(210) 
2 32.3(210) 17.7(153.4) 16.2(210) 8.8(153.4) 12.5(190) 25(190) 1(210) 

SA1 1 30.3(180) 19.7(205.4) 15.2(180) 9.9(205.4) 12.5(190) 25(190) 30.7(180) 
2 29.7(180) 20.3(204.6) 14.9(180) 10.2(204.6) 12.5(190) 25(190) 1(180) 

SA2 1 22.4(180) 27.6(198.1) 11.2(180) 13.8(198.1) 12.5(190) 25(190) 38.6(205.9) 
2 14.4(205.9) 35.6(183.6) 7.2(205.9) 17.8(183.6) 12.5(190) 25(190) 24.2(205.9) 

SA3 1 16.6(180) 33.4(180) 8.3(180) 16.7(180) 12.5(180) 25(180) 34.4(180) 
2 16.8(180) 33.2(180) 8.4(180) 16.6(180) 12.5(180) 25(180) 17.6(180) 

SA4 1 19.7(180) 30.3(180) 9.8(180) 15.2(180) 12.5(180) 25(180) 31.3(180) 
2 24.1(180) 25.9(180) 12.1(180) 12.9(180) 12.5(180) 25(180) 7.2(180) 

SA5 1 24.9(180) 25.1(180) 12.4(180) 12.6(180) 12.5(180) 25(180) 26.1(180) 
2 25(180) 25(180) 12.5(180) 12.5(180) 12.5(180) 25(180) 1.2(180) 

Table 3.5: Flow and salinity distribution in the network ( )MCM , ( / )mgcl lit
respectively. The values in the parentheses are the salinities. (All the 
values have been rounded to one decimal place). * W.Level = the aquifer 
water level ( )m , values in the parentheses are the aquifer salinity at the 
end of the season. 

 Cost (M$) 
Run S * Extraction Desalination Conveyance Total 

BR 
1 0.00 29.79 0.01 29.80 
2 0.00 31.10 0.08 31.17 

1+2 0.00 60.89 0.09 60.98 

SA1 
1 0.00 25.90 0.01 25.91 
2 0.00 26.78 0.07 26.86 

1+2 0.00 52.68 0.08 52.76 

SA2 
1 19.77 37.58 0.01 57.36 
2 15.66 52.37 0.09 68.12 

1+2 35.43 89.96 0.09 125.48 

SA3 
1 16.53 50.06 0.01 66.60 
2 20.93 49.85 0.08 70.86 

1+2 37.46 99.91 0.09 137.46 

SA4 
1 20.48 45.48 9.63 75.59 
2 33.89 38.84 72.03 144.76 

1+2 54.37 84.32 81.66 220.35 

SA5 
1 27.83 37.71 645.70 711.23 
2 37.42 37.53 5109.76 5184.70 

1+2 65.24 75.23 5755.46 5895.93 

Table 3.6: Operation costs (M$) of the illustrative example, Base Run and 5 
Sensitivity Analysis runs. (All values have been rounded to two decimal 
places). * S- is the season index, S=1+2 represents the entire year.   
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Multi-Year Run 

This Section presents a 20-year run with zero discount rate based on the (BR) 

parameters, except for the maximum conveyance in season 2 which have been 

changed to ( ) 2
max 25 ( / )S

pQ MCM season= = instead of 18.8 in order to insure the ability to 

supply all the demand from the desalination plants in case the aquifer is empty. The 

maximum water level in the aquifer is also changed to a fictitiously high value

( )max 300 ( )S

ah m= , in order to insure no spill/overflow from the aquifer. The same data 

are repeated year after year for 20 years (40 seasons) except the recharge values in the 

first season 1( )S
aR MCM= which have been generated randomly in each year from a 

uniform discrete probability function with three values{0,50,100} , the resulting sample 

is shown in Figure 3.10a and the resulting optimal trajectory of the water level in the 

aquifer is shown in Figure 3.10b. The results show that the model adapts the water 

extraction from the aquifer according to the behavior of the recharge. The extraction 

levy is 0 (as in BR), so the minimum level in the aquifer is reached at the end of the 

time horizon. 

(a) Seasonal recharge 

 
(b) Optimal trajectory 

 
Figure 3.10: (a) Seasonal recharge: for each year, the recharge of season 1 is 

uniformly distributed from {0,50,100}and in season 2 it is always 0. 
(b) The optimal trajectory of the water level in the aquifer. 
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3.9. Large WSS Example 

The small system shown in Figure 3.1 was used in the development phase of the 

research. Extensive sensitivity analysis was used to test and verify the model's 

performance, which was then applied to a larger and more realistic WSS.  

Problem Parameters 

A water system with 9 demand zones, 3 aquifers, 5 desalination plants and 49 pipes 

(Figure 3.11, generated by the post-processor (Section 3.12), which shows system 

topology and link carrying capacities in the two seasons) has been solved in this 

example; the structure of this system mimics a part of the Israeli National Water 

System. The year is divided into two seasons, which can be called "winter" (lower 

demands, 265 days) and "summer" (high demands, 90 days).  

The daily pumping hours are 14, 16 ( / )hr day respectively for the first and the second 

season, hence the seasonal pumping hours are 1 3710 ( / )Sw hr season= = ,
2 1440 ( / )Sw hr season= = . The seasonal capacities of the pipes are shown in Figure 3.11, 

based on pipe diameters, lengths, Hazen Williams coefficients, topographic difference 

and a hydraulic loss of 4 ‰. The energy cost for the first season is
1 0.09 ($ / )SKWHC kwhr= = and for the second season is 2 0.11 ($ / )SKWHC kwhr= = . 

The seasonal demands for the 9 demand zones are given in Table 3.7. The maximum 

allowed water salinity in all zones is set to 220 ( / )mgcl lit . The maximum desalination 

amount of plants 1 to 5 are ( )max [30,100,100,200,100]S

dQ = ( )MCM  respectively, while all 

the desalination plants have no obligation for a minimal supply requirement i.e. 

( )min 0 ( )S

dQ MCM= . The removal ratio of the plants is between ( )max 99.95 (%)S

dRR =  and

( )min 99.75 (%)S

dRR = , yielding a product salinity in the range 13.5-67.5 ( / )mgcl lit . The 

desalination cost parameters are 0.7 ( $ / )d M MCMα = and 610 ( )dβ = − −  which implies 

constant desalination cost per ( )MCM  in all the plants. Data for the three aquifers are 

given in Table 3.8. The maximum allowed salinity in all aquifers is set to 350 

( / )mgcl lit .  
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Figure 3.11: Large WSS layout and conveyance capacity in season 1 and 2. (MCM, 
rounded to one decimal place) 

Demand 
 z 

season 1 
( )MCM  

season 2 
( )MCM  

1 116.9 50.1 
2 9.1 3.9 
3 53.9 23.1 
4 36.4 15.6 
5 18.2 7.8 
6 90.3 38.7 
7 9.1 3.9 
8 18.2 7.8 
9 198.1 84.9 

Table 3.7: Demand data for the large WSS. 

1S
aR = * 

( )MCM  
SA  

( / )MCM m  

0
aC   

( / )mgcl lit  

0
ah  

( )m  
( )min

S

ah  
( )m  

( )max
S

ah  
( )m  

( )max
S

aQ  
( )MCM  

Aquifer  
a=1..3 

210 65 300 2 1 33 130 1 
100 37 300 3 1 50 111 2 
360 25 150 19 17 50 290 3 

Table 3.8: Aquifer data for the large WSS. *The recharge salinity is 150 ( / )mgcl lit , 
recharge in the second season is 0. 
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Base Run and Sensitivity Analysis 

The model was run for a single year: a Base Run (BR) and four Sensitivity Analysis 

runs (SA1-SA4), each with certain data modified, to examine its performance under 

various conditions (detailed below). Table 3.9 shows the quantities taken from 

sources, aquifer levels and salinities. Table 3.10 shows the cost components and the 

total cost for each run. 

Run S 
Aquifer Extraction, a=1..3 Aquifer Water Level*, a=1..3 Desalination Plants, d=1..5 

1 2 3 1 2 3 1 2 3 4 5 

(BR) 
1 106.8(300) 6.6(300) 188.5(150) 3.6(164.9) 5.5(226.6) 25.9(150) 7.5(28.4) 33.5(13.5) 2.5(13.5) 110.7(30.5) 94.2(40.5) 

2 45.2(164.9) 3.8(226.6) 72(150) 2.9(164.9) 5.4(226.6) 23(150) 5.3(41.3) 15.1(40.2) 0.1(14.3) 57.8(44.6) 36.5(41) 

SA1 
1 84.3(220) 6.6(300) 168.9(150) 3.9(176.8) 5.5(226.6) 26.6(150) 7.7(40.2) 24.3(38.6) 35.2(13.5) 130(43.5) 93.2(41) 

2 45.2(176.8) 3.8(226.6) 72(150) 3.2(176.8) 5.4(226.6) 23.8(150) 5.3(40.8) 15.1(40.2) 0.1(19.4) 57.8(44.8) 36.5(41.3) 

SA2 
1 53.8(220) 4.5(300) 142.1(150) 4.4(189.9) 5.6(227.4) 27.7(150) 0(36.5) 0(37.3) 22.2(13.5) 305.3(180.9) 22.2(40) 

2 30.1(189.9) 3.5(227.4) 72(150) 3.9(189.9) 5.5(227.4) 24.8(150) 0(39.4) 0(40.2) 0.1(38.1) 114.2(180.9) 15.9(41) 

SA3 
1 84.3(220) 6.5(300) 169(150) 3.9(176.8) 5.5(226.6) 26.6(150) 11.3(40.2) 0(67.5) 35.2(13.5) 146.3(42.1) 97.6(40.8) 

2 45.2(176.8) 3.8(226.6) 72(150) 3.2(176.8) 5.4(226.6) 23.8(150) 10(40.5) 0(67.5) 0.1(28.1) 68.2(44) 36.5(41) 

SA4 
1 106.8(300) 6.5(300) 168.9(150) 3.6(164.9) 5.5(226.6) 26.6(150) 7.7(37.8) 33.4(13.5) 2.5(14) 130.1(38.1) 94.2(39.1) 

2 45.2(164.9) 3.8(226.6) 72(150) 2.9(164.9) 5.4(226.6) 23.8(150) 5.3(41.6) 15.1(40.8) 0.1(19.2) 57.8(43.5) 36.5(41.3) 

Table 3.9: Flow and salinity from the sources ( )MCM , ( / )mgcl lit respectively. The 
values in the parentheses are the salinities. (All values have been rounded 
to one decimal place). * Aquifer water levels ( )m  , and salinities (in 
parentheses) ( / )mgcl lit  at the end of the season. 

 Annual Cost (M$) 
Run Extraction Desalination Conveyance Total 
(BR) 0.00 238.69 56.43 295.12 
SA1 135.48 266.39 54.97 456.84 
SA2 89.55 39.76 67.47 196.78 
SA3 135.49 266.38 56.08 457.95 
SA4 149.98 251.61 56.41 458.00 

Table 3.10: Component and total costs (M$) of the large WSS - base run and 4 
sensitivity analyses. (All the values have been rounded to two decimal 
places) 

Base run  

In the base run we solve the model for one year with the data given in Figure 3.11, 

Tables 3.7 and 3.8 and no extraction levy from the aquifers. The optimal quantity and 

salinity distribution in the network for the 1st season are shown in Figure 3.12. The 

objective value (total cost) is 295 ( $)M comprised of 56 ( $)M conveyance and 239 ( $)M
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desalination Since there is no extraction levy cost the optimal solution preferred water 

from the aquifers to desalinated water. However, the extractions from the aquifers did 

not reach the maximum allowed amounts stated in Table 3.8 since there are other 

constraints that became binding. The results for season 1 (Figure 3.12) are used to 

explain the logic of the optimal solution that has been reached, concentrating 

especially on the role of salinity in determining the outcome.  

The flow capacities of the pipes leading from aquifer 1 are all 40.3 3 120.9 ( )MCM⋅ = but 

the flow in pipe 47 cannot reach 40.3 ( )MCM  since this is a direct pipe to demand 

zone 4 and the initial water salinity in the aquifer does not meet the water salinity 

requirement in demand zone 4. Hence the need for some desalinated water in order to 

meet the salinity requirement, which is brought via pipes 13 and/or 39. The optimal 

solution is expected to result in maximum allowed salinity in demand zone 4 (to 

reduce cost), so the three flows and salinities to demand zone 4 are set to match the 

demand 36.4 ( )MCM and maximum salinity of  220 ( / )mgcl lit . The optimal flow 

pattern is:  pipe 39 carries no flow, pipe 13 carries 10.2 ( )MCM with salinity 13.5 

( / )mgcl lit , while pipe 47 carries 26.2 ( )MCM with the salinity of aquifer 1, i.e. 300 

( / )mgcl lit .   

Aquifer 2, with salinity 300 ( / )mgcl lit , is connected directly to demand node 2, whose 

demand is 9.1 ( )MCM , and supplies to it only 6.6 ( )MCM  while pipes 20 and 21 

brings the remainder, which is desalinated water, to meet the salinity limit in demand 

zone 2.  

In aquifer 3 the initial water salinity is 150 ( / )mgcl lit  which is below the demand 

requirement, hence the only limitation is the conveyance capacity of the pipes leaving 

the aquifer i.e. 40.3 ( )MCM . The flows reached the maximum conveyance in pipes 32, 

42, 44 and 45, while in pipes 40 and 46 that are connected directly to demand zones 

the flows are 18.2 and 9.1 ( )MCM . 



76 
 

z:5

P:32

P:
31

P:
34

10
P:28

P:
30

P:33

z:8

z:6

z:1

z:3

z:7

z:2

z:9

P:45

P:44

P:40

P:42

P:46

P:48

8
P:22

3
P:11

P:8

P:7

4

5

6

P:
10

P:
12

P:
15

P:36

P:9

P:49

2

P:4

P:
6

P:5
P:47

P:19

P:16

1
P:1

P:3

7
P:2

P:
24

P:
20

P:
21

P:13

P:
35

P:39

P:14

P:37

9

P:
25

P:26

P:
27

P:18 P:41

P:23

P:43

P:
29

P:17

P:
38

Aq
ui

fe
r 1

 
Aq

ui
fe

r 2

Aq
ui

fe
r 3

 

Plant 4

Plant 5

Plant 3

Plant 2

Plant 1

11

12

13

14

z:4

40.3 (300)

40.3 (300)

26.2 (300)

7.5 (28.4)

0(-)

2.5 (13.6) 2.5 (13.6)

63.6 (195)

0.
3 

(1
3.

6)

2.
2 

(1
3.

6)

6.
9 

(3
00

)

0 (-)

94.2 (40.5) 40.3 (150)

18.2 (150)

9.1 (150)

40.3 (150)

40.3 (150)

40.3 (150)

26.7 (62.3)

18
.9

 (6
2.

3)

0 (-)

0 (-)

10.2 (13.5)
0 (-)

0.6 (62.3)

13 (62.3)

6.6 (300)

33.5 (13.5)

0 (-)
7.

4 
(2

8.
4)

34 (62.3)

48.2 (62.3)
69.2 (62.3)

0 
(-)

0 
(-)

23
.3

 (1
3.

5)

0 (-)

0 (-)

0 
(-)

0 
(-)

7.
8 

(6
2.

3)

11
0.

7 
(3

0.
4)

10.4 (62.3)

58
.4

 (6
2.

3)
31

.1
 (6

2.
3)

31.1 (62.3)

0 
(-)

63.6 (195)

Legend:
Demand zone 

Desalination plant Node

Aquifer P: Pipe id

Flow (Salinity)

 

Figure 3.12: Base run Season 1 results - flow ( )MCM  and salinity ( / )mgcl lit
distribution. (All values have been rounded to one decimal place) 

Sensitivity Analysis 

Of the many sensitivity runs that have been conducted we show here four, selected to 

demonstrate the response of the model to changes in the parameters of the objective 

function and the constraints. The optimal quantity and salinity distribution in the 

network for the 1st season is shown in Appendix 2 for each of the sensitivity runs. 

Sensitivity analysis SA1 introduces an extraction levy as defined in Equation 2 with 

maximum specific levy ( )max S

a
CE  ( $ / )M MCM  equal to the desalination cost of 1 

( )MCM  i.e. 0.7 ( $ / )M MCM . As a result, the model takes less water from aquifers 1 

and 3 and the total cost is increased compared to the BR, as seen in Table 3.10. 

Because of the extraction levy, the optimal solution keeps more water in aquifers 1 

and 3, while the same amount is extracted from aquifer 2 with and without the 

extraction levy, hence the state of the this aquifer remains as in the BR.  Another 

notable characteristic of this run is the flow in pipe 3 that takes desalinated water from 

node 1 to aquifer 1. Desalinated water is brought via pipe 3 to dilute the aquifer water 
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down to the allowed 220 ( / )mgcl lit . In this case, demand node 4 takes all its needs 

through pipe 47 with salinity of 220 ( / )mgcl lit . 

In sensitivity analysis SA2 we modify SA1 by modeling desalination plant 4 as a 

large and free–of-charge water source with fixed salinity of 180 ( / )mgcl lit . This is 

accomplished by: (a) fixing the maximum production of plant 4 to a high value of 

1000 ( )MCM , (b) fixing its removal ratio bound to 99.33 (%) and (c) fixing the 

desalination cost  parameter 4 0 ( $ / )M MCMα = . The total cost decreases compared to 

BR and SA1, as seen in Table 3.10. The results show that the model keeps more water 

in aquifer 1 and 3, while in aquifer 2 the same amount is extracted and the state of the 

this aquifer does not change compared to BR and SA1.  Pipe 3 conveys low salinity 

water in order to dilute the aquifer water to the required level. Moreover, some of the 

pipes out of aquifer 1 carry no flow, since supply from the free plant 4 is preferred to 

extraction from the aquifers. 

Sensitivity analysis SA3 and SA4 demonstrate how to eliminate parts of the model in 

order to use it as a tool to check planning alternatives. SA3 modifies SA1 by 

eliminating desalination plant 2, this is achieved by fixing its maximum flow to 0. In 

SA1 plant 2 produced 24.3 ( )MCM which was conveyed through pipes 16, 15, 18 and 

41 to demand node 9.  After eliminating plant 2 the model produces more water in 

desalination plants 4 and 5. The additional water from plant 4 is distributed in the 

network through different routes to demand node 9 in order to minimize the 

conveyance cost. SA4 modifies SA1 by eliminating pipe 3 which connects 

desalination plant 3 with aquifer 1; this is done by fixing the maximum conveyance 

capacity to 0. In SA1 the model used pipe 3 to dilute aquifer 1 water from salinity of 

300 ( / )mgcl lit  to the required 220 ( / )mgcl lit . After elimination of pipe 3, aquifer 2 

and plant 3 can only convey water to demand node 2, hence the extraction in aquifer 1 

and the production in plant 2 has to increase significantly compared to SA1, as seen in 

Table 3.9. Appendix 2 includes graphical output for the first season operation to each 

one of the four sensitivity analysis. 

Multi-Year Run 

Two 10-year runs with 6.5% discount rate are compared, with and without extraction 

levy. The first is based on the BR parameters and the second on SA1 parameters, and 
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the maximum water level in the aquifers is changed to ( )max 100 ( )S

ah m=  to insure no 

spill/overflow from the aquifers. The same data are repeated year after year for 10 

years in both runs, except that the aquifer recharges in the first season ("winter") 
1( )S

aR MCM= are the last 10 years' recharge data from the hydrological data of Israel 

(Table 3.11). The water level trajectories in the three aquifers for both runs are shown 

in Figure 3.13. The results demonstrate that the extraction levy encourages preserving 

high water levels in aquifer 1 and 3. In aquifer 2 practically the same trajectory is 

obtained in both runs, since aquifer 2 is limited to supplying demand zone 2 and 

therefore the same amount is extracted with and without the extraction levy.  

The extraction levy is a value assigned to water in storage, representing a policy of 

sustainable management. Runs with different extraction levy values can be used to 

show the tradeoff between storage in the aquifers at the end of the management 

horizon and the costs of desalination and conveyance, which rise as less water is taken 

from the aquifers with increasing values of the levy. Figure 3.14 shows this tradeoff 

between storage in the aquifers at the end of 10 year horizon and the desalination and 

conveyance cost, for different maximum specific levy values  ( )max
[0,0.4,0.7,1]

S

a
CE =  

( $ / )M MCM . The tradeoff shows that increasing the maximum specific levy from 0 to 

0.4 ( $ / )M MCM  (lowest two points on each curve) does not change the optimal 

solution markedly, resulting in small changes in the cost and the final total storage. 

While by increasing the maximum specific levy from 0.4 to 0.7 ( $ / )M MCM  the 

model preserves 30% more water in storage with a 16% increment of desalination and 

conveyance costs.  

The linear tradeoff of the total storage indicates that each additional ( )MCM  of storage 

at the end of year 10 costs almost the same as the present value cost of 1 ( )MCM

desalinated water. This is particularly true because the conveyance cost did not change 

significantly among the runs with different levy values. The tradeoff of aquifer 2 

shows a small change in storage, due to the limited conveyance network in the 

vicinity of aquifer 2. The allocation of additional storage between aquifers 1 and 

aquifer 3 changes for different values of the maximum specific levy. For 0.4-0.7 the 

allocation is 54% in aquifer 1 and 46% in aquifer 3, while for 0.7-1 the allocation is 

67% in aquifer 1 and 33% in aquifer 3. 
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Recharge (MCM) 

Year Aquifer 1 Aquifer 2 Aquifer 3 
1 117 58 139 
2 188 94 304 
3 172 86 264 
4 195 97 409 
5 252 126 520 
6 182 91 262 
7 200 100 340 
8 200 100 260 
9 222 111 292 
10 174 87 230 

Table 3.11: The recharge in the three aquifers.  

*The second season recharge is 0 

 

 
Figure 3.13: Water level trajectories with and without extraction levy 

 
Figure 3.14: Tradeoff curves of desalination + conveyance cost vs. final storage; each 

curve has points corresponding to four values of the maximum specific 
extraction levy (from bottom to top on each curve) [0,0.4,0.7,1] 
( $ / )M MCM . 
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3.10. The Time Chain Method (TCM) 

The model can be formulated as the following nonlinear optimization problem: 

1

1

1
1

1 1
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1 1
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∑
    (3.39)  

where t  is the stage index [1, ]ft T∈ ; t nu ∈R  is the vector of decision variables; 

1 1,n nt tx y∈ ∈R R  are two vectors of state variables corresponding to the aquifers state 

variables ( 1n is number of aquifers); tp is a vector of parameters; , , , jf W V g j∀ are 

nonlinear functions; tA  is a rectangular coefficient matrix; tb is RHS vector; 

,t n t nLB UB∈ ∈R R are lower and upper bounds respectively. 

Each of the fT  stages has its contribution to the objective function tf  , set of 

constraints 1.. 0t
j mg = ≤ , decision variables 1..

t
i nu =  and state variables

11..
t
r nx = , 

11..
t
r ny = .where tf , 

tg denote 1( , , )t t tf x u p−  and 1 1( , , , )t t t tg y x u p− − respectively. The overall objective is to 

minimize 
1

fT
t

t
F f

=

= ∑ satisfying the constraints 1.. ft T∀ =  while the decision variables are

1..
1..

ft T
i nu∀ =
= .  

3.10.1. Gradient estimation 

A finite difference scheme provides estimations for 1 fn TF × ⋅∇ ∈R . The central finite 

differences scheme to calculate an approximation of F∇  is: 

( ) ( )
1..

2
v v v v

f
vv

F U e F U eF v n T
U

δ δ
δ

+ ⋅ − + ⋅∂
≈ ∀ = ⋅

⋅∂
    (3.40) 

where U is the multi-year vector of decision variables that contains the annual 

decision vectors tu t∀ i.e. 1[ ,..., ]fTU u u= ;  vδ is a perturbation step of variable v ; ve is 

the unit vector in direction v . 
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Estimation of F∇ requires 2 fn T⋅ ⋅  evaluations of the function F and the state equation 

of x , each evaluation needs the computation for all fT  stages. Suppose timeS   is the 

computation time for one stage, therefore the total computation time is: 

2

2

2

( )
f time

f

Time n T S

Time O T

= ⋅ ⋅ ⋅

=  
       (3.41) 

Efficient Estimating of F∇  

Each stage t  is linked to the previous stages through the state variable so that the 

derivatives of the objective function with respect to (w.r.t.) former decisions can be 

calculated using the derivative of the objective function w.r.t. its own input state 

variable and the derivatives of these state variable w.r.t. previous decisions.  For 

example, to calculate the derivative of the objective function of stage 3 3f  with 

respect to the decisions of stage 1, 
1u , we can use the derivatives of 3f w.r.t. 2x , 

derivatives of  2x  w.r.t. 1x and derivatives of 1x  w.r.t. 1u as depicted in Figure 3.15. 

 

Figure 3.15: Scheme of the TCM for 3 stages (objective function) 

The following steps take advantage of two properties of the model: (a) 
1

fT
t

t
F f

=

∇ = ∇∑ i.e., 

the objective function is additive, (b) the functions of stage t   do not depend 

(obviously) on decision variables of later stages thus: 

0 1.. 1..
t

fk
i

f k t T i n
u
∂

= ∀ = + ∀ =
∂

       (3.42)   

For each function tf  we have to estimate 1.. 1..
t

k
i

f k t i n
u
∂

∀ = ∀ =
∂

 

For the n  derivatives 1..
t

t
i

f i n
u
∂

∀ =
∂

: 

1 1( , , ) ( , , )
1..

2

t t t t t tt
i i i i

t
ii

f x u e p f x u e pf i n
u

δ δ
δ

− −+ − −∂
≈ ∀ =

∂
     (3.43) 

2x
 

1x
 

0x
 

Stage 1 Stage 2 Stage 3 



82 
 

We can also estimate the derivatives 1
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t
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The component r  of tx  (i.e. t
rx ) is only dependent on 1t

rx − , then '
1

''

0 ' ''
t
r r
t
r r

x r r
x

=
−
=

∂
= ∀ ≠

∂
. 

The remaining derivatives 1.. 1 1..
t

k
i

f k t i n
u
∂

∀ = − ∀ =
∂

 are given by the chain rule: 

( )

1 1

1 1
1 1

1 1

1.. 1 1..
j knt t t

r r
k t j k
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k t
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 

∑ ∏


    (3.47) 

Thus we need ( )12 n n⋅ +  evaluations of the function tf and the state equation of x  in 

order to estimate tf∇ and the linking derivatives, each of these evaluations needs only 

the computation of stage t .  

Suppose timeS   is the stage computation time, then the computation time for tf∇  and the 

linking derivatives is ( )12 timen n S⋅ + ⋅ . 

Recalling that 
1

fT
t

t
F f

=

∇ = ∇∑ hence the computation time for F∇  is: 

( )12

( )
time f

f

Time n n S T
Time O T

= ⋅ + ⋅ ⋅

=
       (3.48) 

This procedure has been termed the Time-Chained-Method (TCM). 

3.10.2. Estimating the Jacobian of the nonlinear constraints 

A finite difference scheme provides estimations for the Jacobian matrix of the 

nonlinear constraints f fm T n TJ ⋅ × ⋅∈R  . 
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To estimate the finite differences of the constraints 1..
1.. 0ft T

j mg =
= ≤ , the same methodology 

(TCM) is applied. However, in this case two state variables are involved in the 

constraints x  and y , where the state variable y  is a function of the state variable x , 

since 1 1( , , , )t t t t t
r r ry V y x u p− −= . This dependency makes it harder to estimate the gradient of 

each constraint. For example, to calculate the derivative of a constraint of stage 3 3
jg  

with respect to the decisions of stage 1, 
1u , we should use the derivatives of 3

jg w.r.t. 

2x and 2y , derivatives of  2x  w.r.t. 1x , derivatives of  2x  w.r.t. 1y , derivatives of  2y  

w.r.t. 1x , derivatives of  2y  w.r.t. 1y and derivatives of 1x  and 
1y w.r.t. 1u as depicted in 

Figure 3.16. 

 

Figure 3.16: Scheme of the TCM for 3 stages (constraints) 

In the general case calculation the derivatives 1.. 1 1..
t
j
k
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g
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applying the chain rule for all the paths given in the Figure 3.17. 

However, in the formulation (3.39) the state variable x  does not depend on the state 
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derivative which is given by: 
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The first path which does not include the state variable y also could have non-zero 

derivative 
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Figure 3.17: Paths for the chain rule implementation 

The sum of all the non-zero paths gives the derivatives 1.. 1 1..
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For each of the functions t
jg we perform this procedure to construct the Jacobian 

matrix  f fm T n TJ ⋅ × ⋅∈R  , which is a lower triangular block matrix, where each element in 

this block matrix is m n×R  

1 2

1

2
0 0

0

f

f

T
i i i i i i

j j

j j

T
j j

u u u

g
g

J

g

∀ ∀ ∀

∀

∀

∀

× 
 ⊗ × =
 ×
 
⊗ ⊗ × 





 



 



       (3.52) 

The zero entries reflect the fact that the functions of stage t   do not depend 

(obviously) on decision variables of later stages. 

The entries marked × are derivatives which are directly calculated by the finite 

differences scheme, 1..
t
j
t
i

g
i n

u
∂

∀ =
∂

: 

1 1 1 1( , , , ) ( , , , )
1..

2

t t t t t t t t t
j j i j i
t

ii

g g y x u e p g y x u e p
i n

u
δ δ

δ

− − − −∂ + − −
≈ ∀ =

∂
    (3.53) 

The calculation of the entries marked ⊗ relies on the entries marked × by applying the 

chain rule, i.e. the sum of all the paths, Equations (3.49)-(3.51).  

3.10.3. Efficiency of the TCM scheme 

This Section presents the computational efficiency of the Time-Chained-Method 

(TCM) compared with the conventional approach of calculating the derivatives at 

each stage separately. The results are shown for the multi-year base run from Section 

3.9 where for the single year run we use the first year's recharge value, for two years 

the first two, and so on. Each year in the planning horizon has 62 decision variables, 

124 linear inequalities and 60 nonlinear inequalities, and a nonlinear objective 

function. Figure 3.18 presents the computational time to reach an optimal solution for 

a planning horizon ranging from 1 to 10 years. Each additional year expands the 

problem size, so that for 10 years it has 620 variables, 1240 linear inequalities, and 

600 nonlinear inequalities.  

Two model forms are compared, one with the standard gradient calculations of the 

objective function and Jacobian, the other with the TCM scheme. These results show 
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the linear rise with TCM versus the quadratic rise with the conventional method, as 

predicted by Equations (3.41) and (3.48). 

Each run was started from the same initial guess of the decision variables and exactly 

the same final solution was obtained. The results demonstrate the dramatic reduction 

in computation time achieved by the TCM. For a 10 year operation horizon the ratio is 

11200/1750=6.4 and it would rise further for a longer horizon. For 2-5 years the ratio 

is less significant, but still ranges between 2.5 and 4.5 .This computational efficiency 

will be most significant when the model is extended to deal with uncertainty, where 

optimal solutions are required for a large number of realizations of future conditions.  

 
Figure 3.18: Computation time as a function of planning horizon, comparing with and 

without the TCM procedure (on an Intel Core i7 M620 2.67 GHz laptop) 
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3.11. Scaling 

Solvers of nonlinear optimization are sensitive to scaling; one way to scale a problem 

is to introduce a linear transformation of the decision variables, of the form 

t t t t
i i i iu a u b= ⋅ +          (3.54) 

where 1..
1..

ft T
i na∀ =
=  are the scale weights and 1..

1..
ft T

i nb∀ =
= are the shifts. In our problem the 

decisions variables are bounded, so we can normalize to the range [ ]0 1  by 

t t
t i i
i t t

i i

u LB
u

UB LB
−

=
−

          (3.55) 

As a result of this transformation the linear constraints t t tA u b⋅ ≤ should also be scaled. 

The scaled linear constraints are: 

t t t t t t
iA D u b A LB⋅ ⋅ ≤ − ⋅         (3.56) 

where tD is a diagonal n n×  matrix, ( )t t tD UB LB= −diag .  

3.12. Model User Interface 

The model was programmed in MATLAB. A user friendly GUI (Graphic User 

Interface) to enter the model parameters was developed. Tabular and graphic final 

reports are automatically generated by the model.  

The model software incorporates a spreadsheet input tool for defining the system 

layout, components and parameters. The model automatically generates he 

corresponding input data for the MATLAB code, which is used in the optimization 

solver FMINCON within the optimization toolbox in MATLAB. 

For a large-scale WSS, each model run has the potential to overwhelm users with 

information, especially when performing multi-year runs. Therefore, we had also 

developed different tools to display model results and compare results from different 

model runs. An automatic report generator module which was programmed by 

MATLAB to produce *.html file format (Figure 3.19) which includes tabular 

information for the specific run. The report classifies each year from the multi-year 

run as separate Chapter which include four Sections (a) Run parameters, (b) The 

solution of season 1, (c) The solution of season 2, and (d) Annual costs. The last 



88 
 

Chapter in the reports includes costs summary for all the years together. Along with 

the *.html report a schematic network can be generated in *.pdf file format which 

displays the run results such as discharges and salinities (Figure 3.12) or the network 

parameters such as pipes diameters, lengths and capacities (Figure 3.11).  

 

  

Figure 3.19: Snapshot of the *.html report 

Note: 

Refer to Section  7.2.1 for Summary and Conclusion.   

  



89 
 

4.  Scenario based Stochastic Programming 

4.1. Introduction 

Chapter 3 introduces a seasonal multi-year model for management of both water 

quantity and salinity. The model is deterministic, in the sense that the amounts of 

water that are available in the sources over time (the natural replenishment), on the 

one hand, and the demands which have to be met, on the other, are prescribed and 

fixed. An important aspect of multi-year water supply management relates to 

hydrological uncertainty [Ajami et al., 2008] and climate change [Grantz et al., 2007]. 

In this Chapter we present a stochastic version of the deterministic model, in which 

the replenishment into the aquifers/reservoirs is given as stochastic process. 

The objective is to operate the system with minimum total cost of desalination, 

pumping and delivery, subject to technological, administrative, and environmental 

constraints. In this case, the operation cost and some of the constraints are in fact 

stochastic, as they depend on the realization of the replenishment into the 

aquifers/reservoirs.  

Using the model of Chapter 3 as a basis, several stochastic models were developed 

using different stochastic approaches and techniques. Section 4.2 presents a general 

stochastic formulation. Section 4.3 presents scenario based stochastic programming. 

Sections 4.4-4.9 demonstrate the application of various scenario based stochastic 

programs including: Wait-and-See, Here-and-Now, two-stage, and multi-stage 

approach. Section 4.10 presents the Limited Multi-stage Stochastic Programming 

(LMSP) which is an approximation of MSP approach that was developed in the 

current research. 

4.2. General stochastic model 

As discussed in Section 3.10 the seasonal multi-year management of quantities and 

salinities in a WSS model for minimizing total present value cost can be formulated as 

the following nonlinear optimization problem: 
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⋅ ≤ ∀ =
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∑
     (4.1) 

See the notations for Equation (3.39).  A concise form of Equation (4.1) is: 

1

2

min ( , )

. .
( , ) 0
( , ) 0

U
F U R

s t
m U R
m U R
U U U

=
≤

≤ ≤

         (4.2) 

where U is the multi-year vector of decision variables that contains all decision 

vectors tu t∀ i.e. 1[ ,..., ]fTU u u= ; R is the stochastic replenishment process;  1 2,m m are 

vectors of function; U ,U  are lower and upper bounds, respectively. 

In Section 2.2.2 we have reviewed stochastic programming tools for optimization 

under stochastic conditions. All of these tools can be joined to form a single general 

formulation of the stochastic model, which can then be used to define special cases 

for common stochastic models. 

As discussed in Section 2.2.2, the equality constraints require the decision to take on 

values which make the random left side of the constraint 1( , )m x R  equal to zero. In 

other words, this places a requirement on the decision to make the random variable to 

be not random at all but have the constant value of zero. In many cases such decisions 

does not exist. To overcome this problem, it is important to avoid solving stochastic 

equality constraints. Following the optimization procedure in Section 3.5, we extract 

the dependent variables from the equality constraints: 

2

min ( , )

. .
( , ) 0

( , )

indep
indepU

indep

indep indep indep

dep dep indep dep

F U R

s t
m U R

U U U

U U U R U

≤

≤ ≤

≤ ≤        

(4.3) 
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If the constraints are hard, i.e., must always be respected, then in the stochastic 

inequality constraints should be replaced by their worst case values. When the 

constraints are soft they can be substituted by penalty terms in the objective function, 

which introduces an additional cost proportional to the amount of violation. Another 

approach is to model these soft constraints as chance constraints with pre-defined 

reliability. Since the objective function is stochastic, we have to apply a statistical 

operator on the objective before the minimization. Some of the operators which are 

commonly used are discussed in Section 2.2.2, such as: the Worst Case approach, and 

the Expected Value approach. 

The general formulation is given by: 

( )2

2

min [ ( , ) max ( , ),0 ]

. .
Prob[ ( , ) 0]

Prob[ ( , ) ]

indep
indep indepU

indep

dep dep indep dep

indep indep indep

F U R m U R

s t
m U R

U U U R U

U U U

φ λ

α

α

+ ⋅

≤ ≥

≤ ≤ ≥

≤ ≤

     (4.4) 

where φ is a statistical operator, such as: max, expectation, variance or combination of 

operators; λ is the penalty per unit deviation ; α is pre-specified reliability. Some of 

the special cases of this general formulation are: 

4.2.1. The Expected Value approach 

In which we minimize the expectation of the objective, and the constraints are 

modeled as chance constraints: φ  is the expectation operator and 0λ = . 

2

min [ ( , )]

. .
Prob[ ( , ) 0]

Prob[ ( , ) ]

indep
indepU

indep

dep dep indep dep

indep indep indep

E F U R

s t
m U R

U U U R U

U U U

α

α

≤ ≥

≤ ≤ ≥

≤ ≤

      (4.5) 

This approach emphasizes the average outcome, with pre-specified reliability. 

4.2.2. The Penalty approach: 

 The penalty method is obtained by setting 0α = and 0λ > . 
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( )

( )
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     (4.6) 

4.2.3. The Worst Case approach  

In which we minimize the worst possible outcome which may result from the decision 

and the constraints are hard. This formulation is given by choosing the maximum 

operator in the objective function and by setting 1α =  and 0λ =  to satisfy the 

constraints for all the realizations of the stochastic process.  

2

2

min max[ ( , )]
min max[ ( , )]

. .
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   (4.7) 

This approach does not distinguish between the outcomes according to their 

probability of occurrence; hence it can give poor results when the worst outcome has 

low probability, as is the case many real word problems. 

4.2.4. The Value at risk approach: 

In the value at risk approach (VaRβ ), we minimize the quantile value associated with 

risk β . 

2

min

. .
Prob[ ( , ) ] 1

Prob[ ( , ) 0]

Prob[ ( , ) ]

indepU

indep

indep

dep dep indep dep

indep indep indep
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F U R VaR
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U U U R U

U U U

β

β β

α

α

≤ ≥ −

≤ ≥

≤ ≤ ≥

≤ ≤

      (4.8) 



93 
 

This approach considers only one value of the stochastic objective, namely, the 

quantile associated with risk β . To demonstrate its drawback consider two decisions 

'U and ''U   which have Cumulative Density Functions (CDFs) of the objective, shown 

in Figure 4.1. 

 

Figure 4.1: Cumulative Density Function of the objective 

Both decisions give the same value-at-risk, however it is obvious that the second 

decision, ''U  is preferred since it give more probability to low costs realizations. 

4.2.5. The Mean-Variance approach 

Combination of different statistical operators is also possible. For example, a 

commonly used objective is the combination of the expectation and the variance. 

2

min [ ( , )] [ ( , )]

. .
Prob[ ( , ) 0]
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      (4.9) 

where ω is a weighting parameter and Σ  is the variance operator. This approach is 

quite traditional in financial applications, where the outcomes variance is considered a 

measure of risk [Markowitz, 1959]. 

4.3. Scenarios based Stochastic Programming 

The scenarios based stochastic programming assumes that the distribution of the 

stochastic process R  is a finite discrete probability space, which is the particular 

representation of how the process might be realized. The stochastic process R  is 
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(a) Decision 'U    (b) Decision ''U    
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approximated by a finite set of scenarios sR ∈Ω  s∀ with probabilities sp  where 

1
1

fS
s

s
p

=

=∑ . 

If a given problem naturally involves “continuous” random variables, it can be 

discretized in various ways. When the stochastic process R is represented by a finite 

number of scenarios  sR ∈Ω  s∀ , the process can be represented by a scenario tree. A 

scenario tree consists of nodes and arcs; each node represents a possible realization of 

the stochastic process, the root node represents the present state, and each node has a 

unique ancestor (except the root node which has no ancestor). The arcs represent the 

links between the nodes and are associated with a conditional probability. Along the 

tree the uncertainty unfolds with the stages, where each path from the root to a leaf 

represents a scenario. An illustration of scenario trees is shown in Figure 4.2, with 

four stages and two branches at each node; accordingly we have eight scenarios at the 

end of the four stages horizon. 

The number of branches of all nodes at a given level in the scenario tree can be equal, 

if this occurs for all stages, the scenario tree is balanced (Figure 4.2c). A special case 

of the scenario tree is when all the nodes after the first stage have only one branch. 

This means that the scenario tree is only a “fan” of individual scenarios sR  which 

occur with probabilities sp (Figure 4.2a). In this case the entire future is reveled after 

the first stage, since each node after the root only has only one possible continuation. 

Hence, the stochastic process is given as two stages; the first is before any realization 

and the second is after the first realization of the process. 

     

Figure 4.2: Scenario trees: (a) fan (b) feather-duster (c) balanced tree 

4.3.1. Generation of scenario trees  

For water resources management models we are often able to generate a large number 

of scenarios, which may be obtained by simulation with stochastic models, historical 
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data and expert forecasting for extreme scenarios. The most common ways for 

generating individual scenarios are: 

(a) Simulation: in which stochastic models which are calibrated with historical data 

(e.g. multivariate auto-regression models) are used to produce a set of scenarios to 

present the stochastic process.  

(b) Monte Carlo Sampling: in which the random variables are generated from their 

known (or assumed) distribution and thus replace the given probability space with a 

finite space consisting of the samples. 

(c) Moment Matching: this uses a finite number of samples that match as closely as 

possible to the first few moments of the stochastic process. 

(d) Bootstrapping: in which the scenarios are generated from the historical data 

without the need to make any distributional assumptions regarding the process. 

A survey of methods for generating sets of scenarios that form an approximation of 

the underlying random data process is given in Dupačová et al. [2000]. 

The generated individual scenarios form a scenario fan tree (Figure 4.2a) where the 

root node corresponds to the present state (initial information). Hence, the generated 

individual scenarios (data paths) must construct a scenario tree which preserves the 

correlation structure present in the stochastic process.  

Many schemes have been developed for bundling and reduction in order to generate 

balanced and unbalanced scenario trees out of a fan scenario tree. See for example 

[Dupačová et al., 2003; Gulpinar et al., 2004 and Heitsch and Römisch, 2005] 

4.4. Wait-and-See approach 

An important aspect of solving stochastic models is the sequence in which decisions 

alternate with observations. The implicit stochastic programming (IS) or Wait-and-See 

approach seeks an optimal solution for each scenario individually. Hence, the Wait-

and-See approach assumes that the decision maker is somehow able to wait until the 

uncertainty is revealed before making the decision, i.e. delaying all decisions until the 

last possible moment, after all uncertainties have been resolved. The optimal solution 

relies upon perfect information about the future for each scenario; therefore this 

approach provides a set of scenario solutions. Because of this assumption such 
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approach cannot be implemented and is known as the “passive approach”. The 

optimal solution (solution for each scenario) of the Wait-and-See constructs the 

objective value set which contains the optimal objective value for each scenario 

individually and the optimal solution set which contains the optimal decisions for 

each scenario individually. These sets can be analyzed probabilistically and a heuristic 

subjective rule is then used to aggregate these solutions to a single one that is selected 

for implementation. 

In this approach one must solve many deterministic problems (one deterministic 

problem for each scenario) hence, the deterministic model developed in Chapter 3 

constitutes an efficient module since it was solved with structural adaptability and 

high computational efficiency to serve as a building-block for stochastic approaches 

which consist of solving many deterministic problems. For more details see the TCM 

method and the optimization plan in Chapter 3. 

The corresponding problem is stated as: 

2

min ( , )

. .
( , ) 0

( , )

s
indep

s s
indep
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s s
indep

s s
dep dep indep dep
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U U U R U

U U U
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
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≤ ≤ 

      (4.10) 

It is solved for each scenario individually to construct the objective value set  

min ( , )
s
indep

s s
indep F

U
F U R ∈Ω  s∀ and the optimal solution set arg min ( , )

s
indop

s s
indep U

U
F U R ∈Ω s∀ . 

4.4.1. Example 1 

In this example we solve the multi-year problem with a five years horizon, with the 

same parameters set defined in the multi-year run (Section 3.8) and a maximum 

specific levy ( )max
1CE =  ( $ / )M MCM . 

The yearly aquifers recharges ( )R MCM (which, we recall, occur only in Season 1, 

while Season 2 they are zero) are considered stochastic, given by a balanced scenario 

tree with three branches at each stage. The conditional discrete probability at each 
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year is given by the Probability Mass Function (PMF) in Table 4.1, where tr is the 

recharge in year t , and tR  is the vector of recharges up to year t . 

 Low Recharge  Medium Recharge  High Recharge 
tr ( )MCM  0 50 100 

Prob( )t
tr R  1/3 1/3 1/3 

Table 4.1: Probability Mass Function (PMF) of the recharge, example 1 

The scenario tree in this case has 243 scenarios (paths in the tree). After solving (4.10) 

for each scenario individually we can construct the two sets FΩ  and UΩ  , to be 

analyzed probabilistically to derive a heuristic rule which can be implemented. The 

PMFs of the multi-year costs (objective values), the water level at the end of the five 

years and the extraction from the aquifer at the first/last year, are given in Figure 4.3. 

  

  
Figure 4.3: Probability Mass Functions (PMFs) for example 1: (a) objective (total 

cost) (b) final water level (c) aquifer withdrawal first year (d) aquifer 
withdrawal last year 

As seen in Figure 4.3 the solution given by the Wait-and-See approach cannot be 

implemented, since all decisions are given as PMFs which means that there is no 

specific solution to be implemented. Still, the PMFs can be used to derive a heuristic 

rule which guides to a near optimal solution for a wide range of possible realizations. 
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For example, as seen in Figure 4.3c, the optimal value of the first year withdrawal is 

between 0-6 ( )MCM in 64% of the scenarios and the range of the optimal objective 

value is between 540-720 ( $)M , but there is no theoretical guidance about the 

compromise between the different values in the PMFs that should actually be adopted. 

In practice, such approach may result in poor solutions [Labadie, 2004]. For instance, 

the last year withdrawal in the example is spread over a wide range which increases 

the difficulty of choosing a "good" heuristic operation rule. More difficult situations 

are when we have a uniform distribution which gives no preference for one value over 

the others. 

Note that the above analysis (Figure 4.3) neglects any relationship between one 

decision variable to the other, and also neglects the relationship between the decision 

variables and state variables since each PMF was created independently. This 

dependency should not be neglected, especially when dealing with constrained 

optimization problems, in which neglecting dependency may result in constraint 

violations. For example, neglecting the correlation between the total desalination 

amount and the total withdrawal may lead to unsatisfied demand constraints.       

More complex analysis regarding the correlation of the state variable PMF in Figure 

4.3b and decision variables PMF in Figure 4.3c&d may be performed to derive 

operation rules based on the system state. In general, this approach is not considered 

as an adequate approach for deriving decision for implementation. It is closer to a 

scenarios analysis or what-if-analysis as it was called by some researchers. Using this 

approach for preliminary understanding of the model behavior under the stochastic 

process, such as the ranges of decisions and the objective value, may help develop the 

appropriate stochastic model. For instance, using this approach may help answering 

crucial questions for formulating an explicit stochastic model, such as: what is the 

proper statistical operator which should be applied on the objective function? 

Back to the example above, we can see that the worst case value of the objective have 

low probability which indicates that we should be cautious before implementing the 

max operator i.e. solving the worst case problem. However, the diversity of the 

objective value is small, meaning that the expected value of the distribution is close to 

many outcomes of the objective function, hence choosing the expectation operator 

may be justified. In contrast, when encountering an outcome with high diversity, the 
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expectation alone will not be a good representation of the outcomes, and another 

operator which considers variability of the objective values should be considered. 

4.4.2. Example 2  

The large scale network presented in Section 3.9 is solved in this example. The multi-

year problem of three years horizon is considered with the same parameters set 

defined in the multi-year run (Section 3.9) and a maximum specific levy ( )max
0.2

a
CE =  

( $ / )M MCM . 

The yearly aquifers recharges 1..3 ( )aR MCM= are considered stochastic, given by a 

balanced scenario tree (Figure 4.2c) with two branches at each stage. The conditional 

probability in each year is given in Table 4.2, where ,a tr is the recharge in aquifer a  at 

year t , and t
aR  is vector of recharges up to year t . 

 Low Recharge  High Recharge 
1, 2, 3,, ,t t tr r r ( )MCM  60, 10 ,110 360, 280, 550 

1..3, 1..3Prob( )t
a t ar R= =  0.5 0.5 

Table 4.2: Probability Mass Function (PMF) of the recharge, example 2 

The scenario tree (Figure 4.2c) in this case has 8 scenarios (paths in the tree), where 

each of the nodes 2 15 takes the values of the low recharge if the node index is an 

odd number, and if even the node takes the values of the high recharge. The objective 

value for each scenario is given in Figure 4.4a. 

  
Figure 4.4: Total cost (B$) and aquifers withdrawal (MCM) for each scenario. 
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For instance, Figure 4.4a shows that scenario 4, with High-Low-Low recharge, costs 

less than scenario 5, a Low-High-High recharge scenario, despite the fact that 

scenario 5 has available more aquifer water. Since the high recharge value in scenario 

4 at the first year is above the total required demand, aquifers water can be stored for 

later years. On the other hand, in scenario 5 the low recharge is in the first year, hence 

despite knowing that the future holds high recharge we must use more from the 

desalination water in the first year, which leads to high cost in the first year and 

consequently to a higher total cost. 

Again we see from Figure 4.4b that the Wait-and-See solution cannot be 

implemented, since the decisions have different optimal values for different scenarios. 

Among the 8 scenarios we have 3 different values for the optimal withdrawal from the 

aquifers in the first year. The first value (420 MCM) corresponds to the scenarios 

beginning with a high recharge, while remaining scenarios, which all start with low 

recharge, are further classified according to the recharge in the second year. 

4.5. Mean-Variance tradeoff 

The formulation in (4.10) can be solved for predefined objective on the optimal 

objective set FΩ . For example, the expectation of the objective values can be 

minimized. In such a problem all the decisions corresponding to each scenario are 

determined in the same optimization problem as follows: 

2

min [ ( , )]

. .
( , ) 0

( , )

s s
indep

s s
indep

U

s s
indep

s s
dep dep indep dep

s
indep indep indep

E F U R

s t
m U R s

U U U R U s

U U U s

∀

≤ ∀

≤ ≤ ∀

≤ ≤ ∀

      (4.11) 

However, the optimal solution for each scenario obtained from problem (4.11) would 

be the same as that obtained from (4.10) since we can obtain the minimum 

expectation also by minimizing each scenario individually and utilizing the efficiency 

of solving deterministic model which was developed in Chapter 3. In the general case, 

this would not always be true. Consider for example if the objective to be minimized 

is the variance of the set FΩ . In this case the optimal solution cannot be solved by each 

scenario individually; we must rather solve the following optimization problem:  
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2

min [ ( , )]

. .
( , ) 0

( , )

s s
indep

s s
indep

U

s s
indep

s s
dep dep indep dep

s
indep indep indep

F U R

s t
m U R s

U U U R U s

U U U s

∀
Σ

≤ ∀

≤ ≤ ∀

≤ ≤ ∀

      (4.12) 

The minimum variance would be zeros which is obtained when all members of FΩ   

have the same value, i.e. all the scenarios have the same objective value. Since, each 

scenario has its own decision vector, the model is capable to increase the costs in 

order to obtain FΩ which has the minimum variance, zero. 

A zero variance can be obtained by an infinite number of solutions. For instance, 

suppose that we have the same objective value of for all scenarios, and recalling that 

the model is capable of increasing costs, a solution that increases the objective values 

of the scenarios by a constant is also optimal and produces zero variance. Among all 

optimal solutions which produce zero variance, one may be interested in the solution 

which produces minimum expectation and have zero variance, this solution can be 

obtained by increasing the cost of all scenarios to match the minimum cost of the 

severe scenario.  In this case the cost expectation would equal the minimum cost of 

the severe scenario and have a zero variance.    

Using a multi-objective approach for the Mean-Variance is also applicable within the 

Wait-and-See approach. The Pareto Frontier between the variance and the mean 

covers the interval from the point of minimum expectation until the point of minimum 

expectation with variance zero. The minimum expectation with variance zero is equal 

to the minimum cost of the most severe scenario. 

We can obtain the bounds of the tradeoff interval from the solution of (4.10) which 

implies solving each scenario individually, because the mean of the objective values 

gives the minimum expectation ( minE , left point) and the maximum of the objective 

values gives the severe scenario cost ( maxE , right point). For each iE  inner point in the 

tradeoff interval we can solve the following model and obtain one point on the 

tradeoff curve: 
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2

min [ ( , )]

. .
[ ( , )]

( , ) 0

( , )

s s
indep

s s
indep

U

s s
indep i

s s
indep

s s
dep dep indep dep
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      (4.13) 

This model is the same as minimum variance model with the addition of a constraint 

on the expectation to be below the inner point iE . 

4.5.1. Example 

To obtain a point on the tradeoff curve, one should solve formulation (4.13) in which 

all the decisions corresponding to each scenario are determined in the same 

optimization problem. Hence, for the stochastic example 1 considered previously (5 

years), for each year there are 243 different decision vectors, each decision vector has 

10 variables, and we have an optimization problem with 243 5 10 12,150⋅ ⋅ = decision 

variables. Each decision vector is subject to 24 linear constraint and 16 non-linear 

constraints, which means that for each point on the tradeoff, an optimization problem 

with 29,160 linear and 19,440 nonlinear constraints has to be solved. Even for this 

small example the optimization problem size is too large. In the next Section we 

present an equivalent external optimization problem which gives the optimal frontier 

without the need to consider formulation (4.13).  

  
Figure 4.5: Mean-Variance tradeoff 
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stochastic example 2 with the same parameters considered previously.  Figure 4.5, 

shows the tradeoff for the problem considered in implicit stochastic example 1 (3 

years) and example 2, respectively. 

For the problem in example 2, the minimum expectation cost can be obtained by 

averaging the optimal objective values of each scenario individually as explained 

earlier in this Section, hence the tradeoff interval is from min 1.17E =  to the severe 

scenario cost which is max 1.42E = , as shown in Figure 4.5b. The tradeoff between the 

expected value of the cost and its variability (standard deviation) shows that as the 

cost rises (corresponding to less water taken from the stochastic source and more from 

desalination) the variability decreases. For instance, Figure 4.6 compares the first 

point (1.17 B$) and the middle point (1.28 B$) in the tradeoff.  

 
Figure 4.6: Aquifers withdrawal (MCM) comparison 

By requesting less variability in the solution we asked to increased the costs in the  

“good” scenarios e.g. when we ask for zero variability of the cost, each of the 
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stochastic source and more from the desalination, so in this case as we move to the 
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taken from the stochastic source (aquifers) and more water taken from the reliable 

source (desalination), so called robust solution. Basically, it is possible to have larger 

costs by ineffective water distribution or by ineffective water allocation among the 

years. So with same water amount taken from the stochastic source we have less cost 

variability. 

To demonstrate this let us consider again the tradeoff of example 1 (Figure 4.5a), and 

compare the first point (370 M$) and the middle point (392 M$) in the tradeoff. 

Figure 4.7 shows an opposite behavior between these points, i.e. more aquifer water is 

taken in the middle point (the point with less cost variability). So we cannot say that 

low cost variability solution is robust in which we have less reliance on the stochastic 

process. However, the PMF’s variance and the PMF’s range of the middle point is less 

than in the first point - which could also be considered a desired property of if it was 

selected as the solution. 

  

Figure 4.7: PMFs of Aquifers withdrawal corresponding to expected cost of 370 (M$) 
and 392 (M$), respectively. 

The conclusion to be drawn from this example is that we need to understand the 

consideration of cost variability solutions in making decisions. Choosing the 

variance/standard deviation as a measure of robustness in the Wait-and-See approach 

may lead to bad results in the cases where less variability requirement 

artificially/inefficiently increases the cost of the scenarios to bring them closer to each 

other, thereby providing the appearance of less variability. In example 1, because of 
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cost variability the solution inefficiently allocates the aquifer water (high withdrawal 

in the first year, Figure 4.7b) to artificially increase the costs of the scenarios. 

For each point on the tradeoff we can also show the range, of cost values with the 

distribution of the values within that range. Figure 4.8 shows the cost range (bounded 

between the two curves) for each point in the tradeoff of example 1. The PMF of the 

objective values for the first point and middle point is also presented showing that for 

the distribution of the middle point it is skewed towards the lower bound, which 

indicates that the probability of severe costs is small. 

 

Figure 4.8: Operation cost range along the Mean-Variance tradeoff   
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This model minimizes the variance while the sF (operation cost in each scenario) is 

the decision variable and the constraints min ( , ) ,
s
indep

s s s
indep

U
F F U R s≥ ∀  maintain the original 

problem feasibility. 

4.6.1. Example 

The tradeoff curve obtained by the external formulation (4.14) for the two examples 

in the previous Section and the curve obtained from the original problem, i.e. 

formulation (4.13), are compared in Figure 4.9. 

  
Figure 4.9: Validation of the external problem tradeoff 

We can see that tradeoff curves are very close, with the curve of the external model 

slightly lower, i.e., better. The difference is due to lower precision in the solution of 

the original problem, because it is a larger model whose solution is numerically less 

accurate. 

So, in order to obtain a point on the tradeoff of example 1 (Figure 4.9a), instead of 
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linear constraints. In the external problem only the tradeoff itself is produced and not 

the decision  s
indepU s∀  , hence, to obtain the decision for a chosen point on the tradeoff 

a goal seek problem should be formulated for each scenario. The goal seek 

formulation to obtain the decision for a point in the tradeoff is: 

* 2

2

min ( ( , ) )

. .
[ ( , )]

( , ) 0

( , )

s
indep

s s S
indep

U

s s
indep i

s s
indep

s s
dep dep indep dep
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indep indep indep

F U R F

s t
E F U R E
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≤ ≤ 

      (4.15) 

4.7. The Here-and-Now approach 

The term Here-and-Now is used to refer to stochastic programming problems in 

which the decision has to be taken in advance, before a realization of the stochastic 

process is revealed. The extreme case is when all decisions, for all time periods, have 

to be made in advance, i.e. the entire problem is considered at one stage. 

The single stage formulation could be considered with different statistical operators as 

in the Wait-and-See approach. The Mean-Variance single stage stochastic 

programming model can be formulated as follows: 

2

min [ ( , )]
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      (4.16) 

In contrast to the Wait-and-See approach, here we consider a common decision for all 

the scenarios. Hence, we do not have the implementation problem that we had in the 

Wait-and-See approach. The Pareto Frontier between the variance and the mean is in 

the interval from the point of minimum expectation to the point of zero variance. As 

discussed previously, zero variance is obtained when all the objective values for all 

scenarios are the same. However, since the Here-and-Now approach considers only 

one decision for all the scenarios the zero variance can be obtained only when the 

stochastic part of the objective function is eliminated. In our model the stochastic part 
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of the objective is related to the extraction from the aquifers, hence the zero variance 

is obtained when the system relays only on the desalination plants without using 

aquifer water. This is not always feasible, which means that the tradeoff may end 

before the point of zero variance. 

4.7.1. Example  

In this approach the optimal decision vector is implementable since it is a single 

decision for all scenarios. For Example, the optimal solution of the minimum 

expected value problem of example 1 require withdrawal of [9.7 0.07 0.23] (MCM) 

for the three years, respectively. This decision is the same for all scenarios. The 

optimal decision vector is also associated with stochastic objective function and state 

variables (aquifer water level) which can be presented as PMFs. The PMF of the 

water level at the end of third year in example 1 is presented in Figure 4.10; the mean 

value 151 (m) and the standard deviation is 5000  (m). 

 
Figure 4.10: PMF of the aquifer water level at the end of the horizon 
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1666.66 0 0 1
[1,...,1] 0 1666.66 0 5000

0 0 1666.66 1
Level

   
   Σ = ⋅ =   
      

     (4.17) 

where 1666.66 is the variance of the yearly recharge given in Table 4.1,  and the ones 

vector is summing the yearly recharges, since the stochastic water level at the end of 

the horizon depends on the sum of all the yearly recharges. This demonstrates that the 

expectation and the variance of the final water level obtained from this analysis are 

identical to the expectation and the variance of the water level PMF obtained from the 

optimization results. 

4.8. Two stage Stochastic Programming 

In the two stage model we combine the Here-and-Now approach and Wait-and-See 

approach: the first with one decision vector for all scenarios and the second with 

decisions that are scenario dependent. The first approach is too conservative since it 

takes all decision before the process is revealed and does not take into account 

information which may be available after part of the decisions were implemented. On 

the other hand, the Wait-and-See approach provides a set of solutions which cannot be 

implemented. At least the decisions for first stage (in our case first year/season) are 

needed in order to provide operating rules for the water system. 

Based on the two approaches we can define a two-stage model which takes at the first 

stage one decision for all scenario and scenario dependent decisions at the second 

stage (in our case all the years/season after the first).  

The two stage model: 
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    (4.18) 

The two stage model can also be formulated to produce the tradeoff between the 

expectation and the variance. In this case the tradeoff occurred in the interval, from 
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the point of minimum expectation until the point of minimum expectation with 

variance zero, as we explained previously the minimum expectation with variance 

zero is equal to the minimum cost of the severe scenario.  

Since the two stage programming is a special case of the multi-stage stochastic 

programming described in the next Section we postpone the numerical examples to 

the next Sections. 

4.9. Multi-stage Stochastic Programming (MSP) 

When it is required to consider not just one decision and one observation, but 

sequential interactions between decisions and observations in stages, then multi-stage 

stochastic programming (MSP) is used. In the multistage stochastic program over 

time horizon fT  the stochastic process 1( )
fTR r r=  and decision process 1( )

fTU u u=  , 

are interlinked into a sequence of decisions and observations is 1 1 1 1, , , ,
f f f fT T T Tu r u r u r− −  .  

The MSP distinguishes between decisions that have to be made now, before any 

information is revealed, and decisions at later stages when part of the information 

becomes available. The decisions at each stage are made while taking into account 

that there are opportunities for modification and corrections at later stages. The 

decision process is assumed to be nonanticipative or implementable, i.e., the decision 

vector tu  depends only on past information 1
1 1( )t

tR r r−
−=  . The mathematical 

formulation of the MSP: 
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When the stochastic process is given by scenarios, as it in our case, the mathematical 
formulation is: 
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where ,2 ,2 1 , ,( ),..., ( )
f f

s s s s
indep indep indep T indep Tu u r u u R= = is the nonanticipativity requirement which 

implies that the decision must be based exclusively on the information available at 

decision time (i.e., it does not depend on future realizations of the stochastic data). 

In the scenarios based formulation this means that every pairs of scenarios , 's s which 

are indistinguishable (share the same history) up to stage t  must fulfill
' '

,2 , ,2 ,( , , ) ( , , )s s s s
indep indep t indep indep tu u u u=  .  

The introduction of the scenario tree allows us to formulate the equivalent 

deterministic problem (4.20), where the nonanticipativity constraints are spelled out 

explicitly based on the shape of the scenario tree. For example, in Figure 4.2c 

scenarios 1 and 4 are  indistinguishable up to  stage 2 thus we must impose a 

constraint 1 2 3 4
,2 ,2 ,2 ,2

s s s s
indep indep indep indepu u u u= = = == = = . 

There is another approach which may be used in order to enforce the nonanticipativity 

constraints, an implicit approach in which the nonanticipativity constraints are 

fulfilled automatically by introducing a unique decision variables for each node of the 

tree. The implicit formulation is computationally cheaper than the explicit approach 

since it does not assign decision variables for each scenario at each stage. For 

example, in Figure 4.2c instead of the decision variables 1 2 3 4
,2 ,2 ,2 ,2, , ,s s s s

indep indep indep indepu u u u= = = =   we 

have 2
,2

node
indepu = . 

The general structure of the scenario tree is as follows: (a) At each time 2 1ft T= +

there are 1t tK K −− nodes which are denoted by 1 1t t tk K K−= +  where the root of the tree 

is indexed by 1, i.e. 1 1K = . (b) Each different value of 1
1 1( )t

tR r r−
−=   corresponds to 

one node at stage 2 1ft T= + , where tr is the recharge at year t , and tR is vector of 

recharges up to year t . 

When the objective and the constraints are separable functions, as in our case, the 

equivalent deterministic problem with the implicit nonanticipativity approach leads 

to: 
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  (4.21)  

where tkR is the data path up to node tk at stage t ;  tk
indepu is decision path up to node tk

at stage t ; 
tkp is the data path probability up to node tk at stage t which is obtained by 

multiplication of the arcs probabilities of the path.  

The main issue in sequential decision making under uncertainty is the manner in 

which uncertainty is revealed over time; this is captured by the structure of the 

scenario tree which represents the stochastic process. Several possible structures of 

scenario trees are shown in Figure 4.2. In the fan scenario tree the uncertainty is fully 

revealed at the second stage, whereas in the feather-duster shape the uncertainty 

resides only in the final stage.  

These are two cases in which the multistage stochastic programming shrinks to a two 

stage model. If the tree is a fan the first stage would be 1t =  and the second stage 

would be the aggregation of the remaining stages. In contrast, when the tree is a 

feather-duster the second stage would be 4t =  and the first is the aggregation of all 

previous stages. In contrast to these extreme cases, the balanced tree is associated 

with multistage model with one decision stage per stage in the tree. A more general 

tree shape, which is also associated with a multistage model, is the unbalanced tree in 

which the number of the branches at each node is not equal (Figure 4.14). 

4.9.1. Implementation of MSP 

In the MSP approach at any node in the multistage scenario tree the decision maker 

knows the exact history leading to that node, and decides how to proceed; knowing 

only that the future recharge is presented by each of the scenarios that emerge from 

the node into the future. The MSP solves for all stages simultaneously to obtain the 

optimal decisions (corresponding to each node) which results in minimum expectation 

cost over all future scenarios. However, the MSP considers only the discrete 
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approximation of the real-life process as a result the true realization may differ from 

the nodes values considered in the tree. Only the first stage (Here-and-Now) decision 

of the MSP can be implemented, since it is not realization dependent. The decisions of 

the subsequent stages (which are realization dependent) are function of the real-life 

realizations. 

As a result, the only possible way to apply MSP in practice is to use it in the 

Rolling/Folding Horizon mode: at first we solve the scenario based MSP formulation 

in (4.21) for the entire horizon fT  and from its solution we implement the first stage 

optimal decision; in the second run we solve a new problem with the horizon reduced 

by one time period, starting from the new state of the system, again we implement the 

first stage of the decisions provided by the solution, etc. Examples for the MSP are 

presented and compared to the LMSP in the following Sections. 

4.10. Limited Multistage Stochastic Programming (LMSP)  

The dimension of a multistage stochastic program is often too large to be tractable by 

direct solution, since the dimension of the problem grows exponentially with the 

number of scenarios and stages. Consequently, the usual solution approach for these 

large scale problems is based on decomposition of the original problem into an 

assembly of small and easier to solve sub-problems. However, the decomposition 

requires assumptions concerning the convexity of the objective function and the 

constraints. We propose a different approach: the Limited Multistage Stochastic 

Program (LMSP). The LMSP is an attempt to solve without decomposition or 

scenario reduction techniques.  

In the LMSP the number of decision variables in each stage remains constant, and 

thus the total number of decision variables increases linearly with the number of 

scenarios and stages. We begin by identifying subsets of nodes which are expected to 

have similar decision variables namely, which amounts to clustering by decisions; at 

each stage 2 ft T=  we search for a predetermined number of clusters. The clustering 

criterion is based on the scenarios optimal decisions 1.. arg min ( , )
f s

indep

s s s
t t T indep

U
v F U R∀ = =

1 fs s∀ =   which have been obtained by solving each scenario individually. The node 

values corresponding to the scenarios' optimal decisions are tkv and calculated by: 
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for each 2 ft T=  and 1 1t t tk K K−= +  ; where ts k∈ indicates the set of scenarios which 

pass through  the node tk . After obtaining the nodes' values tkv , we perform a 

clustering, by a method such as K-means on the nodes based on these values for each 

stage 1t > . Applying the clustering technique imposes more constraints in the 

equivalent deterministic formulation (4.21) for example  2 2 '
,2 ,2

k k
indep indepu x=  if node 2k and 

node 2 'k  are in the same cluster. These constraints can be eliminated by algebraic 

substitution of variables, which reduces the total number of variables in the problem. 

For instance, instead of the decision variables 2 2 '
,2 ,2,k k

indep indepu x we define 1
,2

cluster
indepu =

. 

The LMSP approach implies restricting the decision maker in future decisions. The 

problem which should be solved in the limited version is: Given the scenario tree of 

the uncertain future; at each stage what are the clusters decisions and what nodes are 

included in each cluster such that the expectation of the objective is minimized. In the 

ideal solution we must address these two questions simultaneously. However, a good 

approximation can be obtained by solving the problem in two phases; the first 

answers the question: what nodes are included at each cluster? This is done by solving 

each scenario individually and analyzing the results. The second phase is: what are the 

clusters’ decisions? This is answered by the optimization solver when solving the 

LMSP formulation. 

Imposing more constraints to the MSP will obviously raise the minimum value of the 

optimization problem. Hence, the minimum value obtained from the LMSP will 

always be larger or equal to the minimum value obtained by the MSP. However, this 

is not a significant drawback when we solve in Rolling/Folding Horizon as described 

in Section 4.9.1. In the Folding mode we solve the problem repeatedly and only 

implement the first stage decisions. Therefore, we are most concerned about quality of 

the first stage decision, thus we require that the process of clustering the decision 

variables must not change the first stage decision significantly, as compared to the 

original stochastic problem. 
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Both the MSP and LMSP that are solved in the Folding mode framework are required 

to provide the first stage decisions for implementation, but they must take into 

account the future uncertainty and the possibility of recourse actions. The MSP 

considers the possibility for recourse action for each node in the scenario tree while 

the latter considers a smaller number of recourse actions (by clusters). These recourse 

actions will not be implemented in real-life and the only reason for their presence is to 

take into consideration the effect of the uncertain future on the first decision. 

Therefore, we believed that reducing the number of the recourse action in the LMSP 

will not significantly change the first stage decision. 

4.10.1. LMSP vs. Scenarios reduction  

It is most important to distinguish the clustering decision approach (LMSP) from the 

scenarios reduction/aggregation techniques in which the stochastic process (scenario 

tree) is clustered/aggregated to produce more a compact tree and a smaller 

optimization model. The latter techniques are applied before the model is introduced, 

independent of the optimization model that will be used. The size of the scenario tree 

is reduced by aggregating the tree nodes into separate sets to be later represented by a 

new node [Dupacova et al., 2003; Gulpinar et al, 2004; Latorre et al., 2007; Heitsch 

and Römisch, 2005; Sutiene et al., 2010]. We claim that different models may require 

different clustering depending on the relationship between the stochastic process and 

the optimization model to be solved and it is the optimization's responsibility to 

discover this relationship and to cluster accordingly. Hence, the clustering should be 

into the optimization framework, incorporating the specific model to be solved.    

Another notable difference is that the LMSP keeps the scenario tree intact without 

reducing its size. The clustering is made only on the decisions related to the tree. The 

scenario tree is already an approximation of the real stochastic process, so reducing 

the size of the tree worsens this approximation. 

To demonstrate that different models requires different clustering schemes let us 

consider a hypothetical problem of managing a WSS comprised of a reservoir, a 

desalination plant and one demand (Figure 4.11). The objective is to minimize the 

desalination cost over the operation horizon where the recharge is a stochastic process 

given in the scenario tree depicted in Figure 4.2c. Each of the nodes 2 15 takes the 
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value 0 if the node index is an odd number and 10 if the node number is even. Each 

arc has an equal probability of 0.5.The mathematical model of the problem: 

1

max
1 1

min

. .
x 1

0 / 1

x , 0 1
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t t
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     (4.23) 

where ,t tx y are extraction from reservoir and desalination plant, respectively; tC

desalination costs that increase with time 1t tC C t+ ≥ ∀ ; tD is the demand; tr is the 

stochastic recharge; maxh is the maximum water level in the reservoir.  

 

Figure 4.11: Layout of the illustrative example 

When we set max 10h = (the maximum yearly recharge) i.e. the reservoir cannot store 

water for more than one year, the optimal solution is to take the available water in 

each year from the reservoirs and supply the rest of the demand from the desalination 

plant. Hence, scenarios that have the same recharge tr at stage t would have the same 

decisions at this stage. On the other hand, when we consider max 10h >> , the optimal 

solution prefers to take more reservoir water at later stages since we have higher 

desalination costs 1t tC C t+ ≥ ∀ , thus the optimal solution stores the recharge in the early 

stages for later stages. As a result, scenarios that have the same cumulative recharge 

1

t

i
i

r
=
∑ at stage t would have the same decisions at this stage. 

Reservoir Desalination 

Recharge 

 

Demand 

tx  ty  

maxh  
tr  
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The conclusion to be drawn from this example is that different management models 

may require different clustering; the reduction techniques would give the same 

clusters for both models (with and without storage capacity) because the reduction is 

made independently before the model is introduced.    

4.10.2. 87BK-means clustering 

K-means clustering is a method for clustering given observations say , 1..ix i n=  into k  

clusters in which each observation belongs to the cluster with the nearest mean. In the 

LMSP we cluster nodes according to their scenario's optimal decisions are tkv . The K-

means algorithm is designed to minimize an objective function J  which define the 

within cluster sum of squares: 

2

1 i j

k

i j
j x S

J x µ
= ∈

= −∑ ∑         (4.24) 

where jS is the set of observations included in the cluster j and jµ is the mean of 

points (centroid) in jS  . 

The most common algorithm uses two-phase iterative technique to minimize J : 

            

            

            

            

 

 

Figure 4.12: K-means clustering process 

Starting from k points as initial clusters centroids jµ , the first phase is to assign each 

observation to the closet centroid, after all observations are assigned the second phase 

is to recalculate the centroids of each cluster. The two phases are repeated until the 

centroids no longer move. A demonstration of the K-means algorithm on four 2D 

observations is illustrated in Figure 4.12. 

Initiation Iteration 1 Final iteration 
Data observation Cluster centroid 
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4.10.3. Illustrative example 

In this example we consider the hypothetical problem of the WSS depicted in Figure 

4.11, and formulated in (4.23). Assuming maxh →∞ , 3fT =  years and 1..3 [1, 2,3]T
tC = = . 

Substitution of the equality constraint in the objective leads to the following 

mathematical model: 
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The MSP implicit formulation for this problem is: 
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  (4.26)  

The solution of this problem is given in Figure 4.13 which has an objective value of 

270. Our proposed method (LMSP) requires solving the problem for each scenario 

individually to obtain the scenarios optimal solution in Table 4.3, the next step is to 

calculate the nodes’ values (Table 4.4) by Equation (4.22). 

Node Scenarios 2
2
kv  3

3
kv  

2 1,2,3,4 0  
3 5,6,7,8 0  
4 1,2  25 
5 3,4  15 
6 5,6  15 
7 7,8  5 

  

Table 4.3: Optimal solution for each scenario (MCM), illustrative example.  

Table 4.4: Aggregated nodes’ values (MCM).  

s  sR  1
sv  2

sv  3
sv  

1 10,10,10 0 0 30 
2 10,10,0 0 0 20 
3 10,0,10 0 0 20 
4 10,0,0 0 0 10 
5 0,10,10 0 0 20 
6 0,10,0 0 0 10 
7 0,0,10 0 0 10 
8 0,0,0 0 0 0 
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If we want to cluster the decisions into two clusters at each stage, we apply the K-

means algorithm on nodes 4-7 to represent them in two sets. Applying the K-means 

algorithm results in the first cluster containing nodes {4, 5, 6} and the second cluster 

node 7. The decisions for the clusters are denoted as 1
3
Cx =  and 2

3
Cx =  for the first and the 

second cluster, respectively. This results in the following model: 
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  (4.27) 

The solution of this problem is given in Figure 4.13. The objective value of the MSP 

(270) is lower than the LMSP (277) as expected according to the explanation in 

Section 4.10. 

 
Figure 4.13: Optimal solution (MCM) of the illustrative example.  
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4.10.4. Example 1 

In this example we solve the multi-year problem of three years horizon which is 

considered with the same parameters set defined in the multi-year run (Section 3.8).  

The yearly aquifers recharges ( )R MCM are considered stochastic, given by the 

unbalanced scenario tree depicted in Figure 4.14, where each scenario has equal 

probability. 

 
 Figure 4.14: Unbalanced scenario tree of the recharge, example 1. 

Each decision node 1-6 has its own decision variables; the independent decision 

variables for each of the node are the pipes flows 1 2
3,4,6,8 3,4,6,8, ( )Q Q MCM for season 1 and 

2, respectively and the removal ratio 1 2, (%)RR RR  for season 1 and 2, respectively. 

The solution of the MSP is given in Table 4.5 where the minimum expected value of 

the total cost is 268.87 M$. 

 Decisions in the 1st season Decision in the 2nd season 
Node 1

3Q  1
4Q  1

6Q  1
8Q  1RR  2

3Q  2
4Q  2

6Q  2
8Q  2RR  

1 19.5 19.5 12.5 12.5 99.3 14 14 12.5 12.5 99.3 
2 13.7 13.7 12.5 12.5 99.3 13.5 13.5 12.5 12.5 99.3 
3 15.7 15.8 12.5 12.5 99.3 15 15 12.5 12.5 99.3 
4 10.8 10.9 12.5 12.5 99.3 11 11 12.5 12.5 99.3 
5 18.1 18 12.5 12.5 99.3 16.3 16.3 12.5 12.5 99.3 
6 15.7 15.8 12.5 12.5 99.3 15 15 12.5 12.5 99.3 

Table 4.5: MSP solution, example 1. Flow (MCM), removal ratio (%). 

The LMSP solution with two clusters at each stage is given by applying the following 

three steps: 

7: 100 

8: 50 

9: 50 

10: 75 

11: 0 

12: 100 

13: 150 

14: 0 

4: 25 

5: 50 

6: 0 

2: 50 

3: 100 

1: now 

Node id: Recharge (MCM) 
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Step 1: solve for each scenario individually (Table 4.6) 

 Decisions in the 1st season Decision in the 2nd season  
Scenario Year 1

3Q  1
4Q  1

6Q  1
8Q  1RR  2

3Q  2
4Q  2

6Q  2
8Q  2RR  Cost 

1 
1 12.5 12.5 12.5 12.5 99.3 12.5 12.5 12.5 12.5 99.4 

193.4 2 12.5 12.5 12.5 12.5 99.4 20 20 12.5 12.5 99.3 
3 0 0 12.5 12.5 99.6 4.7 4.7 12.5 12.5 99.6 

2 
1 25 25 12.5 12.5 99.3 10.5 10.5 12.5 12.5 99.3 

243.6 2 10 10.1 12.5 12.5 99.3 12.2 12.2 12.5 12.5 99.3 
3 12.2 12.2 12.5 12.5 99.3 12.6 12.6 12.5 12.5 99.3 

3 
1 24.9 24.9 12.5 12.5 99.3 7.7 7.7 12.5 12.5 99.3 

210.4 2 7.3 7.3 12.5 12.5 99.4 10.3 10.3 12.5 12.5 99.4 
3 10.1 10.1 12.5 12.5 99.4 9.6 9.6 12.5 12.5 99.4 

4 
1 17.5 17.5 12.5 12.5 99.3 9.6 9.6 12.5 12.5 99.4 

177.7 2 9.5 9.5 12.5 12.5 99.4 8.4 8.4 12.5 12.5 99.4 
3 5.9 5.8 12.5 12.5 99.4 6.7 6.7 12.5 12.5 99.4 

5 
1 25 25 12.5 12.5 99.3 12.8 12.8 12.5 12.5 99.3 

277.0 2 12.9 12.9 12.5 12.5 99.3 14.6 14.5 12.5 12.5 99.3 
3 15.3 15.2 12.5 12.5 99.3 14.5 14.6 12.5 12.5 99.3 

6 
1 25 25 12.5 12.5 99.3 6.7 6.7 12.5 12.5 99.4 

162.1 2 6.6 6.5 12.5 12.5 99.4 6.7 6.7 12.5 12.5 99.4 
3 2.1 2 12.5 12.5 99.6 2.9 2.9 12.5 12.5 99.6 

7 
1 25 25 12.5 12.5 99.3 6.7 6.7 12.5 12.5 99.4 

161.2 2 6.5 6.6 12.5 12.5 99.4 6.7 6.7 12.5 12.5 99.4 
3 2.1 1.9 12.5 12.5 99.6 2.7 2.7 12.5 12.5 99.6 

8 
1 25 25 12.5 12.5 99.3 13.8 13.8 12.5 12.5 99.3 

277.0 2 14.3 14.3 12.5 12.5 99.3 13.8 13.8 12.5 12.5 99.3 
3 14.3 14.3 12.5 12.5 99.3 13.8 13.8 12.5 12.5 99.3 

Table 4.6: LMSP, step 1 results of example 1. Flow (MCM), removal ratio (%). 

Step 2: Calculate the nodes' values by equation (4.22) (Table 4.7)  

 Decisions in the 1st season Decision in the 2nd season 
Node Scenario 1

3Q  1
4Q  1

6Q  1
8Q  1RR  2

3Q  2
4Q  2

6Q  2
8Q  2RR  

2 1,2,3,4,5 10.4 10.4 12.5 12.5 99.36 13.1 13.0 12.5 12.5 99.3 
3 6,7,8 9.1 9.1 12.5 12.5 99.37 9.0 9.0 12.5 12.5 99.3 
4 1,2 6.1 6.1 12.5 12.5 99.45 8.6 8.6 12.5 12.5 99.4 
5 3,4,5 10.4 10.3 12.5 12.5 99.37 10.2 10.3 12.5 12.5 99.3 
6 6,7,8 6.1 6.0 12.5 12.5 99.50 6.4 6.4 12.5 12.5 99.5 

Table 4.7: LMSP, step 2 results of example 1. Flow (MCM), removal ratio (%).  

Step 3: Clustering the decisions (cluster size =2) 
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At stage 2 there are only two nodes, therefore there is no need for clustering. At stage 

3 there are three nodes {4, 5 and 6} thus the decisions at this stage is clustered. 

The K-means clustering method results in nodes {4, 6} in cluster 1 and node {5} in 

cluster 2. The results are given in Table 4.8. 

 Decisions at the 1st season Decision at the 2nd season 
Node 1

3Q  1
4Q  1

6Q  1
8Q  1RR  2

3Q  2
4Q  2

6Q  2
8Q  2RR  

1 19.5 19.5 12.5 12.5 99.3 13.7 13.7 12.5 12.5 99.3 
2 12.3 12.3 12.5 12.5 99.3 12.3 12.3 12.5 12.5 99.3 
3 19.9 19.9 12.5 12.5 99.3 17.2 17.2 12.5 12.5 99.3 

Cluster 1 
{4, 6} 12.3 12.3 12.5 12.5 99.3 12.3 12.3 12.5 12.5 99.3 

Cluster 2 
{5} 19.9 19.9 12.5 12.5 99.3 17.2 17.2 12.5 12.5 99.3 

Table 4.8: LMSP, step 3 results of example 1. Flow (MCM), removal ratio (%). 

The minimum cost expectation obtained from the LMSP is 268.88 M$, somewhat 

higher than the obtained by the MSP (268.87 M$), since the LMSP impose more 

constraints than the MSP. Still, as explained previously, the first stage decision 

obtained from both approaches is very close as can be seen in Table 4.9. 

 Decisions at the 1st season Decision at the 2nd season 
1
3Q  1

4Q  1
6Q  1

8Q  1RR  2
3Q  2

4Q  2
6Q  2

8Q  2RR  
MSP 19.5 19.5 12.5 12.5 99.3 14 14 12.5 12.5 99.3 

LMSP 19.5 19.5 12.5 12.5 99.3 13.7 13.7 12.5 12.5 99.3 

Table 4.9: Comparison between the MSP and the LMSP optimal decision, example 1. 
Flow (MCM), removal ratio (%). 

4.10.5. Example 2 

In this example we solve the multi-year problem of five years horizon which is 

considered with the same parameters set defined in the multi-year run (Section 3.8) 

and maximum specific levy ( )max
1CE =  ( $ / )M MCM .  

The yearly aquifers recharges ( )R MCM are stochastic, given by the balanced scenario 

tree with two branches at each stage. The conditional discrete probability in each year 

is given by the Probability Mass Function (PMF) in Table 4.10, where tr is the 

recharge in year t , and tR  is vector of recharges up to year t . 

 Low Recharge High Recharge 
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tr ( )MCM  0 100 
Prob( )t

tr R  0.5 0.5 

Table 4.10: PMF of the recharge, example 2 

In the classical MSP the number of decision nodes is 31, and the number of decision 

variables is 31 10 310⋅ = where 10 is the length of a single year decision vector. The 

minimum expected value of the MSP solution is 565 M$. Applying the LMSP with 

two clusters at each stage reduces the problem size to 9 decisions (1 2 4 9+ ⋅ = ), hence, 

the optimization problem has 90 decision variables. The minimum expected value of 

the LMSP is 570 M$ (as expected, somewhat higher than the MSP solution). 

The clustering scheme to the 31 decision nodes is given in (Table 4.11) which is 

obtained after applying step 1 and 2 as in the previous example. 

 Year Cluster 1 Cluster 2 
1 NA NA 
2 2 3 
3 {4,5,6} 7 
4 {8,9,10,12,14} {11,13,15} 
5 {16,17,18,19,20,21,22,24,25,26,28,30} {23,27,29,31} 

Table 4.11: Clustering scheme, example 2.  

The clustering results in this simple case could be verified easily.  For example, 

examining the decision clusters at year 4, nodes 8-15 and year 5, nodes 16-31. The 

results of year 4 show that the nodes which have history with 100 (MCM) recharge at 

least twice are in the same cluster,  except node 14 which has 100 (MCM) only one 

time. This node has been added to the first cluster in the first run, since the 100 

(MCM) recharge is realized in the near past of node 14. In year 5 the same rule is 

valid, where node 30 has 100 (MCM) only one time. This node has been added to the 

first cluster, since the 100 (MCM) recharge is realized in the near past.  

To compare the LMSP and the MSP we present the yearly desalination amount for 

each decision node. Note that each decision node has its own decision vector with 10 

decision variables; however, the yearly desalination amount was chosen to present the 

decision characteristics as explained in Section 3.8 because of the special parameters 

set chosen in the example (e.g. symmetric network) the optimal solution could be 

easily derived after deciding on the optimal desalination amount. Table 4.12 compares 

the optimal desalination amount obtained from the MSP and the LMSP solution. 
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  MSP LMSP 
Year Node Des (MCM) Cluster Des (MCM) 

1 1 98.3 NA 98.4 

2 
2 34.3 1 25.3 
3 98 2 99.1 

3 

4 20.9 1 25.2 
5 72.2 1 25.2 
6 30.6 1 25.2 
7 97.7 2 98.7 

4 

8 16.9 1 43.3 
9 46.2 1 43.3 
10 23.1 1 43.3 
11 89.5 2 96 
12 20.1 1 43.3 
13 70.2 2 96 
14 23.8 1 43.3 
15 97.9 2 96 

5 

16 14.9 1 24.2 
17 22.1 1 24.2 
18 17.1 1 24.2 
19 90.5 1 24.2 
20 16 1 24.2 
21 62.6 1 24.2 
22 17.5 1 24.2 
23 96.2 2 98 
24 15.4 1 24.2 
25 43.4 1 24.2 
26 16.8 1 24.2 
27 93.1 2 98 
28 15.9 1 24.2 
29 72.5 2 98 
30 16.2 1 24.2 
31 98.3 2 98 

Table 4.12: Comparison between the MSP and the LMSP decision, example 2. 

As shown in Table 4.12, the MSP and LMSP provided very close first year decision 

for implementation which considers the future uncertainty and the possibility to 
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recourse actions in the future. MSP considers the possibility for recourse action for 

each node in the scenario tree while the LMSP considers a smaller number of recourse 

actions (clusters). These recourse actions project the uncertain future effect on the first 

decision. In real-life application the MSP recourse action will not be implemented 

since it is solved in Rolling/Folding Horizon as described in Section 4.9.1. In the 

Folding mode we solve the problem repeatedly and implement only the first stage 

decisions from each run. This brings us to an important conclusion: The LMSP is 

considered a good approximation of the MSP when the first stage decisions are close 

to one another. This is due to the fact that decision makers solve the model repeatedly 

and implement only the first stage decisions. As shown in Table 4.12, the first row 

demonstrates the yearly desalination amount suggested by both models as the first 

decision (first year). 

4.10.6. Example 3 (Large scale example) 

The large scale network presented in Section 3.9 is solved in this example. The multi-

year problem of five years horizon is considered with the same parameters set defined 

in the multi-year run (Section 3.9). The yearly aquifers recharges 1..3 ( )aR MCM= are 

considered stochastic, given by a balanced scenario tree with two branches at each 

stage. The conditional probability in each year is given in Table 4.13, where ,a tr is the 

recharge in aquifer a  at year t , and t
aR  is vector of recharges up to year t . 

 Low Recharge High Recharge 
1, 2, 3,, ,t t tr r r ( )MCM  80, 80 ,80 200, 200 ,200 

1..3, 1..3Prob( )t
a t ar R= =  0.5 0.5 

Table 4.13: PMF of the recharge, example 3. 

The scenario tree in this case has 32 scenarios (paths in the tree), where each of the 

nodes 2 63 takes the values of the low recharge if the node index is an odd number, 

and the high recharge if the node number is even. 

The hypothetical example in (Section 4.10.1) shows that the clustering scheme 

depends in the model formulation, thus we had there a different clustering scheme 

with and without storage capacity. The conclusion drawn from the hypothetical 

example is that different models may require different clustering. Example 3 
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demonstrates how the clustering process is affected by different parameters of the 

model; particularly ( )max

a
CE which is related to the aquifer water cost. 

The large scale network is solved twice, with ( )max
0

a
CE = , ( )max

0.5
a

CE = ( $ / )M MCM , 

respectively. In the MSP the number of the decision nodes is 31, thus the number of 

decision variables is 31 62 1922⋅ = where 62 is the length for each year's decision vector. 

The minimum expected value of the MSP solution is 173.8 and 230 M$ for the two 

problems Runs, respectively. Applying the LMSP with two clusters at each stage 

reduces the problem size to 9 decisions (1 2 4 9+ ⋅ = ), hence, the optimization problem 

has 558 decision variables. The minimum expected value of the LMSP is 175.8 and 

232.9 M$, respectively, not much higher than the MSP solutions. 

The clustering schemes for the 31 decision nodes in the model in Run 1 with 

( )max
0

a
CE = ,and Run 2 with  ( )max

0.5
a

CE = ( $ / )M MCM , are given in Table 4.14 which 

show the history of the node in each year and the corresponding clustering suggested 

by the LMSP. Each node belongs to cluster 1 is essentially a “rich recharge cluster” 

while cluster 2 is a “low recharge cluster”. 

The clustering results in year 3 show that nodes which have history with 200 (MCM) 

at least once are considered in cluster 1 (high recharge history) when ( )max
0

a
CE = . In 

contrast, the second Run with ( )max
0.5

a
CE = clusters the nodes that have history with 0 

(MCM) recharge at least once are considered in cluster 2 (low recharge history). 

Hence, nodes 5 and 6 are clustered differently, caused by different run parameters.  

The results for year 4 show that in both Runs, nodes which have history with 200 

(MCM) at least twice are in cluster 1 except node 14 which have 200 (MCM) only 

once. This node has been added to the first cluster in the first Run, since the 200 

(MCM) recharge is realized in the near past of node 14. In year 5 nodes which have a 

history with 200 (MCM) at least three times are in cluster 1 in both Runs. Node 28 

which has two high recharges in the near past is also in cluster 1 in both Runs. This 

indicates that not only the cumulative amount matters, but also the lag from the 

decision node are important.  
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Nodes that have less than three times of 200 (MCM) histories, but have 200 (MCM) 

at the later year are considered in cluster 1 in the first Run. In contrast, 200 (MCM) at 

the later year was not enough to make these nodes first cluster members when

( )max
0.5

a
CE = . 

      Clustering  Scheme 
Year Node Node History (MCM) Run 1

 
Run 2 

3 

4 200 200   1 1 
5 200 80   1 2 
6 80 200   1 2 
7 80 80   2 2 

4 

8 200 200 200  1 1 
9 200 200 80  1 1 
10 200 80 200  1 1 
11 200 80 80  2 2 
12 80 200 200  1 1 
13 80 200 80  2 2 
14 80 80 200  1 2 
15 80 80 80  2 2 

5 

16 200 200 200 200 1 1 
17 200 200 200 80 1 1 
18 200 200 80 200 1 1 
19 200 200 80 80 2 2 
20 200 80 200 200 1 1 
21 200 80 200 80 2 2 
22 200 80 80 200 1 2 
23 200 80 80 80 2 2 
24 80 200 200 200 1 1 
25 80 200 200 80 2 2 
26 80 200 80 200 1 2 
27 80 200 80 80 2 2 
28 80 80 200 200 1 1 
29 80 80 200 80 2 2 
30 80 80 80 200 1 2 
31 80 80 80 80 2 2 

Table 4.14: Clustering scheme, example 3.  
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As explained in Section 4.10, example 1 and example 2, the success of the LMSP 

approximation is determined by the difference in the first stage decisions of the LMSP 

and the MSP solution. Table 4.15 compares the total yearly desalination amount at the 

first year, which is obtained from the MSP and the LMSP solution for both Runs. 

 Desalination (MCM) 
Run Approach Plant 1 Plant 2 Plant 3 Plant 4 Plant 5 

1 MSP 25.0 46.6 12.1 288.6 130.5 
LMSP 25.1 47.5 35.7 290.7 133.8 

2 MSP 25.0 51.2 35.9 290.7 133.9 
LMSP 29.9 55.1 36.4 293.3 134.0 

Table 4.15: Comparison between the MSP and the LMSP with different extraction 
levy, example 3. 

As shown in Table 4.15, the MSP and LMSP provided very close first year decisions 

for implementation, hence, solving the smaller optimization problem (558 decision 

variables instead of 1922) has an advantage, especially when we are solving in rolling 

horizon mode as explained in Section 4.9.1. 

4.11. Generalized LMSP (GLMSP) 

The LMSP technique described in the previous Section requires specifying the same 

number of clusters for each stage (constant clustering scheme), to insure linear 

increase in the decision variables with the number of scenarios and stages. By this 

clustering scheme the model resulting from the LMSP approach is somehow between 

the single stage Here-and-Now approach described in Section 4.7 and the classic MSP   

approach described in Section 4.9, see Figure 4.15 for demonstration. 

The GLMSP is an approach which facilitates choosing the required position between 

the two approaches above. In contrast to the LMSP, in the GLMSP the user is asked to 

provide the clustering scheme which in turn specifies the required model along the 

scale in Figure 4.15. For instance, to choose the Here-and-Now approach i.e. the left 

point on the scale, the clustering scheme should be constant with one cluster in each 

stage, and to choose the MSP, i.e. the right point, the number of clusters in each stage 

should be equal to the number of nodes at that stage, thus each cluster contains only 

one node. The LMSP is a special case of the GLMSP in which the clustering scheme 

is constant with number of clusters at each stage larger than one. 
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The size of the optimization problem increases as we move along the scale in Figure 

4.15, the smallest model size is the single stage model (left point) and the largest one 

is the MSP (right point). The decision maker is asked to select a clustering scheme, by 

which he specifies the size of the resulting optimization problem and the how the 

uncertain future is incorporated. 

Consider the scenario tree in Figure 4.2c, one possible clustering scheme would be [1, 

2, 4, 2] in which decision are made on the tree nodes up to stage 3 (up to stage 3 the 

formulation is the same as in MSP) and only in stage 4 we require clustering the 8 

nodes into 2 clusters. Such a clustering scheme incorporates the detailed future up to 

specified stage in the horizon (say detailed representation of near future) while after 

this specified point an aggregation is made on the decisions (less detailed  

representation of far future). 

 

 

Figure 4.15: schematic description of the GLMSP scope 

 

Note: 

Refer to Section  7.2.2 for Summary and Conclusion.   

  

Single  
Stage 
 

MSP LMSP 
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5. Robust Optimization 

5.1. Introduction  

In this Chapter the Robust Optimization (RO) methodology [Ben-Tal et al., 2009] is 

applied to optimize the management of a Water Supply System (WSS) fed from 

aquifers and desalination plants. The water is conveyed through a network to meet 

specified consumptions, where the aquifers recharges are uncertain. The objective is 

to minimize the total cost of multiyear operation, satisfying operational and physical 

constraints. To apply the RO methodology we formulate a new linear model for the 

WSS management which only considers water quantity in the system without salinity 

considerations.  To achieve this, some of the non-linear relations considered in the 

non-linear formulation in Chapter 3 were linearized. 

Optimal planning and management of WSS has been studied extensively and resulted 

in a large number of optimization models and techniques. The parameters of early 

models were usually assumed perfectly known, leading to deterministic models. The 

results obtained by such models may perform poorly when implemented in the real 

world, when the problem parameters are revealed and are different from those 

assumed in the deterministic model. 

A variety of stochastic methodologies have also been applied to WSS management, 

including stochastic dynamic programming [Yeh, 1985; Faber and Stedinger, 2001], 

implicit stochastic optimization [Lund and Ferreira, 1996; Labadie, 2004], scenarios 

based optimization [Pallottino et al., 2005; Kracman et al., 2006] and chance 

constraint methodology [Lansey at el., 1989; Sankarasubramanian et al., 2009].  In 

these stochastic programming methodologies the uncertain data are assumed to have a 

known PDF, which in reality is uncertain itself. 

This Chapter employs the Robust Counterpart approach (RC) [Ben-Tal et al., 1998, 

1999, 2000a, 2009], a novel methodology for optimization under uncertainty, in 

which the uncertainty is not described by a PDF, but is rather deterministic and known 

to reside within a user-defined uncertainty set. Hence, instead of immunizing the 

solution in a probabilistic sense, the decision maker searches for a solution that is 

optimal for all the possible realizations of the uncertainty set. The RC approach has 

been applied to variety of optimization models such as portfolio models [Ben-Tal et 

al, 2000b; Lobo and Boyd, 2000], inventory theory [Bertsimas and Thiele, 2006; 
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Bienstock and Ozbay 2008], process scheduling [Li and Ierapetritou, 2008] and 

network models [Mudchanatongsuk et al., 2005].  

Section 5.2 presents the basics of Robust Optimization (RO). Section 5.3 contains 

formulation of the linear WSS management model, its objective function and 

constraints.  Section 5.4 describes the application of the RC to the WSS model, 

namely structuring the model for the optimization solver. Sections 5.5-5.8 present 

applications of the RC on two WSS models. 

5.2. Robust Counterpart (RC) approach 

The RC approach is a min-max oriented methodology [Ben-Tal et al., 1998] that seeks 

robust feasible/optimal Here-and-Now decisions which are determined at the 

beginning of the time horizon, before the uncertain data are revealed. This version of 

the RC approach is termed "static problem".  

Robust feasible decisions treat the uncertain constraints as hard constraints, i.e. 

constraints which have to be satisfied for all possible realizations within the given 

uncertainty set, while robust optimal means optimizing the guaranteed value (for a 

minimization problem it is the largest value) of the objective function over the 

uncertainty set. 

The RC approach is flexible enough to allow consideration of soft constraints in 

which feasibility is not essential, such as demand constraints when water users can 

accept minor water shortages with an associated cost (penalty). This modeling of soft 

constraints can also be applied in the RC formulation. Mulvey et al. [1995] used the 

slack variables of soft constraints to penalize the objective function when soft 

constraints are violated. Introducing slack variables in soft constraints converts them 

to hard constraints which must remain feasible for all realization of the uncertainty 

set. The RC can also allow different ways to handle the objective function; for 

example, one can use the nominal values of the uncertain data in the objective while 

the constraints have to satisfy all the realization in the uncertainty set. 

The RC solves a static problem in which the decisions for all future stages are 

determined Here-and-Now. As a consequence, decisions for the first stage, which are 

to be implemented immediately, are influenced by future information - as known or 

forecasted at present, including: planned or already committed modifications of the 
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supply system, future cost figures, forecasted demands, and hydrological forecasts. In 

practice, the model will be run again at the end of the first stage, with whatever 

information has been added or updated and starting with the actual state of the system 

at that time. This process is captured by the "Folding RC" approach (FRC) [Ben-Tal et 

al., 2000b] that will be addressed in Section 5.6.2. 

5.2.1. Robust counterpart of an uncertain linear program   

Consider the following problem subject to data uncertainty: 

{ }0 0 0min :T

y
c y A y b≤         (5.1) 

We assume without any loss of generality that the data uncertainty only affects the 

elements in the coefficient matrix. If there is uncertainty in the objective or in the 

Right Hand Side (RHS), we can rewrite the Linear Programming (LP) problem as: 

{ }min : 0T

x
c x Ax ≤         (5.2) 

Where [ , ,1]Tx z y= (the last element is 1 to represent the RHS); 0

0 0

1 0
0

Tc
A

A b
 −

=  
− 

 and 

[1,0,...,0]Tc = . 

The Robust Counterpart (RC) of problem (5.2) is  

{ }min : 0,T

x
c x Ax A U≤ ∀ ∈        (5.3) 

where U is a user-defined uncertainty set. According to Ben-Tal et al. [2009, page 11] 

an LP with a certain objective is a constraint wise problem,  which means that the RC 

solution does not change if the uncertainty set is extended to the product of its 

projections on the subspaces of the constraints, i.e. instead of solving (5.3) one can 

solve: 

{ }min : 0, ,T T
i i ix

c x a x i a U≤ ∀ ∀ ∈        (5.4) 

Where T
ia is row i  in matrix A and iU is the projection of U on the space of the data of 

ia . 

Worst case oriented methodologies can lead to overly conservative solutions, as is 

Soyster's [1973] approach, which considers interval and column-wise uncertainties in 



133 
 

the LP, where every uncertain parameter takes its worst case value in the uncertainty 

set. To address over-conservativeness the RO methodology introduces a way to reduce 

the uncertainty set to reflect the fact that the coefficients of the constraints are not 

expected to be simultaneously at their worst values. There are various ways to 

eliminate from the uncertainty set parts which are considered to be "rare", for example 

cutting off "corners" where multiple uncertain variables all take extreme values. We 

adopt here the ellipsoidal method, in which the uncertainty set is defined by an affine 

mapping of a ball of radiusθ :  

{ }ˆ: ,i i iU a a ς ς θ= + ∆ ≤        (5.5) 

where ˆia  a selected nominal value, usually the expected value, ∆ is the mapping 

matrix, and the parameter θ  is a subjective value chosen by the decision maker to 

reflect his attitude towards risk.  Ben-Tal et al. [1999] show that the RC of the LP then 

becomes  

{ }

( )

ˆa 0 ,

ˆmax a 0

â 0

T
i i i

TT
i

T T
i

x a a

x x

x x

ς θ

ς ς θ

ς

θ

≤

≤ ∀ ∈ + ∆ ≤

⇔

 + ∆ ≤ 
⇔

+ ∆ ≤

       (5.6) 

which is a convex tractable optimization problem that can be solved by polynomial 

time interior point algorithms. When only part of the parameters are uncertain, e.g. 1ia

is a vector of certain parameters and 2ia  a vector of uncertain parameters in row i  of 

the matrix A , the RC is  

{ }1 1 2 2 2 2 2 2 2

1 1 2 2 2 2

ˆ0 ,

ˆ 0

T T
i i i i

T T T
i i

a x a x a a

a x a x x

ς ς θ

θ

+ ≤ ∀ ∈ + ∆ ≤

⇔

+ + ∆ ≤

     (5.7) 

 where 1x , 2x are the elements of x corresponding to 1 2,i ia a respectively. A special case 

is when the only uncertainty is on the right hand side, in vector 0b . In this case

[ , ,1]Tx z y= in (2) is separated into 1 [ , ]Tx z y=  and 2 1x = , hence we obtain a linear RC of 

the form 

1 1 2 2ˆ 0T T
i ia x a θ+ + ∆ ≤         (5.8)    
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5.2.2. Why ellipsoidal uncertainty? 

Several considerations lead to the selection of an ellipsoidal uncertainty set: (a) it 

leads to an explicit convex tractable RC which can be solved by polynomial time 

methods such as interior-point, (b) an ellipsoidal uncertainty set is defined by the 

subjective safety (reliability) parameter θ  ; this enables solving the RC with a set of 

values of θ , and obtaining the tradeoff between robustness and performance (value of 

the objective function), and (c) using an ellipsoidal uncertainty set can be 

stochastically justified, even though no underlying PDF is assumed to be known for 

the uncertain parameters.  

Some information on the uncertain data is usually available and can be used in 

defining the ellipsoid. Simple probabilistic arguments such as 1st and 2nd moments 

(expectation and variance) of the stochastic variables can be used to replace stochastic 

uncertainty by the ellipsoidal deterministic uncertainty. To demonstrate this let us 

consider the linear constraint:  

1 1 2 2a a 0T Tx x+ ≤          (5.9) 

where 2a is a random vector with expectation vector 
2aµ  and covariance matrix 

2aΣ . 

Thus, the left hand side of the constraint is a stochastic random variable with 

expectation lµ  and variance lΣ defined as: 

21 1 2 2 1 1 2=E a a aT T T T
l ax x x xµ µ + = +         (5.10) 

2

2

1 1 2 2 2 2 2 2 2a aT T T T T T
l aVar x x x x x x x Σ = + = Σ = ∆∆ = ∆      (5.11) 

where
2

T
aΣ = ∆∆ . The matrix ∆ can be obtained by Cholesky decomposition. If we 

define the "safe" version of the constraint as the realization of the stochastic left side 

when perturbed by θ  standard deviations, we obtain: 

2

2

1 1 2 2

0

a 0

T
l

T T T
a

x

x x x

µ θ

µ θ

+ ∆ ≤

+ + ∆ ≤
        (5.12) 

which is the same as the robust counterpart with ellipsoidal uncertainty set:  

{ }2 22 ,a aU a µ ς ς θ= = + ∆ ≤        (5.13) 
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Hence, if we solve the linear robust counterpart in which the coefficients belong to the 

ellipsoidal uncertainty set defined above it is the same as saying that we are 

immunized againstθ  standard deviations of the constraints. 

Note that the stochastic vector 2a  with expectation 
2aµ  and covariance matrix 

2aΣ can 

be described as a linear transformation of the random vector ξ  with expectation 

0ξµ =  and covariance matrix IξΣ = : 

22 aa µ ξ= + ∆ ⋅          (5.14) 

Since 
2 2 2a a aξµ µ µ µ= + ∆ ⋅ = and 

2

T T
a ξΣ = ∆Σ ∆ = ∆∆  

Thus, the construction of the ellipsoidal uncertainty set replaces the stochastic 

variables ξ  by the perturbation vector ς  varying in the perturbation set { }Ballθ ς θ= ≤  

5.2.3. Probability guarantees of RC 

In the RC methodology no underlying stochastic information of the data is assumed to 

be known, although such knowledge may be used to obtain more justified and 

representative uncertainty sets or to provide probabilistic guarantees for the robust 

solution, which can be computed a priori, depending on the structure and size of the 

uncertainty set.  

Ben-Tal et al. [2009] considered several cases where partial knowledge of the 

uncertain stochastic parameters can help to decide a-priori on the degree of 

immunization. Consider the uncertain (stochastic) constraint parameterized by 

random variables ξ  : 

21 1 2 2 2a a 0T T
ax x a µ ξ+ ≤ ∀ = + ∆ ⋅        (5.15) 

Where all we know about ξ  is that (a) the elements of ξ  are independent, (b) the 

expectation vector is 0ξµ = , and (c) the elements of ξ  are bounded 1l lξ ≤ ∀ . Given 

this information we can say that replacing the stochastic vector ξ  by a perturbation 

vector ς  varying in the perturbation set { }Ballθ ς θ= ≤ insures reliability of 

21 exp( / 2)θ− − : 



136 
 

2

2

2
1 1 2 2 1 1 2 2Prob a a a 0 1 eT T T T T

a

orginal RC

x x x x x
θ

µ θ
−  + ≤ + + ∆ ≤ ≥ − 

  




    (5.16) 

This allows the decision maker to choose the safety parameter θ , i.e. the radius of the 

ellipsoidal uncertainty set, based on a level of probabilistic protection. The relation 

between unreliability and the ellipsoidal uncertainty set is 2 ln(1/ )θ ε=  where ε  is 

the unreliability level. E.g. when the prescribed unreliability is set to 0.05ε = , the 

corresponding radius is 2.45θ = . 

Hence, the ambiguous (unknown distribution) chance constraint: 

{ }
2

2
1 1 2 2Prob a a 0 1 eT Tx x

θ−

+ ≤ ≥ −  

can be replaced by the approximation: 

21 1 2 2a 0T T T
ax x xµ θ+ + ∆ ≤  

One might be misled to believe that this guarantees that 0.95 of the distribution 

support (all possible realizations of ξ ) is covered by the uncertainty set defined as a 

ball of radius 2.45. To demonstrate that this is a wrong intuition we consider the 

(rather extreme) case where the elements of ξ  are two dimensional Bernoulli 

independent random variables { 1,1}−  with probability 0.5 each, which satisfies the 

conditions (a)-(c) listed above. Replacing ξ  by a perturbation vector ς  varying in the 

perturbation set { }1Ball 1ς= ≤  insures reliability of  1 exp( 1/ 2) 0.393− − =  while the 

uncertainty set does not contain a single realization of ξ , since a circle with radius 1 

does not contain any corner of the box defined by [-1 1]. 

5.3. Management model of a Water Supply System (WSS) 

We consider management of a WSS where water is taken from sources, conveyed 

through a conveyance and distribution network to consumers. Mathematical 

optimization models have proven their usefulness in dealing with such problems 

[Loucks et al., 1981]. Various types of models can be applied to WSS, depending on 

the time horizon and time steps, ranging from long-term development of large 

systems, to detailed operation of smaller parts. Thus models range from highly 

aggregate versions of an entire water system to much more detailed models in space 
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and time [Shamir, 1971]. The short-term (weekly to annual) or long-term (years, 

decades) operation of a large scale water supply system can be captured in a model of 

medium aggregation that is used to manage simultaneously both the sources and the 

network [Fisher et al., 2002; Draper et al., 2003, 2004; Jenkins et al., 2004; Watkins et 

al., 2004; Zaide, 2006]. 

In this work we consider an optimization model with a medium aggregation level; 

water is taken from sources, which include aquifers, reservoirs and desalination 

plants, conveyed through a distribution system to consumers who require certain 

quantities of water, see Figure 5.1 (small system, for which we provide detailed 

analysis) and  Figure 3.11 (large system, only major results). The time horizon covers 

several years, with an annual time step. The operation is subject to constraints such as 

water levels in the aquifers, capacities of the pumping stations, carrying capacities of 

the distribution system and production capacity of the desalination plants. The 

objective is to operate the system with minimum total cost of desalination and 

pumping, plus a depletion penalty for ending below a prescribed final level in the 

aquifers, which becomes a reward if the final state is higher than this level. 

The network representation in the model can be classified according to the physical 

laws that are considered explicitly in the model constraints [Ostfeld and Shamir, 1993; 

Cohen et al., 2000]. According to this classification the proposed model is flow model 

which only considers the balance of the flows without explicit inclusion of the 

hydraulics. The inherent assumption of this flow model is that the detailed hydraulic 

operation of the system to deliver the quantities prescribed by the model is feasible. A 

further consideration included in the proposed model is sustainability of the 

management plan. This implies meeting the needs of the present without reducing the 

ability of the next generation to meet its needs [Loucks, 2000]. This is represented by 

a relatively long time-horizon with specified state conditions at its end. A general 

aspect of multi-year WSS management relates to uncertainty, including, among 

others,  [Ajami et al., 2008], climate change [Brekke et al., 2009; Yates et al., 2005], 

population growth [Kasprzyk et al., 2009], the decline of water quality in the sources, 

and the economic parameters in the objective function. In the current work only the 

replenishment into the natural resources is taken as uncertain. Possible inclusion of 

the salinity in the model and extensions to other sources of uncertainty will be brought 

up in the final Chapter of the thesis. 
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Figure 5.1: Network layout 

5.3.1. Mathematical model 

Objective Function 

The objective is to operate the system with minimum total cost comprised of 

desalination and conveyance costs over the operation horizon fT  years, and a 

penalty/reward related to the final state of the aquifers at the end of the planning 

horizon. This term depends on the deviation of the final water level from a prescribed 

value: being below it incurs a penalty while being above results in a reward. 

Henceforth all values are in million cubic meters per year ( /MCM year ) and the costs 

are in ( $ / MCM ), where a  , d , l , z  and t  denote aquifer, desalination, link, demand 

zone and year, respectively. The objective is: 

, , , , ,
1

ˆ( ) min
f

f

T

d t d t l t l t a a T a
t d l a

des Q C Q h h E
=

   ⋅ + ⋅ + − ⋅ →    
∑ ∑ ∑ ∑     (5.17) 

where ,d tdes  is the cost of desalinated water per MCM  ( $ / MCM ); ,d tQ  is desalinated 

water amount ( /MCM year ); ,l tC  is cost of transportation per MCM  ( $ / MCM ); ,l tQ  is 

flow in the link ( /MCM year ); ,a th  is the water level ( m ) in the aquifer at the end of 

year t; âh  is the prescribed final water level ( m ); aE  is penalty per unit deviation (

$ / m ).  

Constraints 
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The distribution system is represented as a directed graph consisting of N  nodes 

connected by M  edges. The nodes can be grouped into two sub-groups: 1N  are 

source nodes, desalination plant and aquifers, with one outgoing link from each 

source node, and 2N  intermediate and demand nodes, where two or more edges meet. 

The M edges represent the links between two nodes; links in which the direction of 

flow is not fixed are represented by two edges, one in each direction. The topology of 

the network is represented by the junction node connectivity matrix G , where 
2N MG ×∈R  has a row for each node and a column for each edge. The nonzero elements 

in each row are 1+  and 1−  for incoming and outgoing edges respectively. The first 

columns in G  correspond to the links which leave source nodes (aquifers and 

desalination plants), while the last rows correspond to the demand nodes. For each 

year t  the following linear equation system insures water conservation at the network 

nodes. 

t tG Q S⋅ =          (5.18)  

where , , ,[ , , ]T
t natural t desalination t links tQ Q Q Q= ; ,[0, ]T

t demand tS Q= ; ,natural tQ  is the vector of elements 

,a tQ a∀ ; ,desalination tQ  is the vector of elements ,d tQ d∀ ; ,links tQ  is the vector of elements 

,l tQ l∀ ; ,demand tQ  is the vector of elements ,z tQ z∀ where ,z tQ denotes demand at year t in 

demand zone z . The water supply network shown in Figure 5.1 has 3 source nodes, 4 

intermediate nodes and 2 demand nodes. The junction node connectivity matrix 
6 11G R ×∈ is given in Table 5.1. The vectors ,t tQ S are: , , 1, 8,[ , , ,..., ]T

t a t d t t tQ Q Q Q Q= and 

1, 2,[0,...,0, , ]T
t z t z tS Q Q= == . 

Node Source Links 
a1 a2 d 1 2 3 4 5 6 7 8 

1 1 1 0 -1 -1 0 0 0 0 0 0 
2 0 0 1 0 0 -1 -1 0 0 0 0 
3 0 0 0 1 0 1 0 -1 0 -1 0 
4 0 0 0 0 1 0 1 0 -1 0 -1 
5 0 0 0 0 0 0 0 1 1 0 0 
6 0 0 0 0 0 0 0 0 0 1 1 

Table 5.1: The junction node connectivity matrix for the network in Figure 5.1. 

Hydrological Balance for Aquifers 

The hydrological water balance insures that the change in aquifer storage equals the 

difference between the recharge and withdrawal during the year: 
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, ,0 , ,
1 1

1 t t

a t a a i a i
i ia

h h R Q
SA = =

 
= + − 

 
∑ ∑        (5.19)  

where ,a tQ is the extraction amount ( /MCM year ); ,a tR is recharge ( /MCM year ); aSA is 

the storativity multiplied by area ( /MCM m ); ,a th is water level in the aquifer at the end 

of year t ( m ); ,0ah is initial water level ( m ). 

Limits on Water Levels in the Sources 

Constraints on water levels in the natural resources reflect both policy and 

physical/operational limits: 

min max
, , ,a t a t a th h h≤ ≤          (5.20)  

where  min
,a th  is minimum allowed water level ( m ); max

,a th is maximum allowed water ( m ) 

Conveyance Capacity Constraints 

The model deals with water balance and does not include explicitly the hydraulic 

energy equations. Still, in order to maintain feasibility of hydraulic conditions the 

discharges in the links are limited by capacity constraints which are calculated from 

hydraulic data of the pipes/links. The lower bound is set to zero since the flow 

direction in the links is fixed. 

max
, ,0 l t l tQ Q≤ ≤          (5.21)  

where max
,l tQ is the maximum discharge allowed ( /MCM year ) . 

Capacities of the Natural Sources 

The extracted amount from each natural resource may be restricted by an upper 

bound, reflecting various hydrological and hydraulic considerations. The lower bound 

is set to zero as the flow from the source is one-directional. 

max
, ,0 a t a tQ Q≤ ≤          (5.22)  

where max
,a tQ is the maximum admissible/feasible withdrawal ( /MCM year ) 

Desalination Capacity 
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The amount of desalinated water from each plant is limited by an upper bound which 

represents plant capacity and by a lower bound that represents a condition usually set 

in the contract with the plant concessions (which may be zero). 

min max
, , ,d t d t d tQ Q Q≤ ≤         (5.23) 

where  max
,d tQ is maximum supply ( /MCM year ); min

,d tQ is minimum supply ( /MCM year ) 

The resulting mathematical model is uncertain LP where the uncertainty is in the 

recharge parameters ,a tR a t∀ ∀ . Hence, we can define the uncertain column vector 

1.. , 1 1.. ,[ , , ]
f f f

T
a a t a a t TR R R= = = ==  where fa is the number of natural resources. 

5.4. Applying the RC approach 

5.4.1. Constructing the uncertainty set 

Recharge into natural resources is usually given as historical time series, frequently of 

limited duration and not rich enough to describe fully the underlying stochastic 

process. To construct an ellipsoidal uncertainty set for the natural resources recharge 

we assume that the annual recharge values are independent random variables, where 

the recharge vector of the aquifers 1.. , ''
fa a tR R == in each year 't  is correlated with 

covariance matrix 'R
Σ and expectation vector 'R

µ , indicating positive correlation 

between recharge of different aquifers (e.g., a wet year is wet all over). Each row in 

'R
Σ and 'R

µ corresponds to an aquifer 1.. fa a= . The annual recharges are assumed 

independent over time so the recharge data is repeated for the entire horizon. Hence, 

the expectation vector of the overall recharge is ' '[ ,..., ]T
R R R

µ µ µ= and covariance matrix 

RΣ is a diagonal block matrix: 

'

'

0 0
0 0
0 0

R

R

R

 Σ
 

Σ =  
 Σ 


        (5.24) 

Consider the linear transformation of the stochastic vector R : 

R

R R

T
R

R

ξ

ξ

µ ξ
µ µ µ
= + ∆ ⋅
= + ∆ ⋅

Σ = ∆ ⋅Σ ⋅∆

         (5.25) 
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If we set 0ξµ = and IξΣ =  and wish to maintain the covariance of R , then T
RΣ = ∆ ⋅∆ . 

By replacing the stochastic vector ξ with the perturbation vector ς  that varies in the 

perturbation set { }Ballθ ς θ= ≤ , we obtain the ellipsoidal uncertainty set U of the 

uncertain vector R : 

{ }: ,RU R µ ς ς θ= + ∆ ≤         (5.26) 

The parameter θ  determines the range of values of the uncertain R  against which the 

optimal policy is immunized, i.e. remains feasible. A large value means immunization 

against more extreme values of R . θ  = 0 implies that only the expected value of R is 

taken into consideration, and any deviation of its actual value from this expectation 

could lead to constraint violation. 

The matrix 0.5
R∆ = Σ  can be obtained by Cholesky decomposition. Each row in ∆  

corresponds to year t  and aquifer a  and implies ,a t aσ = ∆ , where aσ  is the standard 

deviation of recharge in aquifer a  which remains constant over the years. 

5.4.2. Formulation of the RC 

Formulation of a RC for the WSS model developed in Section 5.3 requires extracting 

the state variable ,a th from the uncertain equation (5.19). The resulting model, after 

substituting ,a th  and converting it to the form of the LP in (5.2): 

, ,
, , , , 0

1 1 1 1

max
,0 , , ,

1 1

min
,0 , , ,

1 1

min
Subjecte to

( ) 0

1 0
( )

1 0

f f f fT T T T
a a t a a t

d t d t l t l t
t a t a t d t la a

t t

a a i a i a t
i ia

t t

a a i a i a t
i ia

K

E Q E R
I des Q C Q P K

SA SA

h R Q h a t
SA

II
h R Q h a t

SA

= = = =

= =

= =

→

⋅ ⋅
− + + + − ≤
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∑ ∑
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t t
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a t a t
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G Q S t

Q Q Q d t
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Q Q a t

Q Q a t







⋅ = ∀


≤ ≤ ∀ ∀


≤ ≤ ∀ ∀
 ≤ ≤ ∀ ∀

 (5.27) 

where 0 ,0
ˆ( )a a a

a
P h h E= −∑  is a certain constant. 

Consider the vectoroized version of the uncertain constraints (I) and (II) 
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where 1.. , 1 1.. ,[ , , ]
f f f

T
a a t a a t TR R R= = = ==  ; 1.. 1..[ , , ]

f f

T
a a a av E E= ==  ; ( 1)

,
f fa T

a tδ ⋅ ×∈R  has 0 and 1 

values according to ,a t , in order to extract the elements corresponding to the 

constraint from the elements of R ; SAD is a diagonal matrix with main diagonal vector 
( 1)

1.. 1..[ , , ] f f

f f

a TT
a a a aSA SA ⋅ ×
= = ∈R . For example, when there are two aquifers, 

1, 2 [1,0,1,0,0, ,0]T
a tδ = = =   .  

The robust version of the uncertain constraint is (see Section 5.2.1): 

, 1 1
, , , , 0

1 1 1

1 1 max
,0 , , , ,
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1 1 min
,0 , , , ,
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 (5.29) 

The resulting RC is LP, since no decision variables appear in the norms and the 

uncertainty appears only on the RHS. Recalling that the data in Rµ  and ∆ are repeated 

each year and that ,a t aσ = ∆ we obtain '1 aRT t
R SA a

a

t
D

SA
µ

µ δ−
⋅

= , 1
,

T a
a t SA

a

t
D

SA
σ

δ − ⋅
∆ = , hence, the 

RC of the WSS model is: 
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 (5.30)  
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5.5. Examples 

5.5.1. Problem data 

A small water supply system (Figure 5.1) is used for detailed demonstration. 

Summary results are later shown for a larger system (Figure 3.11) that constitutes a 

central part of the Israeli National Water System.  The system in Figure 5.1 is fed 

from two aquifers and a desalination plant to supply two customers over a 10 year 

horizon, for which a minimum total operation cost is sought. The annual costs of 

transportation in the links are {0.1, 0.05} ( $ /M MCM ) for odd and even links, 

respectively, and the desalination cost is 1 ( $ /M MCM ). Desalinated water is 

purchased from a private supplier, so the construction costs are included in the cost 

per unit of water obtained from the plant; this is the case in Israel, where the 

desalination plants are developed by private industry on a Build-Operate-Transfer 

(BOT) basis. The same costs hold for later years 2.. ft T=  and are capitalized to the 

present (decision time) with a 5% discount rate. The penalty at the final stage is 0.3 (

$ /M m ) for being below the prescribed water level, and is positive for levels above the 

prescribed value. Both aquifers have identical physical properties: 0.8SA = ( /MCM m ), 

0 75h = ( m ), ˆ 30h = ( m ), min 0h = ( m ) and max 500( )h m=  (an arbitrary high value, to insure 

no spill and thus simplify the demonstration). All discharges have the same bounds: 0-

100 ( MCM ). The annual recharges are i.i.d. with a joint uniform discrete distribution 

{30,40,50} for aquifer 1 and {35,50,60} for aquifer 2 respectively, and remains the 

same for all 10 years. This distribution has mean recharges of {40, 48.33} ( MCM ) in 

aquifer 1 and 2 respectively and a covariance matrix: 

'

66.67 83.33
83.33 105.56R

V  
=  
 

        (5.31) 

The resulting uncertainty set of the annual recharge is: 

 1

2

40 8.17 0
' : ,

48.33 10.21 1.18
U R

ς
ς θ

ς
      = + ≤     
      

     (5.32) 

The demand in the first year is 80 ( MCM ) in each demand zone, and it increases by 

5% in each subsequent year.  
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5.5.2. RC solution and Simulation results 

We compare five management policies: three Robust Policies (RP1, RP2 and RP3) 

which are obtained from the RC solution with different values of  {1,2,3}θ = , 

respectively, a Nominal Policy (NP) which is obtained from a deterministic solution 

with the average recharge, and a Conservative Policy (CP) which is obtained from the 

worst case realization, namely minimum recharge in all years. Each of these policies 

determines Here-and-Now decisions which are implemented at the beginning of the 

planning horizon before the uncertainty is revealed. 

Figure 5.2 compares the progression of annual amounts of desalinated water 

purchased over the planning horizon in each of these polices. The CP results in 

constant desalination of 120 ( /MCM year ), which is equal to the full capacity of the 

desalination plant. The NP results in taking as much as possible from the aquifers in 

the first stages while recognizing that the demand is increasing beyond the 

desalination capacity which leads to storing aquifer water to close the gap between the 

demand and the supply capacity at later stages. The conservativeness of the CP over 

all other policies is apparent. The robust polices RP1, RP2 and RP3 require less 

desalinated water than the CP, indicating that these policies are not myopic; in other 

words, they take advantage of the variability of recharge over time. Compared to the 

NP, a robust policy takes more desalinated water in the first stages, resulting in higher 

water level in the aquifers, which insures maneuverability within the operational 

limits of the aquifers in later years. The degree of conservativeness of the robust 

policies is noticeable - an RP with smaller θ  results in less desalination but lower 

reliability/immunization and higher penalties, as will be shown below, where RP with 

0θ =  (which is the NP) is a lower bound. The vertical distance of an RP policy above 

the NP policy is a measure of the extra reliability that the RP requires; the vertical of 

an RP policy below the CP policy is a measure of the foresight of the RP in taking 

advantage of the variability range of the recharge in the future. 
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Figure 5.2: Desalination amount over years for each static policy 

The performance of each policy is examined by simulation, which shows the tradeoff 

between the amount of desalination prescribed and the unreliability: lower 

desalination results in lower reliability. Each optimal policy is examined by 

simulation with 1,000 random samples, each with 20f fa T =  random recharge values 

drawn from the defined uniform discrete distribution of the recharge. Summary results 

for NP and RP3 are shown in Figures 5.3 and 5.4, respectively: the final water levels 

in the two aquifers, the total cost and the penalized cost. The feasibility of policies 

RP1, RP2, RP3 and NP is obviously not guaranteed for all possible realizations of the 

recharge, as seen by some excursions of the level to negative values. However, as 

seen in Figure 5.4 for RP3 these are very few; they are fewer as θ  increases. In CP 

there are obviously no infeasibilities, as it considers only the lowest value of the 

recharge.  

Since some of the generated samples can result in the reservoirs/aquifers becoming 

empty in some year it is necessary to take this into consideration in two respects: (1) 

continuing the path of the reservoir/aquifer beyond this point, and (2) penalizing the 

policy for failing to meet the specified operational limits. The two aspects are handled 

as follows: (a) when the reservoir goes dry and "wants" to go below the minimum 

level, it is set back to empty as the initial state for the next year, and (b) a penalty term 

is added to this simulation. The penalty is 

min
, ,max( ,0) a ta t a t th h DC− ⋅ ∀ ∀      (5.33) 
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and the water balance is  

, 1 , 1min
, 1 , ,max( , ) a t a t

a t a t a t
a a

R Q
h h h a t

SA SA
+ +

+ = + − ∀ ∀      (5.34) 

where 3tDC = ( $ /M m ) is the deficit cost.  Note that this is used only in evaluating the 

optimal solution by simulation and is not included in the optimization models. We 

define the total cost after applying (5.33) and (5.34) as the “penalized cost”. 

For the reader to see the mean shortage in ( MCM ) units and not via penalty; the cost 

increment in Table 5.2 should be divided by the deficit cost. For example the mean 

shortage associated with the NP is (1074.89-984.54)/3=30.11 ( m ) i.e. 30.11*0.8=24 (

MCM ).  

Figures 5.3 and 5.4 demonstrate the simulation results for NP and RP3: where 

subfigures show the results for: (a) final water level in aquifer1 (b) final water level in 

aquifer2 (c) the total operation cost and (d) the penalized cost. 

The NP results in almost 50% of the samples deviating from the operation limits 

(going negative, as if they are allowed to do so) at the final stage in both aquifers, 

while in RP3 there are only 4 deviations over all 1,000 simulations. Figures 5.3d & 

5.4d show that almost 10% of the samples in the NP exceed the worst cost of RP3. 

Moreover, a very large difference in the cost variability is exposed. 

Table 5.2 reports the empirical maximum, minimum, average and standard deviation 

of the total cost and penalized cost for each policy, along with the empirical reliability 

defined as the fraction of the total simulations which maintain feasibility in both 

aquifers in all years. The constant value of the cost standard deviation in Table 5.2 

indicates that all policies run on the same sample of the recharge; this indicates that 

the results are obtained from a fair simulation experiment. 

Policy 
Cost (M$) Penalized Cost (M$) Reliability 

% min max mean  std min max mean  std 
NP 916.60 1060.98 984.54 21.27 916.60 1778.32 1074.89 143.71 48.6 

RP1 948.43 1092.81 1016.38 21.27 948.43 1613.35 1035.52 74.01 81.4 
RP2 983.28 1127.66 1051.22 21.27 983.28 1451.40 1053.66 34.07 97.7 
RP3 1021.09 1165.46 1089.03 21.27 1021.09 1289.22 1089.22 22.29 99.7 
CP 1101.62 1246.00 1169.56 21.27 1101.62 1246.00 1169.56 21.27 100 

Table 5.2: Simulation results for the static polices. std=standard deviation. 
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Figure 5.3: Simulation results of the NP 

 

Figure 5.4: Simulation results of the RP3 policy 

The results show that the cost of the NP range between 916-1061 M$ while the cost of 

RP3 ranges between 1021-1166 M$. The NP yields infeasible situations in 51.4% of 

the samples while the unreliability of RP3 is only 0.3%. The low cost of NP does not 

mean advantage over RP3, since there is a very large difference in the reliabilities and 

it is a matter of multi-objective decision making. Accounting for the constraint 

a b 

c d 

a b 

c d 
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violation in the cost (Figures 5.3d & 5.4d) shows clear preference of RP3 over NP for 

the specified value of the penalty coefficient. RP3 immunize the NP from a reliability 

of 48.6% to 99.7% with only 10.6% increase in the mean cost. RP3 immunizes the NP 

with price of robustness (mean cost increment) of 2.05 M$ for each 1% reliability, 

while the CP immunize it with price of robustness of 3.6 M$ for each 1% reliability. 

Comparing CP with RP3 shows clear preference of RP3; since the CP immunizes RP3 

by getting rid of the last remaining 0.3% unreliability with an associated cost of 80.5 

M$, or 268 M$ for each 1% reliability.  

 
Figure 5.5: Reliability vs. Cost  

Figure 5.5 shows the tradeoff between reliability and mean cost, for all policies. The 

tradeoff is characterized by a mild slope of the last segment connecting RP3 with CP 

which indicates that a large increment in the mean cost is needed in order to obtain a 

small increment in reliability. The question to be asked is whether it is justified to add 

this large cost to immunize against rare events of the recharge. In our case the answer 

is given by the penalized cost which quantifies the unreliability by a penalty. The CP 

does not violate any constraint over all realizations of the recharge; hence the cost and 

penalized cost are identical.  In Table 5.2 the mean penalized cost of RP3 (with the 

assumed penalty coefficient) is 80.34 M$ less than the mean cost of CP, in contrast 

the CP maximum cost is 43.22 M$ less than the maximum penalized cost of RP3. 

However, further analysis of the cost distribution shows that only one sample in RP3 

exceeds the worst cost of the CP (1246 M$) while 695 samples in RP3 are below the 

best cost of the CP (1101.6 M$). This results shows that implementation of the CP 
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would increase the mean cost by 80.34 M$ while the only gain is reduction of 43.22 

M$ in the cost's upper bound, which is rarely realized.  

Policies RP2 and RP3 are indeed robust, the corresponding standard deviations of the 

penalized cost are less by a factor of 4.2-6.4 than the NP standard deviation, 

indicating that these robust policies lead to stable policies without large variability in 

the associated costs which can be accounted as preference over other alternatives. 

5.6. Folding Robust Counterpart (FRC)  

The RC approach solves a static problem in which the decisions are Here-and-Now 

for all years, as if all future decisions are fixed in advance. This may seem a myopic 

approach, but in fact only the decision for the first year should be implemented and 

the analysis is then repeated towards the end of this year, with new information (if 

any) about the recharge, demands, costs, and initial system state (aquifer water 

levels). This is captured in the Folding Robust Counterpart (FRC) model.  

At time "now" the RC solution for all years is computed, and the first stage decision is 

implemented. At the beginning of the next year, we solve a new problem with a new 

state (obtained from the first year decision and realization) and a reduced time horizon 

(it could also be extended by one year if desired). This is repeated over all the stages 

(years). 

We next demonstrate and compare the Folding Robust Policy (FRP) with Folding 

Multistage Stochastic Programming Policy (FMSPP). The comparison is carried out 

for the small system in Figure 5.1 with the data listed above, where the aquifers 

recharge in each year is i.i.d. given by multivariate normal distribution with 

expectation [40,48.33]µ = and covariance matrix V defined in (5.31). 

5.6.1. Multistage Stochastic Programming (MSP) 

A well studied method for solving multi-stage stochastic decision models is 

Multistage Stochastic Programming [Shapiro et al., 2009]. In the MSP we capture the 

uncertainty as a stochastic process with a known probability distribution. One variant 

of the MSP is scenarios based, which assumes that the distribution of the stochastic 

process is given by a finite number of scenarios, each with its corresponding 

probability sp . Following this approach, the stochastic recharge of the example in 

Section 5.5.1 is modeled by a 10-stage scenario tree having three branches at each 
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stage with identical probabilities. This scenario tree has 103  different scenarios, which 

at each stage t are bundled into 3t  nodes while all scenarios which share the same 

node at stage t have the same recharge up to this stage.  

At any node in the multistage scenario tree, the decision maker knows the exact 

history leading to that node, and decides how to proceed; knowing only that the future 

recharge is presented by each of the scenarios that emerge from the node into the 

future. The MSP solves for all stages simultaneously to obtain the optimal decisions 

(corresponding to each node) which results in minimum expectation cost over all 

scenarios. The MSP model for the WSS model is: 
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 (5.35) 

where s denotes scenario; sp is the probability associated with each scenario;  is the 

set of nonanticipativity constraints, which are the set of constraints such that 1 2s s
t tQ Q=

for all scenarios 1s and 2s  that are indistinguishable (share the same history) up to 

stage t  [Shapiro et al., 2009, page 71].  

In the general case of continuous distributed random data the MSP is computationally 

intractable; however we can apply the MSP by approximating the continuous 

distributions of the data by discrete sets. In our case the multivariate normal 

distribution is discretized. The size of the deterministic equivalent of the stochastic 

program depends on the number of elements considered in the discrete distribution. 

We use the 5-elemnent discrete distribution { , , 2 }µ µ σ µ σ± ±  given in Table 5.3 to 

represent the continuous normal distribution. 
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With regard to the computational difficulty of solving the deterministic equivalent of 

the stochastic program, the nonanticipativity constraints can be eliminated by 

substitution of variables, this reduces the total number of constraints and variables in 

the problem. Still, the real computational difficulty arises due to the number of 

scenarios considered in the problem since the size of the deterministic program 

increases rapidly with the number of scenarios. For the example considered in Section 

5.5.1 with a 5-value distribution of the recharge as given in Table 5.3, the 10-stage 

problem would result in 36,621,091 variables and 141,601,544 inequality constraints 

even after elimination of the nonanticipativity constraints, while the RC of the10-

stage example has only 111 variables and 381constraints. To reduce the computational 

burden for this presentation, we compare the performance of the three dynamic 

methodologies: FRP and FMSPP on  a 5-stage example, in which the MSP results in 

11,716 variables and 45,299 constraints while the RC results in 56 variables and 191 

constraints.  

1, 2,,a t a tR R= =  23.67, 27.79 31.84, 38.06 40, 48.33 48.17, 58.61 56.33, 68.88 
Prob  0.06 0.22 0.44 0.22 0.06 

Table 5.3: Discrete approximation of the multivariate normal distribution. 

5.6.2. Folding horizon simulation 

To evaluate these policies for the example outlined in Section 5.5 with 5-stages, we 

simulate their optimal solutions with 1,000 random samples of 10f fa T =  random 

members each, drawn from the multivariate normal distribution of the recharge. 

The MSP is a sequential decision making approach; hence it provides the optimal 

decision at each stage according to the history up to that stage. However, the MSP 

only considered the discrete approximation of the continuous distribution. Hence, the 

MSP is also applied in folding mode, since the realization of the recharge could be 

different from the values in the discrete approximation.   

To apply the folding horizon, for each of the samples we start by solving a 5-stage 

problem. From the 5-stage solutions we only adopt the first stage optimal solution 

according to each policy, i.e. RP and MSPP. Then we use the first member of the 

sample as if it is the actual realization of the recharge at the first stage. The new state 

of the system at the end of the first stage is calculated, given the decisions and the 

realization of the first stage.     
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After this stage is fully covered, a 4-stage problem is solved with the initial state 

corresponding to each of the states obtained at the end of the first stage. We continue 

with this process until we solve the problem of the 5th stage for all its possible initial 

states. At the end of the horizon we can calculate the total cost of each policy 

corresponding to the sample. Applying this procedure for each of the 1,000 samples 

we obtain the simulation results for comparing the methodologies. 

5.6.3. Simulation results 

Table 5.4 reports the simulation results for the three dynamic decision making policies 

the static policy RP  with 3θ = , the FRP with 3θ = , and FMSPP . It contains the 

maximum, minimum, average and standard deviation of the total cost and the 

penalized cost for each policy, along with the empirical reliability defined as the 

fraction of the total simulations which maintain feasibility in all aquifers and at all 

stages. 

The advantage of the adjustable dynamic RP over the static one is apparent. Both 

policies have a high reliability of 99.9% but the dynamic policy results in a narrower 

cost range of 301-569 M$ instead of 393-604 M$ and a lower mean cost of 418 M$ 

compared to 451 M$. The lower standard deviation of the static RP is the result of the 

non-adjustability of the decision, namely in the folding mode the decisions depend on 

the realization and hence the standard deviation can be expected to increase.  

The FRP produces a more reliable solution than the FMSPP. The FRP immunizes the 

FMSP with price of robustness (mean cost increment) of 2.47 M$ for each 1% 

reliability. Comparing the penalized cost which quantifies the unreliability by the 

penalty, shows that the mean penalized cost of the FMSPP is 7.9 M$ (1.9%) less than 

that obtained in the FRP, however the worst and best cost of the FRP are less than in 

the FMSPP by 10.3% and 4.7%, respectively and the standard deviation of the cost is 

smaller. Thus, in addition to better reliability, the FRP has greater flexibility to take 

advantage of opportunities (lower best cost) and to optimize in severe cases (lower 

worst cost). 

The RP3 solution could be a legitimate choice based on these results, but it is 

recommended that further statistical analysis of the penalized cost over longer periods 

and more simulations is required to determine preference. Still, the large size of the 

MSP model compared to the RP, could tip the scales toward using the RP. 
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The decisions in the folding mode are realization dependent and hence each of 

decision variables starting from the second stage could take on as many values as the 

number of states obtained at the end of the previous stage.  

Figure 5.6 shows the maximum and mean desalination amount in each year according 

to each folding policy along with the desalination amount of the static policy (which 

is not realization dependent). The mean desalinated amount of the FRP is lower than 

in the other policies, starting from the second year. The FMSPP starts with low 

desalination, but immediately in the second stage fixes the desalination amount 

sharply to exceed the maximum desalination obtained from the FRP. However, both 

of the folding methodologies utilize the full capacity of the desalination plant starting 

from the third year. 

 

Figure 5.6: Desalination amount over years for each dynamic policy 

Policy 
Cost (M$) Penalized Cost (M$) Reliability 

% min max mean  std min max mean  std 
RP3 393.45 508.65 451.24 15.03 393.45 603.80 451.34 15.68 99.9 

FRP3 301.17 568.42 418.67 31.21 301.17 568.42 418.69 31.24 99.9 
FMSPP 316.25 575.14 409.78 34.41 316.25 633.79 410.79 36.73 96.3 

Table 5.4: Simulation results for the dynamic polices. std=standard deviation. 

5.7. Ambiguous chance constraints (Example) 

In this Section we show how to estimate probability guarantees [Ben-Tal et al., 2009] 

that determine the degree of immunization, with partial knowledge of the uncertain 
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stochastic parameters. Suppose that all we adopt form the historical record of the 

recharge in the example discussed above is the mean recharge 'Rµ  and the fact that the 

distribution support is bounded within the box ' 2Rµ σ± , where 

' [40,48.33], [8.17,10.27]Rµ σ= =  ( MCM ). (Distribution support is the smallest closed set 

such that the probability to obtain a value outside of this set is zero).  

According to Section 5.2.3, the RC with the following uncertainty set 

1

2

40 16.34 0
' : , 2 ln(1/ )

48.33 0 20.54
U R

ς
ς ε

ς
      = + ≤     
           (5.36) 

is an approximation of the ambiguous (unknown distribution) chance constraints 

formulation of the WSS model defined in (5.27): 

{ }
{ }

min
Subjected to
Prob consraint 1

Prob consraints 1
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K
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II a t
III a t d

ε

ε

→

≥ −

≥ − ∀ ∀
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      (5.37) 

With only this partial knowledge of the recharge (bounds and mean, and no 

information about the distribution) one can use the RC with the uncertainty set U in 

(5.36) to solve (5.37). To test this approximation let us consider asymmetric 

distributions (all with mean 'Rµ and the same bounds) which give Pmax of the values 

on the upper bound and the rest are uniformly distributed close to the lower bound. 

Figure 5.7 shows the distributions supports for different Pmax values. The test is 

applied on the example of 10-stage WSS with the uncertainty set U from (5.36) with a 

desired reliability of 0.95. The empirical reliability according to 10,000 simulations 

obtained by solving the RC approximation of the chance constraints model is reported 

in Table 5.5. The results show that the empirical reliability is above the desired 

reliability of 95% even for the extreme case when the recharge can take only 

minimum and maximum values. 

Pmax Reliability (%) 
0.35 100 
0.4 100 
0.45 99.7 
0.5 97.2 

Table 5.5: Simulation results for the ambiguous chance constraints example.  
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Figure 5.7: Distributions support for different Pmax values 

5.8. Application to the large WSS system 

A water system shown in Figure 3.11 has 9 demand zones, 3 aquifers, 5 desalination 

plants and 49 pipes and approximates the central part of the Israeli National Water 

System. The full recharge record of the 3 aquifers has 78 annual values (1932-2009, 

Israeli Hydrological Service). We demonstrate the RC approach based on part of this 

historical record (1932-2004) and then simulate the RC approach in folding mode to 

imitate the adoption of a Folding Robust Policy (FRP) in 2005. The results are also 

compared to the Folding Nominal Policy (FNP). 

The ellipsoidal uncertainty set for the RC model is based on the computed means and 

covariance matrix of the recharge into the three aquifers: 

''

210 3702 1585 4576
100 , 1585 1255 3428
81 4576 3428 9813

R R
Vµ

   
   = =   
   
   

      (5.38) 

According to Section 5.4.1 the uncertainty set of the annual recharge is: 

 
1

2

3

210 60.84 0 0
' : 100 26.05 24 0 ,

281 75.2 61.17 20.34
U R

ς
ς ς θ
ς

     
     = + ≤     
     

     

    (5.39) 
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Figure 5.8 shows the water level of the 3 aquifers according to each of the two 

policies. In Aquifer 1 the RP raises the water level by an almost constant increment 

each year. In aquifer 3 the gap between the water level obtained by the RP and the one 

form NP increases over time to such an extent that the water level of the NP is below 

the minimum water level allowed.  

In aquifer 2 both policies result in the same water level over years; this is due to the 

limitation of the network topology associated with this aquifer, since aquifer 2 can 

supply only to demand zone 2, as can be seen in Figure 3.11. 

 

Figure 5.8: Aquifers water levels in the large system 

 

Note: 

Refer to Section  7.2.3 for Summary and Conclusion.   
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6. Info-Gap model 

6.1. Introduction 

In this Chapter we introduce the application of the Info-Gap methodology for the 

WSS developed in Chapter 3. As described in Chapter 2 the Info-Gap decision theory 

[Ben-Haim, 2006] is a non-probabilistic decision theory seeking to maximize 

robustness to failure instead of minimizing the objective function. Hence, the 

optimization problem is to find the decision x  such that it will be feasible with as 

many as possible realizations of the uncertain parameters set. 

For the model developed in this work the failure criteria are: 

1. Water level in the aquifer below the minimum level.  

2. Water level in the aquifer above the maximum level.  

3. Operating cost is above the given budget. 

The robustness analysis evaluates each feasible decision by asking: how much 

deviation from the replenishment estimate we can tolerate and still leads to 

performance within requirements. In other words the robustness of a decision is the 

maximum deviation allowed without failure.  

This Chapter presents preliminary results for the Info-Gap application. Discussion for 

further research on the application of the methodology and its hybrid probabilistic 

version is presented in Section 7.3.4. 

6.2. One year model 

The Info-Gap methodology defines an uncertainty model  as nested subsets  ( )U α

around a point estimate R of a parameter and range of uncertainty α : with no 

uncertainty, the estimate is correct, and as uncertainty increases, the subset grows, in 

general without bound, however in our case the recharge must have non-negative 

value.  

The uncertainty model in this Chapter for the WSS defined in Chapter 3 is defined as: 

( ) { }
( ) { }

: 0, 0

: max 0, 0

Estimated recharge
Uncertainty parameter

U R R R R

U R R R R

R

α α α

α α α α

α

= ≥ − ≤ ≥

 = − ≤ ≤ + ≥ 

−
−



 



     (6.1) 

http://en.wikipedia.org/wiki/Decision_theory
http://en.wikipedia.org/wiki/Point_estimate
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( )U α  is a nested subset hence: ( ) ( ) if   U Uα β α β⊆ ≤ . The robustness to failure for 

each of the three conditions is expressed by the limit of recharge (MCM/year) that is 

required to meet the specified condition: 

( )

1 ( )

2 max( )
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    (6.2) 

By satisfying all α constraints we guarantee that the decisions are such that the 

minimum and maximum limits on aquifer levels and the maximum limit on budget 

are satisfied.  

6.2.1. Robustness functions 

Maximum and minimum water level  

The water level in the aquifer is: 

0( , ) aq
f aq

R Q
h Q R h

SA
−

= +         (6.3) 

For fixed aqQ , ( , )f aqh Q R  is a linear function with respect to R , thus: 

0( )

0( )

max

max 0,
min

aq
fR U

aq
fR U

R Q
h h

SA
R Q

h h
SA

α

α

α

α

∈

∈

+ −
= +

 − − = +





      (6.4) 

Maximum cost  

The yearly operation cost is comprised of conveyance and desalination cost (not 

function of R ) and extraction levy (function of R ): 
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min max

max min

cost( , ) cost(x) + 1 Qf
aq

h h
x R CE

h h
− 

= − ⋅ ⋅ − 
     (6.5) 

For fixed x , cost( , )x R  is a linear function with respect to R  , thus: 
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   (6.6) 

The robustness of staying within the budget is:   
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      (6.7) 

Let 1( )M α  denotes the inner maximum, which increases with α . The robustness 1α̂  is 

the largest α  for which 1( )M Budgetα ≤ . Thus, 1α̂ is the largest solution for α  of 

1( )M Budgetα = . In other words, 1ˆ ( )Budgetα is the inverse of 1( )M α , obtained from: 

*
min* max 0

0
max min

1

*
min* max

0
max min

; cost(x) + 1 cost ;

( )

; cost(x) + 1 ; 0

aq f
f aq

aq f
f aq

Q h h
h h CE Q R

SA h h

M

R Q h h
h h CE Q R

SA h h

α

α

α
α

  − −
= + − ⋅ ⋅ = ≥   −  

= 
  − − − = + − ⋅ ⋅ ≤ ≤   − 







 (6.8) 
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The robustness against failure of meeting a specified maxh is:   
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Let 2 ( )M α  denote the inner maximum, which increases with α . The robustness 2α̂  is 

the largest α  for which 2 max( )M hα ≤ . Thus, 2α̂ is the largest solution for α  of

2 max( )M hα = .In other words, 2 maxˆ ( )hα is the inverse of 2 ( )M α . 

2 0( ) ; 0aqR Q
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α α
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The robustness against failure of meeting a specified minh is:   
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Let 3 ( )M α  denote the inner minimum. 3 ( )M α decreases as α  increases. The 

robustness 3α̂  is the greatest α  at which 3 min( )M hα ≥ . Thus, 3α̂ is greatest solution for 

α  of 3 min( )M hα = .In other words, 3 minˆ ( )hα is the inverse of 3 ( )M α . 
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The robustness for against all three failures is: 

max min 1 2 3ˆ ˆ ˆ ˆ( , , , ) min( , , )
ˆ maximum deviation which satisfy the3constrains

x Budget h hα α α α
α

=
−

    (6.16) 

By satisfying all α constraints we guarantee that the decisions are such that the 

minimum and maximum limits on aquifer levels and the maximum limit on budget 

are satisfied. 
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6.2.2. Example 1 

In this example we solve the small network in Figure 3.1, with the parameter set 

defined in Section 3.8. The estimated aquifer recharge is set to 50R =  (MCM) and the 

maximum specific levy is set to ( )max
1CE =  ( $ / )M MCM . 

The Info-Gap formulation above does not consider uncertainty in the salinity balance 

equation, as it considers only the uncertain recharge in the water level equation of the 

aquifer. To overcome this drawback the recharge salinity was set to 180 ( / )RC mgcl lit= , 

equal to the initial salinity. Since the recharge salinity is equal to the initial salinity the 

aquifer salinity remains constant 180 ( / )mgcl lit  for all values of the recharge.  

Comparing operation rules 

In this Section we compare the robustness of two possible operation rules 1 2x and x , 

for explaining the workings of the Info-Gap approach. 

Operation rule 1x : extract 10 (MCM) from the aquifer and as a consequence, given 

the yearly demand of 100 (MCM), the desalination amount is 90 (MCM). Recalling 

that the aquifer salinity is constant 180 ( / )mgcl lit , we set the salinity at the demand 

nodes to the maximum admissible value 190 ( / )zC mgcl lit=  and to insure this value at 

the demand nodes the desalinated water salinity at the plant has been set to 

191.1 ( / )dC mgcl lit=  i.e., 99.29 (%)dRR = . The aquifer water is equally distributed in 

pipes 1, 2 since these are identical, 1,2 10 / 2 5 ( )Q MCM= = . In the same manner, the 

desalinated water is equally distributed 3,4 90 / 2 45 ( )Q MCM= = . Each of the 

intermediate nodes 3 and 4 has 45 5 50 ( )MCM+ = , recalling that since pipes 5-8 have 

identical parameters this results in 5 8 25( )Q MCM− =  

Operation rule 2x : extract 30 (MCM) from the aquifer and as a consequence, given 

yearly demand of 100 (MCM), the desalination amount is 70 (MCM). Following the 

same explanation as above, 194.3 ( / )dC mgcl lit= , i.e., 99.28 (%)dRR = , 1,2 15 ( )Q MCM= , 

3,4 35 ( )Q MCM= , 5 8 25 ( )Q MCM− =  

Figure 6.1 shows the robustness functions 1,2,3α̂ and the overall robustness α̂ (when

min max1, 100h h= = ) for both operation rules 1x  and 2x . The alphas 1,2,3α̂ are the limits of 
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the recharge that satisfy the constraint on the maximum budget and on the maximum 

and the minimum levels, respectively.  

 
Figure 6.1: Example 1, robustness for: (a) budget (b) maximum water level (c) 

minimum water level (d) overall system.  

The overall robustness α̂ is defined as: ( )1 2 3ˆ ˆ ˆmin , ,α α α , since min max1, 100h h= = (m)  
1

2ˆ 49xα = , 2
2ˆ 69xα = , 1

3ˆ xα = ∞ and 2
3ˆ 30xα = (MCM). 

For operation rule 1x the maximum robustness is 49 (MCM) which is obtained as a 

result of 1
2ˆ 49xα = . The maximum robustness for 2x is 30 (MCM) which is obtained as a 

result of 2
3ˆ 30xα = . Comparing the overall robustness shows that the operation rule 2x  is 

preferred for budget bellow 135.2 (M$), since its robustness is higher. The robustness 

curves for the cross over at this value. For budget above 135.2 (M$), 1x result in higher 

robustness and thus it may be preferred to 2x . Deciding to allocate a budget above 

135.2 (M$) is a subjective matte. For example, the operation rule 2x provides 

robustness of 30 (MCM) with budget 127.5 (M$) while 1x provides maximum 

robustness 49 (MCM) with budget 137.1 (M$). Hence, the decision maker should 

decide whether it is justified to add 9.6 (M$) in order to get 19 (MCM) of robustness. 
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Note that the operation rule 1x  is not even feasible below a budget of 132.1 (M$), 

since the budget with ˆ 0α = indicates the cost associated with the estimated recharge 

(without uncertainty).  

6.2.3. Optimization 

For predefined max min( , , )Budget h h we can search for the maximum allowed deviation α̂ . 

In this optimization problem we must satisfy all the constraints of the original model 

plus the constraints from the Info-Gap formulation. 

[ ]1 2 3

1

2 max

3 min

ˆ ˆ ˆmax min( , , )

s.t.
(0)
(0)
(0)

( )

x

M Budget
M h
M h
x C x

α α α

≤
≤
≥

∈

        (6.17) 

6.2.4. Example 2  

Consider the WSS in Figure 6.2 which includes one aquifer, one desalination plant 

and one demand zone with demand of 100 MCM. 

 
Figure 6.2: Example 2, WSS layout 

The total operation cost is comprised of linear desalination cost and an extraction 

levy. Hence, the deterministic formulation for this model is: 

maxmin

max min

min max

min (100- ) 1

. .

11

0 100

aq
aq aqQ

aq

aq

h hdes Q CE Q
h h

s t
R Q

h
SA

h h h
Q

  −
⋅ + − ⋅ ⋅  −   

−
= +

≤ ≤
≤ ≤

     (6.18) 
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max 100h =  
 

min 1h =

 

0 11h =  
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Following the Info-gap model developed above with 1.41( $ / )des M MCM= , 
max 1( $ / )CE M MCM= , 1( / )SA MCM m=  and estimated recharge 50( )R MCM= the 

optimization problem for the Info-Gap (6.17) has one decision variable aqQ . The 

required functions for formulation of the optimization problem are: 

( )
1

1.42 (100- ) 99
ˆ ( ) 11 50aq

aq
aq

Budget Q
Budget Q

Q
α

 − ⋅ ⋅
 = + + −
  

    (6.19) 

2 maxˆ ( 100) 39 aqh Qα = = +         (6.20) 

3 minˆ ( 1) 60 aqh Qα = = −         (6.21) 

2 3(0) (0) 61 aqM M Q= = −         (6.22) 

1

60
(0) 1.42 (100- ) 1

99
aq

aq aq

Q
M Q Q

− 
= ⋅ + − ⋅ 

 
     (6.23) 

Figure 6.3, shows the overall robustness function ˆ ( , )aqQ Budgetα for different values of 

the budget. The last subfigure includes range of budget form 115-140 M$ by step of 1 

M$. The tradeoff “maximum robustness vs. aquifer withdrawal” and the tradeoff of 

the “maximum robustness vs. budget” are given in Figure 6.4.  

The first tradeoff (Figure 6.4a) shows that the robustness decreases as we extract more 

form the aquifer. The tradeoff is divided into two ranges, the first (left) is the range in 

which the aquifer withdrawal is not high, and hence the optimal points in Figure 6.3d 

are on the line 3 minˆ ( 1) 60 aqh Qα = = − , the second range (right) is where the aquifer 

withdrawal is high and the optimal points in Figure 6.3d are on the nonlinear function 

1ˆ ( )Budgetα not on the intersection with 3 minˆ ( 1)hα = . 

The second tradeoff (Figure 6.4b) shows also almost linear relation between the 

budget and the robustness. This is because, the vertical distance between the optimal 

points in Figure 6.3d is almost constant, hence the slope of the tradeoff is almost 

constant (linear). The last segment in the tradeoff is constant at value 49.5 (MCM) 

this is because beyond budget 137 M$ all the robustness functions have the same 

optimal point which is the intersection of the two linear lines 3 minˆ ( 1)hα =  and  

2 maxˆ ( 100)hα = . 
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Figure 6.3: Example 2, robustness as a function of the aquifer withdrawal with 
different values of budget. 

 

Figure 6.4: Example 2, maximum robustness tradeoffs: (a) maximum robustness vs. 
aquifer withdrawal (b) maximum robustness vs. budget 

When the budget is very high the robustness is given by 2 3ˆ ˆ ˆmin( , )α α α= . The maximum 

of α is obtained at the intersection point of 2 3ˆ ˆ,α α  since the first is increasing linearly 

and the second is decreasing linearly with the decision variable aqQ . The solution of 

2 max 3 minˆ ˆ( ) ( )h hα α=  for   aqQ  results in the optimal aquifer extraction for high (or 

unlimited) budget. The solution is: 
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( )min max 0* 2
2aq

h h h SA
Q R

+ − ⋅
= −        (6.24) 

In the above example * 10.5( )aqQ MCM= as shown in Figure 6.3d. 

6.2.5. Example 3  

Further to example 1 for the WSS in Figure 3.1, we can show that the two decision 

rules 1x and 2x are not optimal for every given budget. To obtain the optimal decision 

rule for a specified budget we have to solve the optimization problem (6.17). This 

optimization problem has a vector of decision variables, hence we cannot show the 

graphs of the robustness as we did in example 2. Instead we can solve the 

optimization problem numerically. The problem was solved by the interior-point 

algorithm within FMINCON in Matlab, after an auxiliary variable was introduced to 

replace the minimum operator in the objective function. 

Figure 6.5, shows the tradeoff between the maximum robustness and the budget for 

optimal decisions, along with tradeoff of operation rule 1x and operation rule 2x . 

The optimal operation line in Figure 6.5 shows the maximum robustness obtained 

from the optimization model (6.17). Hence, it outperforms the pre-determined 

operation rules from example 1. Note that for each point on the optimal operation line 

there is different decision rule. 

As shown in the Figure 6.5, the decision 1x  resulted in lower robustness for all values 

of the budget. In contrast, decision 2x is optimal solution when the budget is equal to 

127.3 M$ and only in this situation, since it resulted in lower robustness in the 

remaining points. 

For each point in the optimal robustness tradeoff we have the decision vector 

corresponding to that point. For any given budget the optimization problem (6.17) 

provides the optimal extraction, the optimal water distribution in the network and the 

optimal removal ratio which maximize the robustness of the system operation. 

The maximum robustness obtained at a budget of 137 (M$), increasing the budget 

beyond this value will not increase the robustness since it is no longer the limiting 

factor. In this case the optimal robustness is obtained by considering 2 3ˆ ˆ ˆmin( , )α α α= .  
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The optimal robustness in this case obtained when 2 3ˆ ˆ,α α  which will result in optimal 

aquifer extraction of *
aqQ in Equation (6.24) as explained in the previous example. 

 

Figure 6.5: Example 3, maximum robustness vs. budget 

As discussed in Section 3.8, because of the parameter set chosen for the network, the 

conveyance costs are not a significant portion of the objective function and for this 

reason the conveyance aspect did not change the optimal solution significantly. To 

show the influence of the conveyance cost on the optimal tradeoff, all pipes diameters 

were set to 15 (in) instead of 50 (in) as in the original run. Figure 6.6a compares the 

optimal robustness tradeoff from Figure 6.5 with the tradeoff after increasing the 

conveyance cost. 

The tradeoff is also highly dependent on the other parameters in the objective 

function,  for example the maximum specific extraction levy maxCE . Figure 6.6b show 

this influence of the extraction levy by modifying the original parameters of the 

example to  max 1.5( $)CE M= . 

Decreasing the pipes' diameters increases the conveyance cost, and as a result the 

tradeoff is shifted to the right. Moreover, since the conveyance cost is calculated by 

the non-linear Hazen Williams Formula, the tradeoff imposes more non-linearity. 

Increasing the maximum extraction levy coefficient results in more weight for the 

extraction cost in the objective function, as a result the tradeoff is shifted to the right 

and it is imposes more non-linearity since the extraction cost is non-linear (quadratic). 
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Figure 6.6: Example 3, maximum robustness vs. budget: (a) influence of the network 

parameters (b) influence of the aquifer parameters 

6.3. Multi-year model 

The multi-year uncertainty model in this Chapter is defined as: 

( ) { }
( ) { }
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6.3.1. Robustness functions 
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In the previous Section we showed that the water level is a linear function with 

respect to R , thus:  
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The operation cost is comprised of conveyance and desalination cost (not function of 

R ) and extraction levy (function of R ). The cost function is also a linear function with 

respect to R  , thus: 

max

0( ) 1 1max min

max 0,
max cost( , )=cost(x) - 

i iT t
aq t

aqR U t i

R QCEx R h Q
h h SAα

α
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∑ ∑
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  (6.28) 

The robustness of failure for meet a specified budget is:   
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Let 1( )M α  denote the inner maximum. 1( )M α , which increases withα . The robustness 

1α̂  is the largest α  for which 1( )M Budgetα ≤ . Thus, 1α̂ is the largest solution for α  of 

1( )M Budgetα = . In other words, 1ˆ ( )Budgetα is the inverse of 1( )M α . To write an explicit 

expression for 1( )M α  we define a vector δ with elements 1..t t Tδ = where: 
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In the same manner the robustness for failure in the water level limits are: 
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The robustness for the three kinds of failure for all years is: 

( )1.. 1..
max min 1 2 3ˆ ˆ ˆ ˆ( , , , ) min , ,t T t Tx Budget h hα α α α= ==     (6.37) 

6.3.2. Example 

In this example we solve the small network in Figure 3.1, for 4 years. The estimated 

recharge for the 4 years is 1..4 [5,10,15,20]( )tR MCM= = .The same physical parameters of 

the network from example 1 are considered with maximum specific levy is set to

( )max
1CE =  ( $ / )M MCM . The storativity is 0.8( / )SA MCM m= , and the two demands are 

set to 15 (MCM) each. The initial, minimum and maximum water levels in the aquifer 

are 25, 0 and 50 (m), respectively.  

Comparing operation rules 

Using the robustness functions we can compare the robustness of different operation 

rules. Two operation rules 1 2x and x are compared in this example: the first 1x is 

extracting 10 (MCM) from the aquifer in each of the 4 years, while the second is 

extraction 5 (MCM) in each year. The distribution of the sources water in the network 

follows the explanation in example 1.  

Figure 6.7, show the robustness 3ˆ ( )Budgetα  for the defined level limits max 50( )h m= and 

min 0( )h m= . For instance, when the budget is 18.5 (M$) the operation rule 1x allows a 

deviation of 6.3 (MCM/year) without exceeding the budget constraint, while 

operation rule 2x allows only a deviation of 3.5 (MCM/year). The budget for which 

the robustness is infinite is the one which corresponds to the cost of relying only on 

the initial storage of the aquifer, without any recharge. 
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As shown in Figure 6.7 when the budget is below 19 (M$) operation rule 1x allows 

more deviation in the recharge than the rule 2x , and it is preferred in terms of 

robustness to budget failure. However, there are other failure criteria which along 

with the robustness to budget failure determine the overall robustness of the decision 

rule. Thus, we cannot conclude yet, which operation rule is preferred in terms of 

overall robustness. 

Note that the breakpoints in the tradeoff are not a result of coarse resolution in the 

budget axis. These are actual breakpoints obtained because of the presence of the 

vector δ in Equation (6.32) which includes the binary variables depending on the 

value of budget. 

 
Figure 6.7: Multi-year example, robustness for budget violation  

Figure 6.8 shows the robustness 2 maxˆ ( )t hα and 3 minˆ ( )t hα for each of the 4 years, 

respectively. For the rule 1x when min 0h = the deviation allowed in the third year is the 

minimum among all years, hence the yearly deviation of 1
3ˆ xα is 7.5 (MCM/year) 

insures no failure in the minimum water level constraints for all years. 

For operation rule 2x , the robustness 2
3ˆ xα = ∞ , meaning that no matter how large the 

deviation is, no failure will occur in the minimum water level constraints for all years. 

For the maximum water level failure max 50( )h m= , yearly deviation of 1
2ˆ 2.5xα =  insures 

no failure in all years when operation rule 1x is applied. In contrast, there is no yearly 
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deviation which insures no failure at all years, hence 2
2ˆ 0xα = (MCM/year) as a result of 

4
2ˆ 0α = at max 50( )h m= . From this analysis, we can conclude that the overall robustness 

of 2x is zero i.e. 2ˆ 0xα = , while the overall robustness of 1x is positive value 

1
1ˆ ˆmin( ( ) , 2.5)x budgetα α= . 

 

Figure 6.8: Multi-year example, robustness for: (a) minimum water level, decision 1 
(b) maximum water level, decision 1 (c) minimum water  level, decision 2 
(d) maximum water level, decision 2. 

For predefined max min( , , )Budget h h we can search for the maximum robustness α̂ by an 

optimization problem similar to (6.17). This optimization problem includes 2 maxˆ ( )t hα

and 3 minˆ ( )t hα for each 1..t T= . 

Figure 6.9, shows the tradeoff between the maximum robustness and the budget for 

different runs, each with different time horizon. The optimal tradeoff for the 4 year 

horizon along with robustness of the tradeoff operation rule 1x are shown in the Figure 

6.9d. The results show that the operation rule  1x  was not optimal, since for each 

budget in the interval there is higher robustness which obtained by the optimizing the 

decision variables. 
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Figure 6.9: Multi-year example, maximum robustness for: (a) 1 year horizon (b) two 
years horizon (c) three years horizon (d) 4 years horizon.  

Comparing the different tradeoffs obtained for different horizons shows that the 

budget tradeoff shrinks when the operation horizon is increased. For instance, when 

we solve a 4 year problem, the maximum (constant value) is almost obtained close to 

left side of the tradeoff interval. The conclusion to be drawn is that the budget is 

becoming less limiting in determining the robustness as the operation horizon 

increases. This can also be concluded from the definition of the robustness, since as 

the horizon increases more 2 maxˆ ( )t hα and 3 minˆ ( )t hα  are involved in the minimum operator, 

hence, there will be less profit from increasing the budget. 

Note that, in the multi-year runs the robustness is the deviation allowed for each year 

in the horizon, the deviation for the entire horizon is given by the robustness 

multiplied by the operation horizon length as shown on Figure 6.9.  

 

6.4. Discussion 1 

The Info-Gap methodology as described by Ben-Haim [2006] involves the following 

components: (a) defining the failure criteria (b) solving for the inner 
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maximum/minimum in the robustness functions, Equations (6.8), (6.11), (6.14)  (c) 

finding the robustness by extracting the failure indices from the robustness functions, 

i.e., find the inverse of the functions from the second step Equations (6.9), (6.12), 

(6.15) (d) defining the overall robustness by (6.16). 

When the Info-Gap model is used to compare different alternatives the explicit closed 

forms of the robustness functions (6.9), (6.12) and (6.15) can be used. However, we 

claim that these steps are not essential when we solve the Info-Gap model within 

optimization problem such as (6.17).  The maximum robustness of the system could 

be obtained without explicit definition for each failure as individual function, and 

more important with no need to define the inverse functions. 

To demonstrate this claim the optimization problem (6.17) is transformed to another 

optimization problem.  In the objective functions we have 1 2 3ˆ ˆ ˆmin( , , )α α α  which could 

be formulated as the following maximization problem by using auxiliary variable α̂ : 
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By applying the functions 1..3M for each of the constraints, respectively, and recalling 

that 1ˆi iMα −≡  we obtain: 
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Inserting (6.39) into (6.17) results in: 
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The second form in (6.40), shares various elements with the Robust Optimization 

(RO) formulation. The second discussion raises this point. 

6.5. Discussion 2 

In discussion 1 we have shown that there is no need to formulate the robustness 

functions for each function individually, and there is no need to formulate the inverse 

functions either, and we have introduced another formulation which gives the same 

results. This version of the Info-Gap has many common similarities with the RO 

formulation of the problem. In fact we claim that in certain conditions the Info-Gap 

model is the inverse formulation of the RO. Inverse in the sense that, instead of 

minimizing the worst case cost for a given uncertainty set (with given shape and size), 

in the Info-Gap we solve for maximizing the uncertainty set size given the worst case 

cost (budget). The RO formulation of the problem is given in (6.41), which could be 

further transformed to another formulation by using the auxiliary variable “budget” to 

move the objective into the constraints.   
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   (6.41) 

It should be noted that in the second form of the RO formulation (6.41), the first 

constraint will always be binding in the optimal solution. 

Comparing formulation (6.41) of the RO and formulation (6.40) of the Info-Gap 

shows that the only difference is in the objective function where the first minimizes 

the budget for given α and the second maximizes α for given budget. 

Formulation (6.40) is the inverse of formulation (6.41), whenever solving the first 

with a given *budget results in *x and *α , while solving the second  with given *α  

results in the same *budget  and *x . 

Recalling that the budget constraint has to be binding at the final solution *x , if the 

solution from the Info-Gap formulation does not imply binding budget constraint then 

it is not the inverse of the RO formulation. 
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To demonstrate this let us consider the yearly formulation of the Info-Gap. For fixed 

decision vector x , the constraints in formulation (6.40) are linear with α as could be 

seen from Section 6.2.1. Figure 6.10 shows schematic representation of these 

constraints at the optimal point of the Info-Gap problem in case (a) budget constraint 

is not binding (b) budget constraint is binding 

 

Figure 6.10: Schematic presentation of the Info-Gap formulation 
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Figure 6.11: Schematic presentation of the RO formulation 

Both functions 2 ( )M α  and 3( )M α share the same point at 0α = , the value of that 

point is a function of the decision (particularly the aquifer extraction), where the 

slopes does not depend on x . For 1( )M α both the intersection point 1(0)M and the 

slope depend on the decision x . The maximum α which maintain feasibility for all 

constraint is the smallest α among the three intersection points (A, B, C).  

The optimization problem of the Info-Gap (6.40), seeks intersections points 1( )f x , 

2 ( )f x  and slope 3 ( )f x such that the critical α corresponds to one of the points (A, B, C) 

is maximized.  

In the RO formulation for a given level of α , say 'α  (Figure 6.11), the optimization 

problem seeks intersection points 1( )f x , 2 ( )f x  and slope 3 ( )f x such that points E, F are 

within the bounds and the value of point D is minimized.  

When the budget constraint is not binding (Figure 6.10, 1 ( )M α ), if we solve the RO 

with the optimal value opt
aα we will not get the same *x . Where if the budget constraint 

is binding (Figure 6.10, '
1( )M α ), then solving the RO with optimal value opt

bα will result 
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7. Conclusions 

7.1. Research Contributions 

7.1.1. Water Supply System (WSS) model 

o Developed a WSS management model for seasonal multi-year 

management of water quantities and salinities of large scale WSS 

comprised of aquifers, reservoirs, desalination plants, demand zones and 

conveyance network. The model has a user friendly interface which 

facilitates constructing and solving different networks without the need for 

further programming. The model also generates an automatic report, 

including tabular (Figure 3.19) results and schematic figures (Figure 3.11) 

of the network with optimal distributions of water quantities and qualities. 

The model is formulated and solved with selected values of the stochastic 

variables, which can be the expected values or a more pessimistic or 

optimistic value that  reflects the decision maker's attitude to risk. (Chapter 

3). 

 

7.1.2. Optimization 

o To increase the efficiency of the optimization, a set of manipulations 

reduces the model size, and an efficient finite differences scheme has been 

developed for calculating the derivatives that are required by the 

optimization algorithm for the model's multi-stage structure, titled Time-

Chained-Method (TCM). As seen in Figure 3.18 the TCM reduced the run 

time for 10 year problem by a factor of 6.5. (Section 3.10).  

o As a byproduct of my work a Search Method for Box Optimization 

(SMBO) was developed. SMBO is a heuristic population based search 

methodology which solves global optimization problems by representing 

the population as a Probability Density Functions (PDF) within the 

problem bounds. The performance of SMBO is compared with old and 

recent genetic algorithms (GA). The results show that SMBO performs 

equally or better than theses GAs in both comparisons. (Appendix 1). 
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7.1.3.    Optimization under uncertainty 

o Stochastic programming approaches were applied to the WSS model. 

These include the Wait-and-See approach, the Here-and-Now approach, 

the two-stage approach, and the Multi-stage approach. The formulation 

and application of these approaches for various objectives were presented. 

(Chapter 4). 

o The results of the stochastic programs were presented as Mean-Variance 

tradeoff. This presentation can be associated with the stochastic (scenario) 

based robust methodology suggested by Mulvey et al. [1995]. However, 

we suggest a new external problem formulation (small size and easy to 

solve optimization problem) which is solved to obtain the tradeoff without 

the need to solve the original large scale problem. (Section 4.6). 

o Developed the Limited Multi-Stage Programming (LMSP) in which the 

total number of decision variables increases linearly with the number of 

scenarios and-stages. In this approach, titled Decision Clustering, we begin 

by identifying subsets of nodes which are likely to have similar decisions. 

The LMSP is a way to solve smaller optimization models without scenario 

reduction techniques. (Section 4.10). 

o Applied the Robust Optimization (RO) methodology [Ben-Tal et al., 2009] 

to WSS management models. RO is a non-probabilistic min-max oriented 

decision methodology for optimization under uncertainty. (Chapter 5). 

o Applied the Info-Gap decision theory [Ben-Haim, 2006], that is a non-

probabilistic decision methodology, seeking to maximize robustness to 

failure under uncertainty. (Chapter 6). 

 

7.2. Summary and Conclusions 

7.2.1. Deterministic Model 

The model developed in Chapter 3 determines the optimal flow and salinity 

distribution in each season of a multi-year planning horizon for a WSS that is fed 

from aquifers (could also be lakes or reservoirs) and desalination plants and supplies 

to consumers through a hydraulic system. The objective is to minimize the total 

present value of the cost, which includes the cost of water at the sources and the cost 

http://en.wikipedia.org/wiki/Decision_theory
http://en.wikipedia.org/wiki/Decision_theory
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of conveyance to supply prescribed quantities within salinity limits to all consumers. 

The algorithm handles a non-linear objective function, so objectives other than the 

one formulated in Section 3.4 can also be considered. 

Flexibility in model building, ease of use, and computational efficiency are important 

properties for its application in the deterministic form presented herein for evaluation 

of proposed system developments. These properties are even more important when 

the model is used for management of the WSS under uncertainty, where very many 

optimization solutions are required with changing data.  

Computational efficiency of the optimization model has been achieved through 

mathematical development and implementation of several strategies: (a) extracting 

dependent and resultant variables, thereby reducing the size of the system matrix, (b) 

matrix formulation of the dilution constraints which allows extraction of the quality 

variables (Section 3.5), (c) extraction of the dependent discharges, which facilitates 

their scaling to ensure solvability, (d) an efficient scheme of evaluating the objective 

and constraints, (e) a novel and efficient scheme for calculating the gradients of the 

objective and the Jacobian matrix in a time-dependent inventory problem (called 

Time-Chained-Method, TCM). It is shown that these strategies, combined, result in a 

model that is tractable even for a large water system. Due to this efficiency, the time 

horizon can be expanded and/or the year can be subdivided into more periods, for 

example four seasons per year, at the cost of a linearly increasing computation time 

(as seen in Figure 3.18). Since the model examines a long time horizon it facilitates 

the search for sustainable management policies. 

General efficacy and applicability of the model is achieved by a user-oriented front-

end processor; it receives the system data in a concise format and "spreads out" the 

model. This enables easy evaluation of modifications and expansions of the system, 

using the difference in the optimal cost between the new/proposed system and the 

existing one to determine the justification for the proposed 

addition/expansion/change. As a consequence, the model can be used in interactive 

mode with the decision maker to evaluate alternatives.  

The development of the model is demonstrated on a small system, and its efficacy is 

proven on a large WSS that mimics the central part of the Israeli National Water 

System with several aquifers and desalination plants, using a 10-year historical time 
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series of aquifer recharge. Sensitivity runs are used to indicate the robustness of the 

methodology and its application for testing proposed modifications in the system. 

7.2.2. Stochastic Models 

Starting from the deterministic model developed in Chapter 3 and the efficient 

optimization procedure developed, Chapter 4 introduces various stochastic 

formulations in which the recharge of the natural resources is considered stochastic 

and presented by a scenario tree.  

Various stochastic programming approaches have been aggregated into one 

formulation, so that the user can select the approach to be adopted by choosing certain 

statistical operators (Section 4.2).  The implicit stochastic programming formulation 

was solved for various numerical examples. These examples show how the implicit 

approach can be used to formulate the proper explicit stochastic program, and its 

inability to provide decisions for implementation. In the implicit stochastic program 

an external optimization problem was formulated to reduce the computation burden 

when producing the Mean-Variance tradeoff (Section 4.6); this formulation provides 

the same tradeoff as obtained from the original optimization problem, with greatly 

reduced computational efforts. Various explicit stochastic formulations were 

introduced, including one-stage, two-stage and multi-stage programs. 

An approximation of the MSP is presented in Section 4.10, the LMSP, to approximate 

the MSP formulation by restricting the number of recourse decisions. This restriction 

is performed by means of a clustering procedure of the decision nodes of the scenario 

tree. The logic of the LMSP and its application for our model are demonstrated. The 

LMSP solution was compared to the original problem of the MSP. The results show 

that the LMSP provides a good approximation for the MSP solution. A generalization 

of LMSP (GLMSP) is developed in Section 4.11, in which the user can customize his 

preference along a "scale" that spans between a single-stage model and a classical 

MSP. Several examples were solved using the GLMSP to determine its sensitivity to 

different points along the scale (Figure 4.15). However, not all the results were 

presented as they would require more space than can be allowed in this work. 
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7.2.3. RC Methodology 

To facilitate the formulation of the RC problem, a new model, differing from the 

model developed in Chapter 3, is introduced in Chapter 5: it does not include salinity 

and is therefore linear.   

The underlying concepts of the RC methodology introduced in Chapter 5. RC allows 

the decision maker to express his attitude to risk through the selection of a single 

parameter,  θ that defines the domain of uncertainty in which the solution remains 

feasible, and generates Robust Policies (RPs) for specified values of θ . This approach 

shows considerable promise, regarding the tractability of the models and the value of 

the results obtained. The results demonstrate the advantage of being able to replace 

the stochastic behavior of the uncertainty by specifying a user-defined set within 

which the resulting policies are immunized (remain feasible), as well as being able to 

show the trade-off between reliability and cost. 

The methodology and its dynamic variant, the Folding RC (FRC), were applied to the 

small WSS as a test-bed, and to the central part of the Israeli National Water System 

to yield FRC policies (FRPs). While the advantage of the RP over the NP and CP is 

apparent, as demonstrated in Section 5.2., the advantage over multistage stochastic 

programming (MSP) is not apparent. On the one hand, the FRP obtains better 

reliability and has greater flexibility to take advantage of opportunities (lower best 

cost) and to optimize in severe cases (lower worst cost). On the other, the stochastic 

programming solution has lower mean cost. The small size of the RP model compared 

to the MSP is a remarkable advantage of the robust methodology. 

As we will discuss in Section 7.3.3 a variety of RO based methodologies, [Ben-Tal et 

al., 2009], including Adjustable Robust Counterpart (ARC), Affine Adjustable Robust 

Counterpart (AARC) may be also applied to this model. The non-linear model may be 

approximated or decomposed to be tackled by RO this is one of the topics considered 

in Section 7.3.3.  

7.2.4. Info-Gap Methodology  

Chapter 6 presents a preliminary application of the Info-Gap methodology; one year 

formulation and multi-year formulation of the small WSS were solved and analyzed. 

The resulting application of the Info-Gap methodology demonstrates the advantage of 
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being able to replace the stochastic behavior of the uncertainty by an uncertainty set. 

The Info-Gap min-max oriented methodology seeks to maximize the robustness to 

failure. The robustness to failure is determined by the largest uncertainty set in which 

no failure will occur. By defining the uncertainty model we are essentially defining 

the shape of the uncertainly set without   specifying its size. The optimization problem 

seeks the maximum size for the uncertainly set for a predefined level of performance. 

The Info-Gap requires a formulation of the mathematical model that seems non-

intuitive. Usually, we formulate the mathematical model to reflect the performance 

and the underlying physics of the problems as a function of the input variables (for 

instance, in our case the cost and the water level as a function of the recharge), in the 

Info-Gap methodology we formulate the inverse problem in which the input is a 

function of the performance indices. On the other hand, the resulted output of the 

info-gap model is very intuitive to comprehend. The decision maker specifies his 

preferred performance indices, and the method provides how far from the estimated 

recharge he can handle. The methodology can also be used without an optimization 

framework for comparing and evaluating alternatives as presented in example 1, 

Section 6.2.2. 

A very interesting conclusion stems from the one year optimization model of the Info-

Gap formulation: when the budget is unlimited the optimal aquifer withdrawal (which 

maximizes the overall robustness) is given by the closed form (6.24) which depends 

only on the aquifer parameters. However, in spite of the fact we have the closed form 

(6.24), we still have to solve optimization problem (6.17), since the obtained aquifer 

withdrawal from (6.24) may not be feasible, because of conveyance constraints. It is 

important to notice that equation (6.24) is valid only for the underlying uncertainty 

model considered. 

In the multi-year example the results indicate over-conservativeness as discussed: 

increasing the problem horizon shrinks the budget tradeoff, showing that the budget is 

becoming less limiting in determining the robustness. The over-conservativeness may 

be a result of the simple uncertainty set, i.e. the interval uncertainty set used to 

demonstrate the methodology in Chapter 6. The drawback of conservativeness may be 

overcome by choosing another shape of the uncertainty set, for example see in Section 

5.2.2, justification of an ellipsoidal shape uncertainty set. 
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Chapter 6 introduces the basics of the methodology as applied on the small example, 

which leads to recommendations for further research in the Info-Gap methodology 

and its hybrid-probabilistic version in (Section 7.3.4). 

7.2.5. Main Conclusions 

• The results demonstrate the importance of introducing uncertainty into 

deterministic models, as the solution can change dramatically when recharge 

uncertainty is considered. 

• Combined management of the quality and the quantity can change the optimal 

solution compared to quantity considerations alone.    

• The optimal solution of multi-year WSS management (even in the 

deterministic case) is difficult to predict; even understanding the optimal 

solution may require substantial effort. 

• In the Wait-and-See approach, it is possible to formulate an external 

optimization problem to obtain the mean-variance tradeoff; this problem is 

smaller and easier to solve than the original stochastic program. 

• The LMSP provides a good approximation of the stochastic approaches. 

• The results obtained from the non-probabilistic approaches (RC and Info-Gap) 

are very promising, they result in a smaller mathematical problem and they 

obtain competitive results in term of robustness and tractability compared to 

the classical probabilistic methods. This conclusion demonstrates the 

advantage of being able to replace the stochastic detail of the uncertainty by an 

uncertainty set. 

• The definition of the solution's robustness differs between the methodologies. 

In the Mean-variance approach which can be attributed to the scenario based 

robust optimization suggested by Mulvey et al. [1995], a robust solution is 

defined as one that results in low variability. In the RO methodology, a robust 

solution is one that remains feasible for all possible values of the uncertain 

variables within in a given uncertainty space, while optimizing a guaranteed 

value of the objective. In the Info-Gap methodology the robustness is defined 

as the maximum deviation of the uncertain parameter form a given nominal 

value without a system failure. 
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7.3. Future Research 

7.3.1. Deterministic Model 

• Incorporating broad economic considerations into the model, in particular 

demand functions (consumers’ willingness to pay) in order to transform the 

model objective from minimum operation cost to maximum net benefit. 

• Incorporating better modeling of the aquifers, which projects the hydrological 

behavior. It is worth mentioning that in the early stages of this research the 

aquifers were presented by a finite differences scheme. While this was found 

possible in principle, it was not pursued as it was not considered in the main 

stream of this research. 

• Refining the data and the topology of the INWSS example. 

• This model in its general form can be used for projecting climate change 

impacts on water resources systems. Thus, it could be integrated with climate 

driven models. 

• The TCM, methodology introduced in Chapter 3 is a generic technique which 

can be used for any optimization problem which shares the same stages 

structure. In the water resources field there are many problems which have this 

structure, such as reservoir management, hydropower optimization and WSS 

rehabilitation. It may also serve in other domains, for instance supply chain 

management models. 

7.3.2. Stochastic models  

• Constructing scenario trees from the historical record of the recharge data, 

which would be used to perform more realistic runs for the INWSS. 

• In Chapter 4 we have developed the external problem which efficiently 

produces the Mean-Variance tradeoff of the objective. However, we have 

shown that the cost variability (variance) is not always a good measure of 

robustness. Further research is needed to identify such situations. 

• The LMSP technique developed in this work provides a good approximation 

of the MSP. However, in the LMSP we need to solve each scenario separately 

in order to cluster the decision nodes. We claim that in this phase (solving 

scenarios) the solution need not be accurate. Since it is only used to determine 

the clusters members. Further research is needed to verify this assumption. 
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• The GLMSP is a tool which reflects the decision maker's preference along the 

"scale" between the single-stage stochastic programming and the MSP. 

Choosing the clustering scheme determines the position along this scale 

(Figure 4.15). Further research is needed to provide rules for choosing the 

proper point on the scale. 

7.3.3. Robust Optimization 

• We cannot underestimate the importance of incorporating more uncertainties 

in the model, such as: demands, desalination costs, conveyance costs and 

extraction levy. Incorporating more uncertainties into the RO formulation of 

the WSS in Chapter 5 will neither increase the model size nor its solvability. 

We strongly recommend future research on the application of the RO 

methodology with more uncertainties than the recharge.  

• The RO methodology is applied to the linear WSS system which only 

considers only water quantity in the system, without salinity consideration.  

Moreover, some of the non-linear relations considered in the non-linear 

formulation in Chapter 3 were linearized. We suggest the following research 

directions in order to incorporate the nonlinearity with the RO methodology: 

o The non-linear extraction levy could be approximated by a convex 

piecewise linear function. Thus, since we consider minimization 

problem, the model could be reformulated as a linear program. 

o Incorporating the salinity in the model introduces bi-linear relations. 

This means that (a) fixing the salinity variables makes the problem 

linear with respect to the flows (b) fixing the flows makes the problem 

linear with respect to the salinities. Therefore, decomposition of the 

problem facilitates the application of the RO. In the decomposition 

framework the flow variables and the salinity variables are solved 

separately.  

o The non-linear RO model could be solved by Sequential Linear 

Programming (SLP) algorithm. The SLP consists of linearizing the 

objective and constraints in a region around a nominal operating point 

by a Taylor series expansion. The resulting linear programming 

problem is then solved by the RC approach. 
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• Only the static version of the RO methodology was applied in Chapter 5. 

Application of the dynamic version of the RO methodology is needed. This 

version considers the multi-stage decision making where the first-stage 

decision should be implemented before the true data is obtained and later stage 

decisions should be implemented after realization of the data in earlier stages. 

Thus, the decisions of each stage depend on all parts of the data which have 

already been realized up to that stage. The Affine Adjustable Robust 

Counterpart (AARC) approach could be applied to the WSS model formulated 

in Chapter 5. In AARC the dependence of the adjustable decision variables on 

past realized data is restricted to be linear; this restriction is imposed to 

achieve tractability. The Matlab code for the AARC has been developed and 

several runs were performed for the WSS model in Chapter 5. However, since 

further work is needed to finalize the results it was not included in this thesis. 

7.3.4. Info-Gap Model 

• Chapter 6 presents only a preliminary application of the Info-Gap 

methodology. The results obtained from this application are promising. We 

strongly recommend future research in this direction. 

• The results obtained from the Info-Gap methodology indicate over-

conservativeness of the solution. We believe that this may be the result of the 

simple interval uncertainty set which was used to demonstrate the 

methodology. The drawback of conservativeness could by overcome by 

choosing another shape of the uncertainty set, for example see in Section 

5.2.2., justification of an ellipsoidal shape uncertainty sets. Testing different 

uncertainty sets within the Info-Gap methodology is a matter for future 

research. 

• Another approach which could be applied for the WSS is the Hybrid Info-Gap 

methodology [Ben-Haim, 2006], in which the uncertain parameters of the 

model are formulated in hybrid probabilistic and non-probabilistic measures. 

The uncertain parameters are associated with PDFs in which the tails of the 

distribution are dealt with in a different manner. In fact the Hybrid Info-Gap 

methodology takes a PDF estimator to the real PDF with unknown extreme 

values. 
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8. Appendix 1  

A new box-constrained optimization methodology and its 
application for a water supply system model 
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Abstract 

This study introduces a new search method for box-constrained optimization 

problems titled Search Method for Box Optimization (SMBO). SMBO is a population 

heuristic based search method which solves global optimization problems. SMBO 

represents the population as Probability Density Function (PDF) inside the problem 

bounds. The PDF shape is dynamically adapted during the process to guide to a 

"good" search domain. The applicability and the efficiency of the method are 

demonstrated using two benchmark sets, which include unimodal, multi-modal, 

expanded and hybrid composition functions. The performance of SMBO is compared 

with several genetic algorithms (GAs); the first benchmark compares it with nine 

codes of traditional/classic GAs, and the second compares SMBO with two recent 

variants of genetic algorithms. The results show that SMBO performs as well as or 

better than the GAs in both comparisons. The method is also applied to optimize a 

nonlinear model for management of a Water Supply System (WSS), and the results 

are compared to the commercial GA toolbox of MATLAB. 

 

Index Terms— Evolutionary Algorithms, Genetic Algorithms, Global Optimization, 

Search Methods   
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A2: 1.   Introduction 

Many heuristic techniques were proposed to solve multidimensional global 

optimization problems (Ahrari et al., 2009; Georgieva and Jordanov, 2009; Regis and 

Shoemaker, 2007) among them genetic algorithms (GAs) (Harik et al., 1999; Holland, 

1975; Tu and Lu, 2004) which are based on the genetic evolution of biological 

organisms. Essentially, each variable is represented as a gene, while the vector of 

variables is represented as a chromosome that combines all the genes. 

The GA starts with an initial population in which each individual has its own 

chromosome. The population evolves over generations by means of random selection 

based on the fitness of the individuals.  Pairs of individuals are selected out of the 

current generation and their chromosomes are recombined by a crossover operator. To 

ensure diversity, Mutation can be applied to some individuals. Generally, the 

efficiency of GAs depends on the values of the algorithm parameters, such as 

population size, initial population, selection scheme, the mutation fraction, and 

retention of elite members for the next generation (Tvrdík, 2009). 

This work presents a search method for global optimization of box-constrained 

problems. SMBO is based on representing the population of each generation as 

Probability Density Function (PDF) defined within the problem bounds, where each 

gene has its own triangular shape PDF.  

The details of this method and performance comparison using two benchmark sets are 

given in the next sections. In section 2, the method and its algorithm are presented, 

including a 2D example to demonstrate its propagation towards the optimal solution.  

Section 3 contains comparisons with results obtained by other search methods and 

section 4 demonstrates the application of SMBO for a WSS model. 

A2: 2.   Searching Method for Box Optimization (SMBO)  

A2: 2.1.   Outline of the method 

The following optimization problem is considered: 

( )min subject to
x

f x LB x UB≤ ≤        (8.1) 

where mx∈ℜ  is the variables vector, f  is the objective function, and ,m mLB UB∈ℜ ∈ℜ

represent the lower and the upper bounds respectively.   

Population based search methods can be defined as follows: 
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 ( )( ),new old oldP G P f P=         (8.2) 

where oldP is a subset of solutions inside the search domain, which we call population,  

f   is an objective function which returns the fitness for each population member and 

G  is a manipulation function which creates a new population evolved from the 

previous one. 

For instance, in GAs the manipulation function is defined by the operators applied to 

the old population to create the new one, such as: selection, mutation, crossover, etc.  

SMBO is a population heuristics based search method in the form of equation (8.2) 

where each gene of a population member is represented by a PDF. For each gene the 

PDF is represented as an isosceles triangle inside the problem bounds, which is 

defined by a center point and base length. With regard to the manipulation function, 

SMBO draws n  independent samples taken from the previous PDF, evaluates these 

samples and defines the new population (PDF).  

To define the new population: (a) the new center points of the triangular PDFs are 

calculated as a mean of the elite members of the previous population sample (b) the 

new bases lengths of the triangles are reduced in order to achieve convergence. 

Since SMBO deals with box optimization problems, the manipulation function must 

guarantee that all new population members are within the feasible domain. Therefore, 

when the vertices of the triangle are outside the problem bounds, the triangle is 

truncated at the bounds and normalized again to ensure a new population within the 

given bounds. Figure 1 shows the shape of the PDF and Figure 2 contains the pseudo 

code of the sampling algorithm from the triangular shape PDF.  

Figure 1: PDF of variable i at iteration t 

iUB  t t
i iC B+  

iLB  t
iC  t t

i iC B−  

1PDF =∫  

t
iC  iLB   

iUB  

1PDF =∫
 

t t
i iC B+  

b. Part of the triangular shape is outside the bounds a. The triangular shape is inside the bounds 
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1) given mC∈ℜ −  Triangle center points, mB∈ℜ −  Half triangle bases 
    mLB∈ℜ −  Lower bound and mUB∈ℜ −Upper bound 
2) generate m  PDFs, one for each gene   
     : 1for i to m do=  
           ( ) ( )max , , min ,ii i i i i i iR LB C B R UB C B= − = +  
           :idefine the shape using the coordinates∆  

          ( ) ( ) ( ) ( ) ( ),0 , , ( ) , , , , ( ) , ,0i i ii i i i i i i i iR R R C B C B R R C B R− − − + +  

          

i

i

i
i

R

i
R

define the PDF
∆

∆ =

∆∫
 

3) generate n  randomly distributed feasible samples (Rubinstein, 
1981) 
    : 1for s to n do=  
         : 1for i to m do=  
                s

iidraw x by the inverse transform method out of the PDF ∆  

Figure 2: Sampling Algorithm 

A2: 2.2.   Base reduction scheme 

Four parameters are considered in controlling the base reduction: Warming, Refining, 

minB − Minimum half base and α − Linear reduction factor. Warming and Refining are 

control parameters which are fractions of the total generations in which there is no 

base reduction. Warming is defined for the first generations, e.g. the first 10% of the 

total generations and Refining is defined for the last generations, e.g. the last 5% of 

the total generations. Figure 3 shows the pseudo code of the SMBO algorithm. 

( )
( )

( )

0

min

1 2

0
min0

1

0 min
2 0

(1 )
(1 )

i
t
i

i
i

t W TG
RG

i
i

B t W TG
B B t RE TG

g g else

B B
g B t W TG

RG

Bg B
B

α α

− ⋅

 ≤ ⋅
= ≥ − ⋅
 + −

−
= − ⋅ − ⋅

 
= ⋅ 

 

      (8.3) 

( ) 0

where
, , ,

1 and
2

i i
i

TG Total Generation RE Refining W Warming
UB LBRG W RE TG B

− − −
−= − − ⋅ =
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1) given n −Number of samples in each generation, EC − Elite count,  
    TG -Total generation, minB − Minimum base, α - Linear reduction factor, 
    W −Warming,  Re - Refining, LB −  Lower bound, UB − Upper bound, 
2) initialize the algorithm 

     - set 0t = , 0

2
UB LBB −

= , 0
minX C= , ( )min minf f X=  where 0C  is  

        a random vector uniformly distributed within the problem bounds. 
3) generate feasible samples  
    - apply the Sampling Algorithm in Figure 2 on tC and tB  
    - add the obtained n  samples to a set tP  
    - add the vectors tC , t

R , tR and minX  to the set tP  
4) evaluate the samples 
     - evaluate the members in the set tP , and sort them in ascending order 
        based on their objective values. 
     - define bestX  as the first vector of the sorted vectors, and ( )best bestf f X=   
     - if  minbestf f≤  do min min,best bestX X f f= =  
5)  define the new parameters of the PDFs 
     - define 1tC +  as the average of the first EC vectors of the sorted vectors. 
     - evaluate 1tB +  based on equations (3) 
10) if t TG≤  do 1t t= + , back to step 3  
     else return min min,best bestX X f f= =  

Figure 3: SMBO Algorithm 

 
A2: 2.3.   Propagation to the optimal solution (using a 2D example) 

Consider the problem:   

2 2
2 2

( ) ( )
20

subject to
10 10

m n

10

i

10

x y x yx e

x
y

− − +
⋅ + →

− ≤ ≤
− ≤ ≤

       (8.4) 

The optimal solution of (8.4) is min -0.67x = , min 0y = . SMBO starts from an initial 

population defined by a triangular PDF with centers 0 9.2xC = − , 0 7.8yC = − , 0 10B = for 

both variables. Figure 4 shows the propagation of the algorithm towards the optimal 

solution, Figure 4a shows the first and second PDFs representing the initial and the 

second populations during the solution process. Figure 4b shows all the PDFs during 

the search process. The final PDFs are concentrated on the optimal solution, since the 

base of the triangles at the final iteration is 0.02, after normalization they have a 

height of 100 where the triangles heights at the earlier iterations have relativity small 

heights which are represented by the flat part along axes x  and y in Figure 4b. 



194 
 

The parameters set considered in this small example are defined in Table 1. 

 
a. The PDFs at the first (left) the second (right) iterations  

 
b. PDFs at the end of the search process 

Figure 4: Example (2D) 
 

A2: 3.   Comparison of test results with GAs 

To test the ability of the proposed method to find the global or at least local minimum 

efficiently, two suits of benchmark functions are optimized by SMBO, using the 

parameters given in Table 1. 

 

PDFs at 

 

 

PDFs at 
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A2: 3.1.   De Jong's test suite 

De Jong's suite contains five test functions (De Jong, 1975) which are listed in the 

Appendix. F1 is a unimodal function. F2 is a multimodal function. F3 is 

discontinuous. F4 is unimodal padded with noise. F5 is a function with many local 

optima. The performance of SMBO is compared with that obtained in Colorado et al., 

(1993) which used nine GA codes. For comparison purposes our algorithm was 

executed 30 times on all the test functions, each time we have used 400 evaluations at 

each generation and total generations 1000TG = , as was done in Colorado et al., 

(1993). 

The stopping criterion ( )obtained optimalf f ε− ≤ was set as in Colorado et al., (1993) where 

0.01ε =  except for the function F3 in which 0ε =  and F4 in which 2.5ε = −  . Table 2 

reports the average number of function evaluations and its standard deviation that 

each algorithm takes in order to solve the De Jong's functions.  

 
Table 1: SMBO Parameters 

De Jong's test suite  2D-Example CEC'05 test suite  
{ } { }

( )

min

1, 2, 3, 4 0.95 , 5 0
0
0.5

0.01
397

min 0.1 3 ,10

RE F F F F F
W

B
n

EC n

α

= = =

=
=
=

=

 = ⋅ +   

 
min

50
0

0
0

0.01
100

10

TG
RE
W

B
n
EC

α

=
=
=
=
=

=
=

 

( )

min

0.1
0
0

0.01
147

min 0.1 3 ,10

RE
W

B
n

EC n

α

=
=
=
=

=

 = ⋅ +   

 

 
 
 

Table 2: De Jong's test suite results*  
F1  F2  F3 

Algorithm E_ev Std_ev  Algorithm E_ev Std_ev  Algorithm E_ev Std_ev 
SMBO(400) 2760 881  SMBO(400) 2013 817  SMBO(400) 1747 222 

Genitor 6800 1640  I-pCHC 31200 22800  Genitor 3280 840 
I-Genitor 9280 2120  I-ESGA 32400 16000  I-Genitor 4920 1440 

pCHC 11360 2600  ESGA 33200 22000  ESGA 6120 1640 
ESGA 11560 2720  Cellular 42000 37600  SGA 6680 1680 
SGA 12280 2960  I-Genitor 44800 37600  pCHC 6760 1480 

I-ESGA 12920 3040  pCHC 61200 55600  Cellular 7160 1840 
Cellular 13000 3200  Genitor 76000 64000  I-ESGA 7320 2000 
I-pCHC 13280 2960  SGA 113600 79200  I-pCHC 7520 1760 
I-SGA 16520 4480  I-SGA 166800 101200  I-SGA 8800 2120 
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F4  F5     

Algorithm E_ev Std_ev  Algorithm E_ev Std_ev     
SMBO(400) 10427 1807  Genitor 3160 1000     

Genitor 54000 26800  I-Genitor 4480 1480     
ESGA 61200 19600  I-ESGA 5520 1880     
SGA 64400 16000  ESGA 5720 17600     

I-Genitor 83200 64800  SGA 5840 1760     
pCHC 89200 41600  Cellular 6120 1720     

I-ESGA 150000 78800  pCHC 6400 1560     
Cellular 158800 81600  I-pCHC 6520 2120     
I-SGA 162000 76800  SMBO(400) 8107 7763     

I-pCHC 198000 95600  I-SGA 8120 2760     
 

*E_ev, Std_ev are average and standard deviation of function evaluations 
respectively. 

 

A2: 3.2.   CEC-05 test suite 

In this section SMBO is applied to a subset of the benchmark functions provided by 

CEC-05 special session on real parameter optimization (Suganthan et al., 2005). The 

chosen subset includes four groups: unimodal, multi-modal, expanded and hybrid 

composition functions. All the test functions are listed in the appendix. 

The performance of SMBO is compared with that obtained in Hsieh et al., (2009) by 

means of two recent variants of GAs on eighteen test functions with 30 dimensions. 

For comparison purposes the number of function evaluations was set to 150,000 and 

each of the test functions was run 30 times. In SMBO we set the evaluations at each 

generation to 150 and the total generations to 1000. Table 3 reports the mean value 

and the standard deviation of the objective function that each algorithm obtained after 

150,000 evaluations. In each function the algorithm with minimum mean value is 

shown bold. 

The results show that SMBO obtained better results (lower mean value) than HTGA 

(Tsai et al., 2004) in all the test functions except for functions f8 and f11. Moreover, 

SMBO outperforms SEGA (Hsieh et al., 2009) in fourteen out of the eighteen 

functions considered, i.e. (78%) of the test set. 

With regard to the function f12, despite the fact that SMBO obtained lower mean 

value in the third decimal place, both SMBO and SEGA are shown in bold. However, 
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one can argue that SEGA obtained better result because of the lower standard 

deviation.  

Table 3: CEC-05 test suite results* 

Function Algorithm 
SEGA  HTGA  SMBO 

f1 -4.49E+02 ± 1.34E-02  -4.41E+02 ± 4.92E+00  -4.50E+02 ± 2.63E-06 
f2 8.24E+02 ± 4.33E+02  1.51E+04 ± 1.46E+03  -4.50E+02 ± 2.86E-05 
f3 1.28E+07 ± 3.81E+06  1.64E+07 ± 2.66E+06  1.09E+07 ± 5.39E+07 
f4 1.94E+04 ± 7.87E+03  3.15E+04 ± 3.30E+03  -4.50E+02 ± 4.97E-05 
f5 8.90E+02 ± 1.18E+03  4.05E+03 ± 2.32E+03  1.98E+03 ± 2.81E+03 
f6 4.52E+03 ± 1.18E-02  4.52E+03 ± 6.75E-02  -1.80E+02 ± 7.15E-07 
f7 -1.19E+02 ± 6.32E-02  -1.19E+02 ± 8.85E-02  -1.20E+02 ± 9.34E-02 
f8 -3.29E+02 ± 5.40E-03  -3.27E+02 ± 1.35E+00  -3.02E+02 ± 1.09E+01 
f9 -2.73E+01 ± 9.60E+01  2.65E+01 ± 6.75E+01  -3.05E+02 ± 7.55E+00 
f10 1.24E+02 ± 3.42E+00  1.24E+02 ± 2.24E+00  9.38E+01 ± 3.19E+00 
f11 2.01E+04 ± 1.37E+04  2.87E+04 ± 1.57E+04  4.53E+04 ± 1.55E+05 
f12 -1.29E+02 ± 2.13E-01  -1.28E+02 ± 3.82E-01  -1.29E+02 ± 9.68E-01 
f13 -2.87E+02 ± 2.40E-01  -2.87E+02 ± 2.97E-01  -2.89E+02 ± 1.04E+00 
f14 4.97E+02 ± 1.09E+02  4.57E+02 ± 8.27E+01  4.39E+02 ± 2.66E+02 
f15 1.14E+03 ± 3.40E+02  1.71E+03 ± 3.04E+02  1.24E+03 ± 3.41E+01 
f16 1.53E+03 ± 7.43E+01  1.51E+03 ± 4.49E+01  8.94E+02 ± 2.54E-04 
f17 8.17E+02 ± 5.06E+02  9.86E+02 ± 5.24E+02  4.60E+02 ± 3.37E-04 
f18 1.55E+03 ± 6.79E+01  1.60E+03 ± 3.25E+01  1.23E+03 ± 8.00E+00 

 

A2: 4.   Solving a WSS problem  

A seasonal multi-year model for management of water quantities and salinity for the 

WSS shown in Figure 5 was solved. Water is taken from sources, which include 

aquifers, reservoirs and desalination plants, conveyed through a distribution system to 

consumers who require certain quantities of water under specified salinity constraints.  

 
Figure 5: Network Layout 

HTGA-Hybrid Taguchi Genetic Algorithm (Tsai et al., 2004)  
SEGA-Sharing Evolution Genetic algorithm (Hsieh et al., 2009)  
* The values have been rounded to 3 significant digits 
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The objective is to operate the system with minimum total cost of desalination, 

pumping, delivery, and an extraction levy in the aquifers. The objective function and 

some of the constraints in the model are nonlinear, leading to a nonlinear optimization 

problem.  

The objective is to minimize the operation cost over a period of five years, where each 

year has two seasons. The optimization problem is: 

( ) ( )
5 2 8 2.852, , , , , ,

1 1 1
cost= ( ) ( ) min

Subject to

S Y S Y S Y S Y S Y S A
p p a a d d

Y S p Extraction Levy Desalination
Conveyance

Q h Q C Q
δ

ω α β γ
−

= = =

 
 
 ⋅ + + ⋅ ⋅ + + ⋅ →
 
 
 

∑∑ ∑






 (8.5) 

State equation for water level in the aquifers S Y∀ ∀ : 
, , , ( , ) 1( )S Y S Y S Y S Y

a a a a aR Q SA h h −− = ⋅ −  

State equation for water salinity in the aquifers S Y∀ ∀ : 

( ) ( ), , ( , ) 1 , , , ( , ) 1 ( , ) 1S Y S Y S Y S Y S Y S Y S Y S Y
R a a a a a a a aaC R C Q SA C h C h− − −⋅ − ⋅ = ⋅ ⋅ − ⋅  

Desalinated water salinity S Y∀ ∀ :  

( ), ,1S Y S Y
d sea dC C RR= ⋅ −  

Water balance in the network S Y∀ ∀ : 
, 0S YA Q⋅ =  

Salinity (mass) balance in the network S Y∀ ∀ : 

,
, 0S Y

S Y
Q

A C⋅ ∆ ⋅ =  

Full dilution in the network nodes S Y∀ ∀ : 
, 0S YB C⋅ =  

Bounds S Y∀ ∀ : 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

( ) ( )

, ,,
min max

, ,,
min max

, ,,
min max

, ,,
min max

, ,,
min max

S Y S YS Y
aa a

S Y S YS Y

S Y S YS Y
SourcesSources Sources

S Y S YS Y
PipesPipes Pipes

S Y S YS Y
dd d

h h h

C C C

Q Q Q

Q Q Q

RR RR RR

< <

< <

< <

< <

≤ ≤

 

where , , , , ,p a d z S Y  denote pipe, aquifer, desalination plant, demand zone, season and 

year, respectively.  
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Model parameters:  
, , , , ,S Y

pω α β γ δ are cost parameters; ,S Y
aR is recharge ( 3m ); aSA is the storativity multiplied 

by area ( 2m ); ( ) ,S Y
R aC is salinity of the recharge water ( /mgcl lit ); seaC is sea water salinity 

( /mgcl lit ); A is the graph matrix of the network; B full dilution matrix which 

indicates equal salinity for two outgoing pipes which share the same node; 
1 2[ , ]Demand z zQ Q Q= ==  ( 3m );  lower and upper bounds. 

Model variables: 

1 8[ , ], [ ,..., ]Sources a d PipesQ Q Q Q Q Q= = are discharges from sources and in pipes, respectively; 

1 8 1 2[ , , , , , , ]T
a d z zC C C C C C C= ==  is vector combines salinity in the system sources, pipes 

and demand zones; ,S Y
dRR is removal ratio in the desalination plant; ,S Y

ah  is water level 

in the aquifer; Q∆ is diagonal matrix with main diagonal [ , , ]T
Sources Pipes DemandQ Q Q Q= . 

To reduce the model size we extracted one dependent decision variable from each 

equality constraint. Then, the dependent variables are substituted in the objective 

function and the inequality constraints. For the model defined above, extracting all the 

dependent variables leads to the following mathematical model which has 50 decision 

variables, 120 linear constraints, 80 nonlinear constraints and 50 bounds: 
5 2

, ,

1 1
cost( , ) min

Subject to

S Y S Y
Indep d

Y S
Q RR

= =

→∑∑        (8.6) 

Inequality linear constraints S Y∀ ∀ : 

( ) ,

, , 0
S Y

S Y S Y
Indep

KQ

K Q⋅ ≤


 

Inequality nonlinear constraints S Y∀ ∀ : 
, ,( , ) 0 1 8S Y S Y

i Indep dg Q RR i≤ ∀ =   

Bounds S Y∀ ∀ : 

( ) ( )

( ) ( )

, ,,
min max

, ,,
min max

S Y S YS Y
IndepIndep Indep

S Y S YS Y
dd d

Q Q Q

RR RR RR

< <

≤ ≤
 

where , , , , ,
3 4 6 8[ , , , ]S Y S Y S Y S Y S Y T

IndepQ Q Q Q Q= . 

The mathematical model in (8.6) was solved by SMBO where all inequality 

constraints except the bounds where added to the objective as penalty terms with 

penalty factor P . After introducing the penalty terms the model is a box constrained 

optimization problem: 
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( )

( ) ( )

( ) ( )

5 2 12 8
,, , ,

1 1 1 1

, ,,
min max

, ,,
min max

cost( , ) P max(0, ) P max(0, ) min

Subject to

S YS Y S Y S Y
Indep d ij

Y S j i

S Y S YS Y
IndepIndep Indep

S Y S YS Y
dd d

Q RR KQ g

S Y

Q Q Q

RR RR RR

= = = =

 
+ ⋅ + ⋅ → 

 
∀ ∀

< <

≤ ≤

∑∑ ∑ ∑

  (8.7) 

Problem (8.7) with penalty factor P 1E6= (very high value compared to the values in 

the cost function), was solved by SMBO and the commercial GA solver of MATLAB. 

In both algorithms the evaluations at each generation and the total generations were 

set to 200 and 1000, respectively. Both solvers were run without special tuning, the 

parameters of SMBO are the same as those for the CEC-05 (Table 1) where for the 

MATLAB GA we used the default options for creation, selection, crossover and 

mutation. 

The solvers were run 10 times each, and the best run results are reported in Figure 6. 

SMBO obtained a feasible solution (value below 400 M$) at generation 58 while the 

GA obtained it only at generation 183. The final solution obtained by SMBO (64.51 

M$) is also better than that obtained by the GA (65.55 M$). The best known solution 

for problem (8.6) (the original constrained problem) is 64.12 M$. This solution was 

obtained by the interior point algorithm of the FMINCON solver within the 

commercial MATLAB optimization toolbox.  

 
Figure 6: Progress of the SMBO and GA Solutions 
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A2: 5.   Conclusions 

A new method for box constrained global optimization – SMBO has been presented. 

The algorithm searches for the global minimum with competitive performance 

compared with other methods. The algorithm was tested on two benchmark problem 

sets. The number of evaluations needed to obtain the global minimum in De Jong's 

test suite was the smallest in four functions. Moreover, SMBO achieved closer 

solution to the global minimum in most of the CEC'05 test suite problems.  

In reference to the WSS management model SMBO obtained better results than the 

commercial GA solver of MATLAB and achieved close results to the best known 

solution obtained by the gradient optimization solver within the commercial 

optimization toolbox of MATLAB. 

These results demonstrate the promising potential of the method, especially for 

expensive functions in which each evolution is time-consuming. 

In the second test the control parameters of the algorithm were given the same values 

for all the tasks, without any tuning. Further research is needed for improving the 

algorithm performance through its parameters selection for example; in the first test 

suite further analysis shows that 400 evaluations at each generation, which is 

specified in the comparison, is too large for SMBO to attain the best performance in 

the test suite problems. This analysis show that SMBO obtained even better results 

when low values of E  were selected in the 5 test functions.  

Further research to modifying SMBO to a hybrid global optimization method that 

combines it with local search algorithms is also considered. 

A2: 6.   Appendix 

This appendix presents all the test problems used in both comparisons. Table 4 and 

Table 5 present the functions of the first and the second test respectively. 

Table 4: De Jong's test suite (De Jong, 1975) 

Function 
name Interval Function Global 

Min 

F1 (Sphere) [ ]35.12,5.12x∈ −  
3

2

1
( ) i

i
f x x

=

= ∑  min 0f =  

F2 
(Rosenbrock) [ ]22.048,2.048x∈ −  2 2 2

1 2 1( ) 100 ( ) (1 )f x x x x= ⋅ − + −  min 0f =  

F3 (Step) [ ]55.12,5.12x∈ −  
5

1
( ) i

i
f x x

=

=   ∑  min 30f = −  

F4 
(Stochastic) [ ]301.28,1.28x∈ −  

30
4

1
( ) (0,1)i

i
f x i x Gauss

=

= ⋅ +∑  min 0f =  
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F5 ( Foxholes) [ ]265.536,65.536x∈ −

 

1

25 1( ) 0.002
2 61 ( )

1

f x
j j x ai iji

− 
 
 = + ∑ 

= + −∑
 = 

 

min 0.998f =

 

 

Table 5: CEC'05 test suite (30D problems) (Suganthan et al., 2005). 

Function name Interval Function biasf
* 

Uni-modal Functions 

f1-Sphere  [ ]100,100x∈ −  
30

2

1
( ) ,i bias

i
f x z f z x o

=

= + = −∑ * -450 

f2-Schwefel 1.2 [ ]100,100x∈ −  
2

30

1 1
( ) ,

i

j bias
i j

f x z f z x o
= =

 
= + = − 

 
∑ ∑  -450 

f3-Rotated high 
conditioned elliptic  [ ]100,100x∈ −  ( )

130
6 229

1

M-Orthogonal Matrix

( ) (10 ) ,
i
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i

f x z f z x o M
−

=

= ⋅ + = − ⋅∑  -450 

f4-Schwefel 1.2 
with noise  [ ]100,100x∈ −  ( )

2
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1 1
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f x z N f
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  
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Multi-modal Functions 

f5-Rosenbrock [ ]100,100x∈ −  ( )
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2 2 2
1

1
( ) 100 ( ) ( 1)
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f7-Rotated Ackley 
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f10-Rotated 
Weierstrass [ ]0.5,0.5x∈ −  
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Expanded Functions 
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f13-Rotated 
expanded Scaffer [ ]100,100x∈ −  
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Hybrid Composition Functions** 

f14-Rotated hybrid 
composition 1 with 
noise 

[ ]5,5x∈ −  

1( )f x is composed using ten function:, 
two Weierstrass, two Rastrigin, two 
Ackley, two Griewankand two Sphere 
functions.** 

( )1( ) ( ) 1 0.2 (0,1) biasf x f x Gauss f= ⋅ + +   

120 

f15-Rotated hybrid 
composition 3 [ ]5,5x∈ −  

( )f x is composed using ten functions: 
two rotated expanded Scaffer, two 
(Griewank+ Rosenbrock), two 
Weierstrass, two Rastrigin and two 
Griewank functions.** 

360 

f16-Rotated hybrid 
composition 3 with 
high condition 
number matrix 

[ ]5,5x∈ −  
The previous function with high 
condition number matrices in the 
composition process. 

360 

f17-Rotated hybrid 
composition 4 [ ]5,5x∈ −  

( )f x  is composed using ten functions: 
rotated expanded Scaffer, non-continuous 
expanded Scaffer, Weierstrass, ( 
Griewank+ Rosenbrock), Ackley, 
Rastrigin, non-continuous Rastrigin, 

260 
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Griewank, high conditioned Elliptic and 
Sphere function with noise.** 

f18-Rotated hybrid 
composition 4    The same as the previous function 260 

*  All the following problems are in 30D and shifted to min biasf f= , o − is the shifted 
global optimum 
** For more information about composition functions see [10], pages 18-38. 
     ( http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC-05/CEC05.htm 
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9. Appendix 2 

Figure 1: SA1, Season 1 results - flow ( )MCM  and salinity ( / )mgcl lit distribution. (All 
values have been rounded to one decimal place) 

 
Figure 2: SA2, Season 1 results - flow ( )MCM  and salinity ( / )mgcl lit distribution. (All 
values have been rounded to one decimal place) 
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Figure 3: SA3, Season 1 results - flow ( )MCM  and salinity ( / )mgcl lit distribution. (All 
values have been rounded to one decimal place) 
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Figure 4: SA3, Season 1 results - flow ( )MCM  and salinity ( / )mgcl lit distribution. (All 
values have been rounded to one decimal place) 
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